首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial pathogens have evolved a sophisticated arsenal of virulence factors to modulate host cell biology. Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC) use a type III protein secretion system (T3SS) to inject microbial proteins into host cells. The T3SS effector cycle inhibiting factor (Cif) produced by EPEC and EHEC is able to block host eukaryotic cell-cycle progression. We present here a crystal structure of Cif, revealing it to be a divergent member of the superfamily of enzymes including cysteine proteases and acetyltransferases that share a common catalytic triad. Mutation of these conserved active site residues abolishes the ability of Cif to block cell-cycle progression. Finally, we demonstrate that irreversible cysteine protease inhibitors do not abolish the Cif cytopathic effect, suggesting that another enzymatic activity may underlie the biological activity of this virulence factor.  相似文献   

2.
Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) inject effector proteins into host cells via a type III secretion system encoded by the locus of enterocyte effacement (LEE). One of these effectors is Cif, encoded outside the LEE by a lambdoid prophage. In this study, we demonstrated that the Cif-encoding prophage of EPEC strain E22 is inducible and produces infectious phage particles. We investigated the distribution and functional expression of Cif in 5,049 E. coli strains of human, animal, and environmental origins. A total of 115 E. coli isolates from diverse origins and geographic locations carried cif. The presence of cif was tightly associated with the LEE, since all the cif-positive isolates were positive for the LEE. These results suggested that the Cif-encoding prophages have been widely disseminated within the natural population of E. coli but positively selected within the population of LEE-positive strains. Nonetheless, 66% of cif-positive E. coli strains did not induce a typical Cif-related phenotype in eukaryotic cells due to frameshift mutations or insertion of an IS element in the cif gene. The passenger region of the prophages carrying cif was highly variable and showed various combinations of IS elements and genes coding for other effectors such as nleB, nleC, nleH, nleG, espJ, and nleA/espI (some of which were also truncated). This diversity and the presence of nonfunctional effectors should be taken into account to assess EPEC and EHEC pathogenicity and tropism.  相似文献   

3.
Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC) strains are human and animal pathogens that inject effector proteins into host cells via a type III secretion system (TTSS). Cif is an effector protein which induces host cell cycle arrest and reorganization of the actin cytoskeleton. Cif is encoded by a lambdoid prophage present in most of the EPEC and EHEC strains. In this study, we analyzed the domain that targets Cif to the TTSS by using a new reporter system based on a translational fusion of the effector proteins with mature TEM-1 beta-lactamase. Translocation was detected directly in living host cells by using the fluorescent beta-lactamase substrate CCF2/AM. We show that the first 16 amino acids (aa) of Cif were necessary and sufficient to mediate translocation into the host cells. Similarly, the first 20 aa of the effector proteins Map, EspF, and Tir, which are encoded in the same region as the TTSS, mediated secretion and translocation in a type III-dependent but chaperone-independent manner. A truncated form of Cif lacking its first 20 aa was no longer secreted and translocated, but fusion with the first 20 aa of Tir, Map, or EspF restored both secretion and translocation. In addition, the chimeric proteins were fully able to trigger host cell cycle arrest and stress fiber formation. In conclusion, our results demonstrate that Cif is composed of a C-terminal effector domain and an exchangeable N-terminal translocation signal and that the TEM-1 reporter system is a convenient tool for the study of the translocation of toxins or effector proteins into host cells.  相似文献   

4.
The cycle inhibiting factor (Cif) belongs to a family of bacterial toxins and effector proteins, the cyclomodulins, that deregulate the host cell cycle. Upon injection into HeLa cells by the enteropathogenic Escherichia coli (EPEC) type III secretion system, Cif induces a cytopathic effect characterized by the recruitment of focal adhesion plates and the formation of stress fibres, an irreversible cell cycle arrest at the G(2)/M transition, and sustained inhibitory phosphorylation of mitosis inducer, CDK1. Here, we report that the reference typical EPEC strain B171 produces a functional Cif and that lipid-mediated delivery of purified Cif into HeLa cells induces cell cycle arrest and actin stress fibres, implying that Cif is necessary and sufficient for these effects. EPEC infection of intestinal epithelial cells (Caco-2, IEC-6) also induces cell cycle arrest and CDK1 inhibition. The effect of Cif is strikingly similar to that of cytolethal distending toxin (CDT), which inhibits the G(2)/M transition by activating the DNA-damage checkpoint pathway. However, in contrast to CDT, Cif does not cause phosphorylation of histone H2AX, which is associated with DNA double-stranded breaks. Following EPEC infection, the checkpoint effectors ATM/ATR, Chk1 and Chk2 are not activated, the levels of the CDK-activating phosphatases Cdc25B and Cdc25C are not affected, and Cdc25C is not sequestered in host cell cytoplasm. Hence, Cif activates a DNA damage-independent signalling pathway that leads to inhibition of the G(2)/M transition.  相似文献   

5.
Enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC) are closely related pathogens. Both use a type III secretion system (TTSS) encoded by the 'locus of enterocyte effacement' (LEE) to subvert and attach to epithelial cells through the injection of a repertoire of effector molecules. Here, we report the identification of a new TTSS translocated effector molecule called Cif, which blocks cell cycle G2/M transition and induces the formation of stress fibres through the recruitment of focal adhesions. Cif is not encoded by the LEE but by a lambdoid prophage present in EPEC and EHEC. A cif mutant causes localized effacement of microvilli and intimately attaches to the host cell surface, but is defective in the ability to block mitosis. When expressed in TTSS competent LEE-positive pathogens, Cif is injected into the infected epithelial cells. These cells arrested at the G2/M phase displayed accumulation of inactive phosphorylated Cdk1. In conclusion, Cif is a new member of a growing family of bacterial cyclomodulins that subvert the host eukaryotic cell cycle.  相似文献   

6.
A pre-requisite for bacterial pathogenesis is the successful interaction of a pathogen with a host. One mechanism used by a broad range of Gram negative bacterial pathogens is to deliver effector proteins directly into host cells through a dedicated type III secretion system where they modulate host cell function. The cycle inhibiting factor (Cif) family of effector proteins, identified in a growing number of pathogens that harbour functional type III secretion systems and have a wide host range, arrest the eukaryotic cell cycle. Here, the crystal structures of Cifs from the insect pathogen/nematode symbiont Photorhabdus luminescens (a γ-proteobacterium) and human pathogen Burkholderia pseudomallei (a β-proteobacterium) are presented. Both of these proteins adopt an overall fold similar to the papain sub-family of cysteine proteases, as originally identified in the structure of a truncated form of Cif from Enteropathogenic E. coli (EPEC), despite sharing only limited sequence identity. The structure of an N-terminal region, referred to here as the ‘tail-domain’ (absent in the EPEC Cif structure), suggests a surface likely to be involved in host-cell substrate recognition. The conformation of the Cys-His-Gln catalytic triad is retained, and the essential cysteine is exposed to solvent and addressable by small molecule reagents. These structures and biochemical work contribute to the rapidly expanding literature on Cifs, and direct further studies to better understand the molecular details of the activity of these proteins.  相似文献   

7.
Enterohemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC, respectively) strains are closely related human pathogens that are responsible for food-borne epidemics in many countries. Integration host factor (IHF) and the locus of enterocyte effacement-encoded regulator (Ler) are needed for the expression of virulence genes in EHEC and EPEC, including the elicitation of actin rearrangements for attaching and effacing lesions. We applied a proteomic approach, using two-dimensional polyacrylamide gel electrophoresis in combination with matrix-assisted laser desorption ionization-time of flight mass spectrometry and a protein database search, to analyze the extracellular protein profiles of EHEC EDL933, EPEC E2348/69, and their ihf and ler mutants. Fifty-nine major protein spots from the extracellular proteomes were identified, including six proteins of unknown function. Twenty-six of them were conserved between EHEC EDL933 and EPEC E2348/69, while some of them were strain-specific proteins. Four common extracellular proteins (EspA, EspB, EspD, and Tir) were regulated by both IHF and Ler in EHEC EDL933 and EPEC E2348/69. TagA in EHEC EDL933 and EspC and EspF in EPEC E2348/69 were present in the wild-type strains but absent from their respective ler and ihf mutants, while FliC was overexpressed in the ihf mutant of EPEC E2348/69. Two dominant forms of EspB were found in EHEC EDL933 and EPEC E2348/69, but the significance of this is unknown. These results show that proteomics is a powerful platform technology for accelerating the understanding of EPEC and EHEC pathogenesis and identifying markers for laboratory diagnoses of these pathogens.  相似文献   

8.
The cycle inhibiting factors (Cif), produced by pathogenic bacteria isolated from vertebrates and invertebrates, belong to a family of molecules called cyclomodulins that interfere with the eukaryotic cell cycle. Cif blocks the cell cycle at both the G1/S and G2/M transitions by inducing the stabilization of cyclin-dependent kinase inhibitors p21waf1 and p27kip1. Using yeast two-hybrid screens, we identified the ubiquitin-like protein NEDD8 as a target of Cif. Cif co-compartmentalized with NEDD8 in the host cell nucleus and induced accumulation of NEDD8-conjugated cullins. This accumulation occurred early after cell infection and correlated with that of p21 and p27. Co-immunoprecipitation revealed that Cif interacted with cullin-RING ubiquitin ligase complexes (CRLs) through binding with the neddylated forms of cullins 1, 2, 3, 4A and 4B subunits of CRL. Using an in vitro ubiquitylation assay, we demonstrate that Cif directly inhibits the neddylated CUL1-associated ubiquitin ligase activity. Consistent with this inhibition and the interaction of Cif with several neddylated cullins, we further observed that Cif modulates the cellular half-lives of various CRL targets, which might contribute to the pathogenic potential of diverse bacteria.  相似文献   

9.
10.
NEDD8/Rub1 is a ubiquitin (Ub)-like molecule that covalently ligates to target proteins through an enzymatic cascade analogous to ubiquitylation. This modifier is known to target all cullin (Cul) family proteins. The latter are essential components of Skp1/Cul-1/F-box protein (SCF)-like Ub ligase complexes, which play critical roles in Ub-mediated proteolysis. To determine the role of the NEDD8 system in mammals, we generated mice deficient in Uba3 gene that encodes a catalytic subunit of NEDD8-activating enzyme. Uba3(-/-) mice died in utero at the periimplantation stage. Mutant embryos showed selective apoptosis of the inner cell mass but not of trophoblastic cells. However, the mutant trophoblastic cells could not enter the S phase of the endoreduplication cycle. This cell cycle arrest was accompanied with aberrant expression of cyclin E and p57(Kip2). These results suggested that the NEDD8 system is essential for both mitotic and the endoreduplicative cell cycle progression. beta-Catenin, a mediator of the Wnt/wingless signaling pathway, which degrades continuously in the cytoplasm through SCF Ub ligase, was also accumulated in the Uba3(-/-) cytoplasm and nucleus. Thus, the NEDD8 system is essential for the regulation of protein degradation pathways involved in cell cycle progression and morphogenesis, possibly through the function of the Cul family proteins.  相似文献   

11.
In this study, 672 plant‐tissue extracts were screened for phytochemicals that inhibit the function of the type III secretion system (T3SS) of enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC). Among candidates examined, an extract from the leaves of Psidium guajava (guava) was found to inhibit secretion of EPEC‐secreted protein B (EspB) from EPEC and EHEC without affecting bacterial growth. Guava extract (GE) also inhibited EPEC and EHEC from adhering to, and injecting EspB into, HEp‐2 cells. GE seemed to block translocation of EspB from the bacterial cells to the culture medium. In addition, GE also inhibited the T3SS of Yersinia pseudotuberculosis and Salmonella enterica serovar Typhimurium. After exposure to GE, Y. pseudotuberculosis stopped secreting Yersinia outer proteins and was unable to induce apoptosis of mouse bone marrow‐derived macrophages. S. typhimurium exposed to GE stopped secreting Sip proteins and was unable to invade HEp‐2 cells. GE inhibited secretion of EspC, the type V secretion protein of EPEC, but not secretion of Shiga toxin 2 from EHEC. Thus, our results suggest that guava leaves contain a novel type of antimicrobial compound that could be used to treat and prevent gram‐negative enteropathogenic bacterial infections.
  相似文献   

12.
During infection, enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC) directly manipulate various aspects of host cell function through the translocation of type III secretion system (T3SS) effector proteins directly into the host cell. Many T3SS effector proteins are enzymes that mediate post-translational modifications of host proteins, such as the glycosyltransferase NleB1, which transfers a single N-acetylglucosamine (GlcNAc) to arginine residues, creating an Arg-GlcNAc linkage. NleB1 glycosylates death-domain containing proteins including FADD, TRADD and RIPK1 to block host cell death. The NleB1 paralogue, NleB2, is found in many EPEC and EHEC strains but to date its enzymatic activity has not been described. Using in vitro glycosylation assays combined with mass spectrometry, we found that NleB2 can utilize multiple sugar donors including UDP-glucose, UDP-GlcNAc and UDP-galactose during glycosylation of the death domain protein, RIPK1. Sugar donor competition assays demonstrated that UDP-glucose was the preferred substrate of NleB2 and peptide sequencing identified the glycosylation site within RIPK1 as Arg603, indicating that NleB2 catalyses arginine glucosylation. We also confirmed that NleB2 catalysed arginine-hexose modification of Flag-RIPK1 during infection of HEK293T cells with EPEC E2348/69. Using site-directed mutagenesis and in vitro glycosylation assays, we identified that residue Ser252 in NleB2 contributes to the specificity of this distinct catalytic activity. Substitution of Ser252 in NleB2 to Gly, or substitution of the corresponding Gly255 in NleB1 to Ser switches sugar donor preference between UDP-GlcNAc and UDP-glucose. However, this switch did not affect the ability of the NleB variants to inhibit inflammatory or cell death signalling during HeLa cell transfection or EPEC infection. NleB2 is thus the first identified bacterial Arg-glucose transferase that, similar to the NleB1 Arg-GlcNAc transferase, inhibits host protein function by arginine glycosylation.  相似文献   

13.
Escherichia coli strains of serogroup O26 comprise two distinct groups of pathogens, characterized as enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC). Among the several genes related to type III secretion system-secreted effector proteins, espK was found to be highly specific for EHEC O26:H11 and its stx-negative derivative strains isolated in European countries. E. coli O26 strains isolated in Brazil from infant diarrhea, foods, and the environment have consistently been shown to lack stx genes and are thus considered atypical EPEC. However, no further information related to their genetic background is known. Therefore, in this study, we aimed to discriminate and characterize these Brazilian O26 stx-negative strains by phenotypic, genetic, and biochemical approaches. Among 44 isolates confirmed to be O26 isolates, most displayed flagellar antigen H11 or H32. Out of the 13 nonmotile isolates, 2 tested positive for fliCH11, and 11 were fliCH8 positive. The identification of genetic markers showed that several O26:H11 and all O26:H8 strains tested positive for espK and could therefore be discriminated as EHEC derivatives. The presence of H8 among EHEC O26 and its stx-negative derivative isolates is described for the first time. The interaction of three isolates with polarized Caco-2 cells and with intestinal biopsy specimen fragments ex vivo confirmed the ability of the O26 strains analyzed to cause attaching-and-effacing (A/E) lesions. The O26:H32 strains, isolated mostly from meat, were considered nonvirulent. Knowledge of the virulence content of stx-negative O26 isolates within the same serotype helped to avoid misclassification of isolates, which certainly has important implications for public health surveillance.  相似文献   

14.
Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) are diarrheagenic pathogens that colonize the intestinal tract through the formation of attaching and effacing lesions, induced by effectors translocated via a type III secretion system (T3SS) encoded on the locus of enterocyte effacement (LEE). In EHEC O157, numerous virulence factors, including around 40 T3SS effectors, have been identified. Most of them are encoded on genomic islands (GEIs) such as prophages and integrative elements. For EPEC, however, no systematic search of GEIs and virulence-related genes carried therein has been done, and only a limited number of virulence factors have been identified so far. In this study, we performed a systemic and genome-wide survey of the GEIs in strain B171-8, one of the prototype strains of EPEC, by the combined use of whole-genome PCR scanning and fosmid mapping and identified 22 large GEIs, including nine lambda-like prophages, three P2-like prophages, the LEE, and three additional integrative elements. On these prophages and integrative elements, we found genes for a set of T3SS proteins, a total of 33 T3SS effectors or effector homologues, and 12 other virulence factors which include five nonfimbrial adhesins. Most of the T3SS effector families identified are also present in EHEC O157, but B171-8 possesses a significantly smaller number of effectors. Not only the presence or absence of Shiga toxin genes but also the difference in the T3SS effector repertoire should be considered in analyzing the pathogenicity of EPEC and EHEC strains.  相似文献   

15.
Skp1-Cdc53/Cul1-F-box (SCF) complexes constitute a class of E3 ubiquitin ligases. Recently, a multiprotein complex containing pVHL, elongin C and Cul2 (VEC) was shown to structurally and functionally resemble SCF complexes. Cdc53 and the Cullins can become covalently linked to the ubiquitin-like molecule Rub1/NEDD8. Inhibition of neddylation inhibits SCF function in vitro and in yeast and plants. Here we show that ongoing neddylation is likewise required for VEC function in vitro and for the degradation of SCF and VEC targets in mammalian cells. Thus, neddylation regulates the activity of two specific subclasses of mammalian ubiquitin ligases.  相似文献   

16.

Background

Enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC) are two categories of E. coli strains associated with human disease. A major virulence factor of both pathotypes is the expression of a type three secretion system (TTSS), responsible for their ability to adhere to gut mucosa causing a characteristic attaching and effacing lesion (A/E). The TTSS translocates effector proteins directly into the host cell that subvert mammalian cell biochemistry.

Methods/Principal Findings

We examined synthetic peptides designed to inhibit the TTSS. CoilA and CoilB peptides, both representing coiled-coil regions of the translocator protein EspA, and CoilD peptide, corresponding to a coiled–coil region of the needle protein EscF, were effective in inhibiting the TTSS dependent hemolysis of red blood cells by the EPEC E2348/69 strain. CoilA and CoilB peptides also reduced the formation of actin pedestals by the same strain in HEp-2 cells and impaired the TTSS-mediated protein translocation into the epithelial cell. Interestingly, CoilA and CoilB were able to block EspA assembly, destabilizing the TTSS and thereby Tir translocation. This blockage of EspA polymerization by CoilA or CoilB peptides, also inhibited the correct delivery of EspB and EspD as detected by immunoblotting. Interestingly, electron microscopy of bacteria incubated with the CoilA peptide showed a reduction of the length of EspA filaments.

Conclusions

Our data indicate that coiled-coil peptides can prevent the assembly and thus the functionality of the TTSS apparatus and suggest that these peptides could provide an attractive tool to block EPEC and EHEC pathogenesis.  相似文献   

17.

Background

The λ Red recombineering technology has been used extensively in Escherichia coli and Salmonella typhimurium for easy PCR-mediated generation of deletion mutants, but less so in pathogenic species of E. coli such as EHEC and EPEC. Our early experiments with the use of λ Red in EHEC and EPEC have led to sporadic results, leading to the present study to identify factors that might improve the efficiency of Red recombineering in these pathogenic strains of E. coli.

Results

In this report, we have identified conditions that optimize the use of λ Red for recombineering in EHEC and EPEC. Using plasmids that contain a Ptac-red-gam operon and a temperature-sensitive origin of replication, we have generated multiple mutations (both marked and unmarked) in known virulence genes. In addition, we have easily deleted five O157-specific islands (O-islands) of EHEC suspected of containing virulence factors. We have examined the use of both PCR-generated substrates (40 bp of flanking homology) and plasmid-derived substrates (~1 kb of flanking homology); both work well and each have their own advantages. The establishment of the hyper-rec phenotype requires only a 20 minute IPTG induction period of red and gam. This recombinogenic window is important as constitutive expression of red and gam induces a 10-fold increase in spontaneous resistance to rifampicin. Other factors such as the orientation of the drug marker in recombination substrates and heat shock effects also play roles in the success of Red-mediated recombination in EHEC and EPEC.

Conclusions

The λ Red recombineering technology has been optimized for use in pathogenic species of E. coli, namely EHEC and EPEC. As demonstration of this technology, five O-islands of EHEC were easily and precisely deleted from the chromosome by electroporation with PCR-generated substrates containing drug markers flanked with 40 bp of target DNA. These results should encourage the use of λ Red recombineering in these and other strains of pathogenic bacteria for faster identification of virulence factors and the speedy generation of bacterial mutants for vaccine development.
  相似文献   

18.
Yang D  Tan M  Wang G  Sun Y 《PloS one》2012,7(3):e34079
Radiotherapy is a treatment choice for local control of breast cancer. However, intrinsic radioresistance of cancer cells limits therapeutic efficacy. We have recently validated that SCF (SKP1, Cullins, and F-box protein) E3 ubiquitin ligase is an attractive radiosensitizing target. Here we tested our hypothesis that MLN4924, a newly discovered investigational small molecule inhibitor of NAE (NEDD8 Activating Enzyme) that inactivates SCF E3 ligase, could act as a novel radiosensitizing agent in breast cancer cells. Indeed, we found that MLN4924 effectively inhibited cullin neddylation, and sensitized breast cancer cells to radiation with a sensitivity enhancement ratio (SER) of 1.75 for SK-BR-3 cells and 1.32 for MCF7 cells, respectively. Mechanistically, MLN4924 significantly enhanced radiation-induced G2/M arrest in SK-BR-3 cells, but not in MCF7 cells at early time point, and enhanced radiation-induced apoptosis in both lines at later time point. However, blockage of apoptosis by Z-VAD failed to abrogate MLN4924 radiosensitization, suggesting that apoptosis was not causally related. We further showed that MLN4924 failed to enhance radiation-induced DNA damage response, but did cause minor delay in DNA damage repair. Among a number of tested SCF E3 substrates known to regulate growth arrest, apoptosis and DNA damage response, p21 was the only one showing an enhanced accumulation in MLN4924-radiation combination group, as compared to the single treatment groups. Importantly, p21 knockdown via siRNA partialy inhibited MLN4924-induced G2/M arrest and radiosensitization, indicating a causal role played by p21. Our study suggested that MLN4924 could be further developed as a novel class of radiosensitizer for the treatment of breast cancer.  相似文献   

19.
Characterization of an Escherichia coli O157 strain collection (n = 42) derived from healthy Hungarian cattle revealed the existence of diverse pathotypes. Enteropathogenic E. coli (EPEC; eae positive) appeared to be the most frequent pathotype (n = 22 strains), 11 O157 strains were typical enterohemorrhagic E. coli (EHEC; stx and eae positive), and 9 O157 strains were atypical, with none of the key stx and eae virulence genes detected. EHEC and EPEC O157 strains all carried eae-gamma, tir-gamma, tccP, and paa. Other virulence genes located on the pO157 virulence plasmid and different O islands (O island 43 [OI-43] and OI-122), as well as espJ and espM, also characterized the EPEC and EHEC O157 strains with similar frequencies. However, none of these virulence genes were detected by PCR in atypical O157 strains. Interestingly, five of nine atypical O157 strains produced cytolethal distending toxin V (CDT-V) and carried genes encoding long polar fimbriae. Macro-restriction fragment enzyme analysis (pulsed-field gel electrophoresis) revealed that these E. coli O157 strains belong to four main clusters. Multilocus sequence typing analysis revealed that five housekeeping genes were identical in EHEC and EPEC O157 strains but were different in the atypical O157 strains. These results suggest that the Hungarian bovine E. coli O157 strains represent at least two main clones: EHEC/EPEC O157:H7/NM (nonmotile) and atypical CDT-V-producing O157 strains with H antigens different from H7. The CDT-V-producing O157 strains represent a novel genogroup. The pathogenic potential of these strains remains to be elucidated.Escherichia coli O157:H7 is a food- and waterborne zoonotic pathogen with serious effects on public health. E. coli O157:H7 causes diseases in humans ranging from uncomplicated diarrhea to hemorrhagic colitis and hemolytic-uremic syndrome (HUS) (30). Typically, enterohemorrhagic E. coli (EHEC) strains express two groups of important virulence factors: one or more Shiga toxins (Stx; also called verotoxins), encoded by lambda-like bacteriophages, and a pathogenicity island called the locus of enterocyte effacement (LEE) encoding all the proteins necessary for attaching and effacing lesions of epithelial cells (41). Comparative genomic studies of E. coli O157:H7 strains revealed extensive genomic diversity related to the structures, positions, and genetic contents of bacteriophages and the variability of putative virulence genes encoding non-LEE effector proteins (29, 43).Ruminants and, in particular, healthy cattle are the major reservoir of E. coli O157:H7, although the prevalence of O157:H7 strains in cattle may vary widely, as reviewed by Caprioli et al. (12). E. coli O157:H7 has been found to persist and remain infective in the environment for a long time, e.g., for at least 6 months in water trough sediments, which may be an important environmental niche.In Hungary, infections with E. coli O157 and other Shiga toxin-producing E. coli (STEC) strains in humans in cases of “enteritidis infectiosa” have been notifiable since 1998 on a case report basis. Up to now, the disease has been sporadic, and fewer than 100 (n = 83) cases of STEC infection among 2,700 suspect cases have been reported since 2001. However, until the present study, no systematic, representative survey of possible animal sources had been performed.In this study, our aim was to investigate healthy cattle in Hungary for the presence of strains of E. coli O157 and the genes encoding Shiga toxins (stx1 and stx2) and intimin (eae) and a wide range of putative virulence genes found in these strains. In addition, the phage type (PT) was determined, and pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were used to further compare the strains at the molecular level. Shiga toxin and cytolethal distending toxin (CDT) production was also examined, and phage induction experiments were conducted. The high incidence of enteropathogenic E. coli (EPEC; eae-positive) O157:H7 strains and atypical (eae- and stx-negative) O157 strains indicates that cattle are a major reservoir of not only EHEC O157 but also EPEC O157 and atypical E. coli O157 strains. These atypical, non-sorbitol-fermenting O157 strains frequently produced CDT-V and may represent a novel O157 clade as demonstrated by MLST and PFGE.  相似文献   

20.

Background

Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC/EHEC) are human intestinal pathogens responsible for diarrhea in both developing and industrialized countries. In research laboratories, EPEC and EHEC are defined on the basis of their pathogenic features; nevertheless, their identification in routine laboratories is expensive and laborious. Therefore, the aim of the present work was to develop a rapid and simple assay for EPEC/EHEC detection. Accordingly, the EPEC/EHEC-secreted proteins EspA and EspB were chosen as target antigens.

Methodology

First, we investigated the ideal conditions for EspA/EspB production/secretion by ELISA in a collection of EPEC/EHEC strains after cultivating bacterial isolates in Dulbecco’s modified Eagle’s medium (DMEM) or DMEM containing 1% tryptone or HEp-2 cells-preconditioned DMEM, employing either anti-EspA/anti-EspB polyclonal or monoclonal antibodies developed and characterized herein. Subsequently, a rapid agglutination latex test (RALT) was developed and tested with the same collection of bacterial isolates.

Principal findings

EspB was defined as a biomarker and its corresponding monoclonal antibody as the tool for EPEC/EHEC diagnosis; the production of EspB was better in DMEM medium. RALT assay has the sensitivity and specificity required for high-impact diagnosis of neglected diseases in the developing world.

Conclusion

RALT assay described herein can be considered an alternative assay for diarrhea diagnosis in low-income countries since it achieved 97% sensitivity, 98% specificity and 97% efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号