首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thiamine deficiency (TD) models the selective neurodegeneration that accompanies the mild impairment of oxidative metabolism, which is observed in a variety of neurodegenerative diseases. Several markers of inflammation accompany neuronal death in TD and in these diseases. Studies in the submedial thalamic nucleus (SmTN), the region most sensitive to TD, have begun to define the temporal response of inflammation, immune response and neurodegeneration. Our previous studies show that the immune response is involved in TD-induced neurodegeneration. The current experiments tested the roles of other inflammatory cascades in TD-induced neuronal death. Deletion of genes for CD4, or CD8 (the co-receptors for T-cells), IFN-gamma (the cytokine produced by T-cell), or NADPH oxidase (the inflammation related oxidase) were tested. None protected against neuronal death in late stages of TD. On the other hand, deletion of the genes for CD4, CD8 and IFN-gamma increased the microglial activation, and deletion of the gene for NADPH oxidase decreased microglial activation when compared to control mice. In wild type mice, TD caused hypertrophy of CD68 positive microglia without increasing the number of microglia. However, TD induced hypertrophy and proliferation of CD68-positive microglia in the CD4 (97%), CD8 (57%) or IFN-gamma (96%) genetic knockout mice. In the genetic knockout mice for NADPH oxidase, the microglial activation was 65% less than the wild type mice. The results demonstrate that mice deficient in specific T cells (CD4-/-, CD8-/-) or activated T cell product, (IFN-gamma-/-) have increased microglia activation, but mice deficient in NADPH oxidase have decreased microglial activation. However, at the time point tested, the deletions were not neuroprotective. The results suggest that inflammatory responses play a role in TD-induced pathological changes in the brain, and the inflammation appears to be a late event that reflects a response to neuronal damage, which may spread the damage to other brain regions.  相似文献   

2.
Loss of astrocytic glutamate transporters is a major feature of both thiamine deficiency (TD) and Wernicke’s encephalopathy. However, the underlying basis of this process is not well understood. In the present study we have investigated the possibility of release of astrocytic soluble factors that might be involved in the regulation of the glutamate transporter GLT-1b in these cells. Treatment of naïve astrocytes with conditioned media from astrocytes exposed to TD conditions resulted in a progressive decrease in glutamate uptake over 24 h. Immunoblotting and flow cytometry measurements indicated this was accompanied by a 20–40% loss of GLT-1b. Astrocytes exposed to either TD or TD conditioned media showed increased disruption of mitochondrial membrane potential compared to control cells, and treatment of astrocytes with TD resulted in an increase in the pro-inflammatory cytokine TNF-α and elevated levels of phospho-IκB fragment, indicative of increased activation of NF-κB. Inhibition of TNF-α activity with the use of a neutralizing antibody blocked the increased NF-κB activation, while inhibition of NF-κB ameliorated the decrease in GLT-1b and reversed the decrease in glutamate uptake occurring with TD treatment. Together, these findings indicate that astrocytes exposed to TD conditions show responses suggesting that soluble factors released by these cells under conditions of TD play a regulatory role in terms of glutamate transport function and mitochondrial integrity.  相似文献   

3.
Microglial activation is an important pathological component in brains of patients with Alzheimer's disease (AD), and fibrillar amyloid-beta (Abeta) peptides play an important role in microglial activation in AD. However, mechanisms by which Abeta peptides induce the activation of microglia are poorly understood. The present study underlines the importance of TLR2 in mediating Abeta peptide-induced activation of microglia. Fibrillar Abeta1-42 peptides induced the expression of inducible NO synthase, proinflammatory cytokines (TNF-alpha, IL-1beta, and IL-6), and integrin markers (CD11b, CD11c, and CD68) in mouse primary microglia and BV-2 microglial cells. However, either antisense knockdown of TLR2 or functional blocking Abs against TLR2 suppressed Abeta1-42-induced expression of proinflammatory molecules and integrin markers in microglia. Abeta1-42 peptides were also unable to induce the expression of proinflammatory molecules and increase the expression of CD11b in microglia isolated from TLR2(-/-) mice. Finally, the inability of Abeta1-42 peptides to induce the expression of inducible NO synthase and to stimulate the expression of CD11b in vivo in the cortex of TLR2(-/-) mice highlights the importance of TLR2 in Abeta-induced microglial activation. In addition, ligation of TLR2 alone was also sufficient to induce microglial activation. Consistent to the importance of MyD88 in mediating the function of various TLRs, antisense knockdown of MyD88 also inhibited Abeta1-42 peptide-induced expression of proinflammatory molecules. Taken together, these studies delineate a novel role of TLR2 signaling pathway in mediating fibrillar Abeta peptide-induced activation of microglia.  相似文献   

4.
Septic encephalopathy (SE) is a critical factor determining sepsis mortality. Vascular inflammation is known to be involved in SE, but the molecular events that lead to the development of encephalopathy remain unclear. Using time-lapse in vivo two-photon laser scanning microscopy, we provide the first direct evidence that cecal ligation and puncture in septic mice induces microglial trafficking to sites adjacent to leukocyte adhesion on inflamed cerebral microvessels. Our data further demonstrate that septic injury increased the chemokine CXCL1 level in brain endothelial cells by activating endothelial P2RX7 and eventually enhanced the binding of Mac-1 (CD11b/CD18)-expressing leukocytes to endothelial ICAM-1. In turn, leukocyte adhesion upregulated endothelial CX3CL1, thereby triggering microglia trafficking to the injured site. The sepsis-induced increase in endothelial CX3CL1 was abolished in CD18 hypomorphic mutant mice. Inhibition of the P2RX7 pathway not only decreased endothelial ICAM-1 expression and leukocyte adhesion but also prevented microglia overactivation, reduced brain injury, and consequently doubled the early survival of septic mice. These results demonstrate the role of the P2RX7 pathway in linking neurovascular inflammation to brain damage in vivo and provide a rationale for targeting endothelial P2RX7 for neurovascular protection during SE.  相似文献   

5.
Microglial cells, which are immunocompetent cells, are involved in all diseases of the central nervous system. During their activation in various diseases, a variety of soluble factors are released. In the present study, the correlation between cytokine levels and microglial cell migration in the course of retinal degeneration of Royal College of Surgeons (RCS) rats was evaluated. MFG-E8 and CD11b were used to confirm the microglial cells. In the retina of RCS rats, the mRNA expression of seven genes (MFG-E8 and its integrins αυ and ß5, CD11b and the cytokines TNF-α, IL-1ß, and MCP-1) formed almost similar bimodal peak distributions, which were centred at P7 and P45 to P60. In contrast, in rdy rats, which comprised the control group, a unimodal peak distribution centred at P14 was observed. The gene expression accompanied the activation and migration of microglial cells from the inner to the outer layer of the retina during the process of degeneration. Principal component analysis and discriminant function analysis revealed that the expression of these seven genes, especially TNF-α and CD11b, positively correlated with retinal degeneration and microglial activity during retinal degeneration in RCS rats, but not in the control rats. Furthermore, linear regression analysis demonstrated a significant correlation between the expression of these genes and the activation of microglial cells in the dystrophic retina. Our findings suggest that the suppression of microglial cells and the blockade of their cytotoxic effects may constitute a novel therapeutic strategy for treating photoreceptor death in various retinal disorders.  相似文献   

6.

Background

Microglial activation, characterized by p38 MAPK or p44/42 MAPK pathway signal transduction, occurs in Alzheimer''s disease (AD). Our previous studies demonstrated CD45, a membrane-bound protein tyrosine phosphatase (PTP), opposed β-amyloid (Aβ) peptide-induced microglial activation via inhibition of p44/42 MAPK. Additionally we have shown agonism of the RB isoform of CD45 (CD45RB) abrogates lipopolysaccharide (LPS)-induced microglial activation.

Methodology and Results

In this study, CD45RB modulation of Aβ peptide or LPS-activated primary cultured microglial cells was further investigated. Microglial cells were co-treated with “aged” FITC-Aβ1–42 and multiple CD45 isoform agonist antibodies. Data revealed cross-linking of CD45, particularly the CD45RB isoform, enhances microglial phagocytosis of Aβ1–42 peptide and inhibits LPS-induced activation of p44/42 and p38 pathways. Co-treatment of microglial cells with agonist CD45 antibodies results in significant inhibition of LPS-induced microglial TNF-α and IL-6 release through p44/42 and/or p38 pathways. Moreover, inhibition of either of these pathways augmented CD45RB cross-linking induced microglial phagocytosis of Aβ1–42 peptide. To investigate the mechanism(s) involved, microglial cells were co-treated with a PTP inhibitor (potassium bisperoxo [1,10-phenanthroline oxovanadate; Phen]) and Aβ1–42 peptides. Data showed synergistic induction of microglial activation as evidenced by TNF-α and IL-6 release; both of which are demonstrated to be dependent on increased p44/42 and/or p38 activation. Finally, it was observed that cross-linking of CD45RB in the presence of Aβ1–42 peptide, inhibits co-localization of microglial MHC class II and Aβ peptide; suggesting CD45 activation inhibits the antigen presenting phenotype of microglial cells.

Conclusion

In summary, p38 MAPK is another novel signaling pathway, besides p44/42, in which CD45RB cross-linking negatively regulates microglial Aβ phagocytosis while increasing potentially neurotoxic inflammation. Therefore, agonism of CD45RB PTP activity may be an effective therapeutic target for novel agents to treat AD due to its Aβ lowering, and inflammation reducing, properties that are particularly targeted at microglial cells. Such treatments may be more effective with less potential to produce systemic side-effects than therapeutics which induce non-specific, systemic down-regulation of inflammation.  相似文献   

7.
Increased expression of CD11b, the beta-integrin marker of microglia, represents microglial activation during neurodegenerative inflammation. However, the molecular mechanism behind increased microglial CD11b expression is poorly understood. The present study was undertaken to explore the role of nitric oxide (NO) in the expression of CD11b in microglial cells. Bacterial lipopolysaccharide (LPS) induced the production of NO and increased the expression of CD11b in mouse BV-2 microglial cells and primary microglia. Either a scavenger of NO (PTIO) or an inhibitor of inducible nitric-oxide synthase (L-NIL) blocked this increase in microglial CD11b expression. Furthermore, co-microinjection of PTIO with LPS was also able to suppress LPS-mediated expression of CD11b and loss of dopaminergic neuronal fibers and neurotransmitters in striatum in vivo. Similarly, other inducers of NO production such as interferon-gamma, interleukin-1beta, human immunodeficiency virus type-1 gp120, and double-stranded RNA (poly(IC)) also increased the expression of CD11b in microglia through NO. The role of NO in the expression of CD11b was corroborated further by the expression of microglial CD11b by GSNO, an NO donor. Because NO transduces many intracellular signals via guanylate cyclase (GC), we investigated the role of GC, cyclic GMP (cGMP), and cGMP-activated protein kinase (PKG) in microglial expression of CD11b. Inhibition of LPS- and GSNO-mediated up-regulation of CD11b either by NS2028 (a specific inhibitor of GC) or by KT5823 and Rp-8-bromo-cGMP (specific inhibitors of PKG), and increase in CD11b expression either by 8-bromo-cGMP or by MY-5445 (a specific inhibitor of cGMP phosphodiesterase) alone suggest that NO increases microglial expression of CD11b via GC-cGMP-PKG. In addition, GSNO induced the activation of cAMP response element-binding protein (CREB) via PKG that was involved in the up-regulation of CD11b. This study illustrates a novel biological role of NO in regulating the expression of CD11b in microglia through GC-cGMP-PKG-CREB pathway that may participate in the pathogenesis of devastating neurodegenerative disorders.  相似文献   

8.
In the current study, we established a novel murine ischemic brain damage model using a photochemical reaction to evaluate the recovery of neurological dysfunction and brain repair reactions. In this model, reproducible damage was induced in the frontal lobe of the cortex, which was accompanied by neurological dysfunction. Sequential changes in damage size, microglial accumulation, astrocyte activation, and neurological dysfunction were studied in C57BL/6J and BALB/c mouse strains. Although the initial size of damage was comparable in both strains, the extent of damage was later reduced to a greater extent in C57BL/6J mice than that in BALB/c mice. In addition, C57BL/6J mice showed later edema clearance until day 7, less microglial accumulation, and relatively more astrocyte activation on day 7. Neurologic dysfunction was evaluated by three behavioral tests: the von Frey test, the balance beam test, and the tail suspension test. The behavioral abnormalities evaluated by these tests were remarkable following the induction of damage and recovered by day 21 in both strains. However, the abnormalities were more prominent and the recovery was later in C57BL/6J mice. These findings demonstrate that our novel ischemic stroke model is useful for evaluating brain repair reactions and the recovery of neurological dysfunction in mice with different genetic backgrounds. In addition, we found that both the brain repair reactions and the recovery of neurological dysfunction after comparable ischemic brain damage varied between strains; in that, they both occurred later in C57BL/6J mice.  相似文献   

9.
Experimental autoimmune encephalomyelitis repressed by microglial paralysis   总被引:18,自引:0,他引:18  
Although microglial activation occurs in inflammatory, degenerative and neoplastic central nervous system (CNS) disorders, its role in pathogenesis is unclear. We studied this question by generating CD11b-HSVTK transgenic mice, which express herpes simplex thymidine kinase in macrophages and microglia. Ganciclovir treatment of organotypic brain slice cultures derived from CD11b-HSVTK mice abolished microglial release of nitrite, proinflammatory cytokines and chemokines. Systemic ganciclovir administration to CD11b-HSVTK mice elicited hematopoietic toxicity, which was prevented by transfer of wild-type bone marrow. In bone marrow chimeras, ganciclovir blocked microglial activation in the facial nucleus upon axotomy and repressed the development of experimental autoimmune encephalomyelitis. We conclude that microglial paralysis inhibits the development and maintenance of inflammatory CNS lesions. The microglial compartment thus provides a potential therapeutic target in inflammatory CNS disorders. These results validate CD11b-HSVTK mice as a tool to study the impact of microglial activation on CNS diseases in vivo.  相似文献   

10.
Encephalopathy and brain edema are serious complications of acute liver failure (ALF). The precise pathophysiologic mechanisms responsible have not been fully elucidated but it has been recently proposed that microglia‐derived proinflammatory cytokines are involved. In the present study we evaluated the role of microglial activation and the protective effect of the anti‐inflammatory drug minocycline in the pathogenesis of hepatic encephalopathy and brain edema in rats with ALF resulting from hepatic devascularisation. ALF rats were killed 6 h after hepatic artery ligation before the onset of neurological symptoms and at coma stages of encephalopathy along with their appropriate sham‐operated controls and in parallel with minocycline‐treated ALF rats. Increased OX‐42 and OX‐6 immunoreactivities confirming microglial activation were accompanied by increased expression of interleukins (IL‐1β, IL‐6) and tumor necrosis factor‐alpha (TNF‐α) in the frontal cortex at coma stage of encephalopathy in ALF rats compared with sham‐operated controls. Minocycline treatment prevented both microglial activation as well as the up‐regulation of IL‐1β, ΙL‐6 and TNF‐α mRNA and protein expression with a concomitant attenuation of the progression of encephalopathy and brain edema. These results offer the first direct evidence for central proinflammatory mechanisms in the pathogenesis of brain edema and its complications in ALF and suggest that anti‐inflammatory agents may be beneficial in these patients.  相似文献   

11.
Microglial activation is considered as a hallmark of several neurodegenerative disorders. During microglial activation, the expression of CD11b, the beta-integrin marker of microglia, is increased. However, the molecular mechanism behind increased microglial CD11b expression is poorly understood. The present study was undertaken to explore the role of reactive oxygen species (ROS) in the expression of CD11b in microglial cells. Bacterial lipopolysaccharide (LPS) stimulated the expression of CD11b in mouse BV-2 microglial cells and primary microglia, the effect that was blocked by antioxidants such as N-acetylcysteine (NAC) and pyrrolidine dithiocarbamate (PDTC). Furthermore, comicroinjection of either NAC or PDTC with LPS was also able to suppress LPS-stimulated expression of CD11b in striatum in vivo. Similarly, other neurotoxic molecules, such as interleukin-1beta (IL-1beta), IL-12 p40(2), fibrillar amyloid-beta (Abeta) peptides, HIV-1 gp120, and double-stranded RNA (poly(IC)), also stimulated the expression of CD11b in microglia through the involvement of ROS. Complete inhibition of LPS-stimulated expression of CD11b by catalase, induction of CD11b expression by H2O2 alone, and inhibition of superoxide-stimulated CD11b expression by catalase suggest that H2O2, but not superoxide, is in fact involved in the expression of CD11b. Interestingly, we also demonstrate that ROS stimulated the expression of CD11b after the induction of nitric oxide (NO) production and failed to stimulate CD11b when NO production was inhibited by either 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO) or L-N6-(1-iminoethyl)-L-lysine (L-NIL). Taken together, these studies suggest that the up-regulation of CD11b in microglia is redox sensitive and that ROS up-regulates CD11b via NO.  相似文献   

12.
CD200-CD200R signaling holds microglia in a quiescent state. Parkinson disease (PD) neurodegeneration may be associated with impairment of CD200-CD200R-mediated microglia silencing in the substantia nigra (SN). In this study, an anti-CD200R blocking antibody (ACDR) selectively and significantly enhanced the susceptibility of dopaminergic neurons to neurotoxicity induced by rotenone (Rot) and iron (Ir) in mesencephalic neuron/glia cultures. Microglia were shown to mediate dopaminergic neurotoxicity induced by ACDR/Rot (combination of ACDR and Rot) and ACDR/Ir (combination of ACDR and Ir). ACDR significantly enhanced the microglial activation induced by Rot and Ir in neuron/glia cultures. NADPH oxidase-mediated superoxide generation was a key contributor to dopaminergic neurotoxicity induced by ACDR/Rot and ACDR/Ir. p38 MAPK contributed to NADPH oxidase activation induced by ACDR/Rot and ACDR/Ir. Interestingly, there were a decrease in CD200 expression (mRNA and protein) and an enhancement of microglial response (MHCII mRNA and ICAM-1 protein) in the rat SN with aging. ICAM-1 expression was significantly inversely correlated with CD200 expression. These results strongly indicate the participation of SN CD200-CD200R dysfunction in the etiopathogenesis of PD and provide a new insight into the molecular mechanisms underlying the involvement of aging in PD and help to elucidate the mechanisms of the combined involvement of immune/inflammatory factors, environmental substances, and aging in PD.  相似文献   

13.
14.
CD86 expression is up-regulated in activated monocytes and macrophages by a mechanism that is not clearly defined. Here, we report that IL-4-dependent CD86 expression requires activation of ERK1/2 and JAK/STAT6 but is negatively regulated by PKCdelta. PMA differentiated U937 monocytic cells when stimulated with IL-4 increased CD11b and CD86 expression by 52- and 98-fold, respectively. PMA+IL-4 treatment also induced a synergistic enhancement of ERK1/2 activation when compared to the effects of PMA and IL-4 alone. Use of the mitogen or extracellular kinase (MEK) inhibitor, PD98059, completely blocked up-regulation of CD11b and CD86 demonstrating the importance of MEK-activated ERK1/2. JAK inhibition with WHI-P154-abrogated IL-4-dependent CD11b and CD86 up-regulation and inhibited STAT6 tyrosine phosphorylation. Importantly, CD11b and CD86 expression were not reliant on IL-4-dependent activation of phosphatidylinositol 3'-kinase (PI 3-kinase). Blockade of PKCdelta activation with rottlerin prevented CD11b expression but lead to a 75- and 213-fold increase in PMA and PMA+IL-4-dependent CD86 expression, respectively. As anticipated, increasing PKCdelta activity with anti-sense reduction of CD45 increased CD11b expression and reduced CD86 expression. Likewise, rottlerin prevented nuclear localization of activated PKCdelta. We conclude from these data that IL-4-dependent CD11b expression relies predominantly on enhanced activation of ERK1/2, while IL-4-dependent CD86 expression utilizes the JAK/STAT6 pathway.  相似文献   

15.
16.
Thiamine deficiency (TD) causes mild impairment of oxidative metabolism and region‐selective neuronal loss in the brain, which may be mediated by neuronal oxidative stress, endoplasmic reticulum (ER) stress, and neuroinflammation. TD‐induced brain damage is used to model neurodegenerative disorders, and the mechanism for the neuronal death is still unclear. We hypothesized that autophagy might be activated in the TD brain and play a protective role in TD‐induced neuronal death. Our results demonstrated that TD induced the accumulation of autophagosomes in thalamic neurons measured by transmission electron microscopy, and the up‐regulation of autophagic markers LC3‐II, Atg5, and Beclin1 as measured with western blotting. TD also increased the expression of autophagic markers and induced LC3 puncta in SH‐SY5Y neuroblastoma cells. TD‐induced expression of autophagic markers was reversed once thiamine was re‐administered. Both inhibition of autophagy by wortmannin and Beclin1 siRNA potentiated TD‐induced death of SH‐SY5Y cells. In contrast, activation of autophagy by rapamycin alleviated cell death induced by TD. Intraperitoneal injection of rapamycin stimulated neuronal autophagy and attenuated TD‐induced neuronal death and microglia activation in the submedial thalamus nucleus (SmTN). TD inhibited the phosphorylation of p70S6 kinase, suggesting mTOR/p70S6 kinase pathway was involved in the TD‐induced autophagy. These results suggest that autophagy is neuroprotective in response to TD‐induced neuronal death in the central nervous system. This opens a potential therapeutic avenue for neurodegenerative diseases caused by mild impairment of oxidative metabolism.

  相似文献   


17.
Microglial dysfunction is associated with the pathogenesis and progression of a number of neurodegenerative disorders including HIV associated dementia (HAD). HIV promotion of an M1 antigen presenting cell (APC) - like microglial phenotype, through the promotion of CD40 activity, may impair endogenous mechanisms important for amyloid- beta (Aβ) protein clearance. Further, a chronic pro-inflammatory cycle is established in this manner. CD45 is a protein tyrosine phosphatase receptor which negatively regulates CD40L-CD40-induced microglial M1 activation; an effect leading to the promotion of an M2 phenotype better suited to phagocytose and clear Aβ. Moreover, this CD45 mediated activation state appears to dampen harmful cytokine production. As such, this property of microglial CD45 as a regulatory "off switch" for a CD40-promoted M1, APC-type microglia activation phenotype may represent a critical therapeutic target for the prevention and treatment of neurodegeneration, as well as microglial dysfunction, found in patients with HAD.  相似文献   

18.
The beta(2)-integrin receptors (CD11a/CD18, CD11b/CD18, and CD11c/CD18) are expressed on the surface of alveolar macrophages and are important for the phagocytic clearance of pathogens. In the present study, we demonstrate that surfactant protein D (SP-D) modulates surface expression of CD11b and CD11c, but not CD11a or CD18, on alveolar macrophages. While cell surface receptors were reduced, CD11b and CD11c mRNAs were increased by SP-D deficiency. CCSP-rtTA(+)/(tetO)(7)-rSPD(+)/SP-D(-/-) mice, which conditionally express SP-D in the lung, were used to study the kinetics and reversibility of beta(2)-integrin receptors in response to changes in alveolar SP-D. Surface CD11b and CD11c were reduced on the alveolar macrophages within 3 days of SP-D deficiency and were restored with 3 days for CD11b and 7 days for CD11c of repletion of SP-D. SP-D deficiency caused a loss of cellular CD11b and CD11c content, indicating that the decrease in total cell content of the receptors was related to degradation rather than to redistribution of the receptor within the macrophage. CD11b and CD11c staining colocalized with Lamp-1 during SP-D deficiency, supporting the concept that reduced macrophage receptor levels resulted from increased lysosomal trafficking. Hydroxychloroquine, a lysomotropic agent, prevented the reduction of cellular and surface CD11b and CD11c. SP-D regulates surface CD11b and CD11c levels on the alveolar macrophage by modulating receptor trafficking, providing a mechanism by which SP-D mediates phagocytic activity in the alveolar macrophage.  相似文献   

19.
Sepsis-associated encephalopathy (SAE) is associated with an increased rate of morbidity and mortality. It is not understood what the exact mechanism is for the brain dysfunction that occurs in septic patients, but brain inflammation and oxidative stress are a possible theory. Such events can occur through the alteration of molecules that perpetuate the inflammatory response. Thus, it is possible to postulate that CD40 may be involved in this process. The aim of this work is to evaluate the role of CD40–CD40L pathway activation in brain dysfunction associated with sepsis in an animal model. Microglia activation induces the upregulation of CD40–CD40L, both in vitro and in vivo. The inhibition of microglia activation decreases levels of CD40–CD40L in the brain and decreases brain inflammation, oxidative damage and blood brain barrier dysfunction. Despite this, anti-CD40 treatment does not improve mortality in this model. However, it is able to improve long-term cognitive impairment in sepsis survivors. In conclusion, there is a major involvement of the CD40–CD40L signaling pathway in long-term brain dysfunction in an animal model of sepsis.  相似文献   

20.
The brain represents a significant barrier for protective immune responses in both infectious disease and cancer. We have recently demonstrated that immunotherapy with anti-CD40 and IL-2 can protect mice against disseminated Cryptococcus infection. We now applied this immunotherapy using a direct cerebral cryptococcosis model to study direct effects in the brain. Administration of anti-CD40 and IL-2 significantly prolonged the survival time of mice infected intracerebrally with Cryptococcus neoformans. The protection was correlated with activation of microglial cells indicated by the up-regulation of MHC II expression on brain CD45(low)CD11b(+) cells. CD4(+) T cells were not required for either the microglial cell activation or anticryptococcal efficacy induced by this immunotherapy. Experiments with IFN-gamma knockout mice and IFN-gammaR knockout mice demonstrated that IFN-gamma was critical for both microglial cell activation and the anticryptococcal efficacy induced by anti-CD40/IL-2. Interestingly, while peripheral IFN-gamma production and microglial cell activation were observed early after treatment, negligible IFN-gamma was detected locally in the brain. These studies indicate that immunotherapy using anti-CD40 and IL-2 can augment host immunity directly in the brain against C. neoformans infection and that IFN-gamma is essential for this effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号