首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
BNips: a group of pro-apoptotic proteins in the Bcl-2 family   总被引:5,自引:0,他引:5  
BNip (formerly known as Nip) proteins, including homologues isolated from human, mouse and Caenorhabditis. elegans, are a relatively new subgroup of the Bcl-2 family. These proteins are classified into this family based on limited sequence homology with the Bcl-2 homology domain 3 and carboxyl terminal transmembrane domain. BNip proteins were first discovered based on their interaction with the adenovirus E1B 19 kDa/Bcl-2 family protein and since then, their roles in cell death pathways have been actively studied. However, the precise mechanisms by which the BNip proteins induce apoptosis and/or necrosis remain to be determined. To advance our knowledge, we have provided a summary and review of current literature regarding BNip proteins including comparative sequence analysis, mutational mapping of the functional domains, and cell death mechanisms involving disruption of mitochondrial homeostasis. Since BNip proteins are expressed at high levels in the heart as compared to other organs, their roles in cardiomyocyte injury during hypoxia or viral infection is a focus of this review. Finally, we discuss potential directions for further study on this increasingly important group of pro-apoptotic proteins.  相似文献   

4.
The B-cell CLL/lymphoma-2 (Bcl-2) family of proteins are important regulators of the intrinsic pathway of apoptosis, and their interactions, driven by Bcl-2 homology (BH) domains, are of great interest in cancer research. Particularly, the BH3 domain is of clinical relevance, as it promotes apoptosis through activation of Bcl-2-associated x protein (Bax) and Bcl-2 antagonist killer (Bak), as well as by antagonising the anti-apoptotic Bcl-2 family members. Although investigated extensively in vitro, the study of the BH3 domain alone inside cells is more problematic because of diminished secondary structure of the unconstrained peptide and a lack of stability. In this study, we report the successful use of a novel peptide aptamer scaffold – Stefin A quadruple mutant – to anchor and present the BH3 domains from Bcl-2-interacting mediator of cell death (Bim), p53 upregulated modulator of apoptosis (Puma), Bcl-2-associated death promoter (Bad) and Noxa, and demonstrate its usefulness in the study of the BH3 domains in vivo. When expressed intracellularly, anchored BH3 peptides exhibit much the same binding specificities previously established in vitro, however, we find that, at endogenous expression levels, Bcl-2 does not bind to any of the anchored BH3 domains tested. Nonetheless, when expressed inside cells the anchored PUMA and Bim BH3 α-helices powerfully induce cell death in the absence of efficient targeting to the mitochondrial membrane, whereas the Noxa helix requires a membrane insertion domain in order to kill Mcl-1-dependent myeloma cells. Finally, the binding of the Bim BH3 peptide to Bax was the only interaction with a pro-apoptotic effector protein observed in this study.  相似文献   

5.
Intrinsic apoptosis in mammals is regulated by protein–protein interactions among the B-cell lymphoma-2 (Bcl-2) family. The sequences, structures and binding specificity between pro-survival Bcl-2 proteins and their pro-apoptotic Bcl-2 homology 3 motif only (BH3-only) protein antagonists are now well understood. In contrast, our understanding of the mode of action of Bax and Bak, the two necessary proteins for apoptosis is incomplete. Bax and Bak are isostructural with pro-survival Bcl-2 proteins and also interact with BH3-only proteins, albeit weakly. Two sites have been identified; the in-groove interaction analogous to the pro-survival BH3-only interaction and a site on the opposite molecular face. Interaction of Bax or Bak with activator BH3-only proteins and mitochondrial membranes triggers a series of ill-defined conformational changes initiating their oligomerization and mitochondrial outer membrane permeabilization. Many actions of the mammalian pro-survival Bcl-2 family are mimicked by viruses. By expressing proteins mimicking mammalian pro-survival Bcl-2 family proteins, viruses neutralize death-inducing members of the Bcl-2 family and evade host cell apoptosis during replication. Remarkably, structural elements are preserved in viral Bcl-2 proteins even though there is in many cases little discernible sequence conservation with their mammalian counterparts. Some viral Bcl-2 proteins are dimeric, but they have distinct structures to those observed for mammalian Bcl-2 proteins. Furthermore, viral Bcl-2 proteins modulate innate immune responses regulated by NF-κB through an interface separate from the canonical BH3-binding groove. Our increasing structural understanding of the viral Bcl-2 proteins is leading to new insights in the cellular Bcl-2 network by exploring potential alternate functional modes in the cellular context. We compare the cellular and viral Bcl-2 proteins and discuss how alterations in their structure, sequence and binding specificity lead to differences in behavior, and together with the intrinsic structural plasticity in the Bcl-2 fold enable exquisite control over critical cellular signaling pathways.  相似文献   

6.
BackgroundDoxorubicin (DOX) is an anti-tumor agent that is widely used in clinical setting for cancer treatment. The application of the DOX, however, is limited by its cardiac toxicity which can induce heart failure through an undefined mechanism. Mitofusin 2 (Mfn2) is a mitochondrial GTPase fusion protein that is located on the outer membrane of mitochondria (OMM). The Mfn2 plays an important role in mitochondrial fusion and fission. The aim of this study is to identify the role of the Mfn2 in DOX-induced cardiomyocyte apoptosis.MethodsCultured neonatal rat cardiomyocytes were used in this study. Mfn2 expression in cardiomyocytes was determined after the cardiomyocytes were challenged with DOX. Cardiomyocyte mitochondrial fission, mitochondrial reactive oxygen species (ROS) production was assessed with mitochondrial fragmentation and MitoSOX fluorescence probe, respectively. Cardiomyocyte apoptosis was determined with caspase3 activity and TUNEL staining.ResultsChallenging of the cardiomyocytes with DOX resulted in increasing in cardiomyocyte oxidative stress and apoptosis. In addition, levels of Mfn2 in cardiomyocytes were decreased after the cells were challenged with DOX which was associated with increased mitochondrial fission (fragmentation) and mitochondrial ROS production. An increase in cardiomyocyte levels of Mfn2 attenuated the DOX-induced increase in mitochondrial fission and prevented cardiomyocyte mitochondrial ROS production. An increase in cardiomyocyte levels of Mfn2 or pretreatment of cardiomyocytes with an anti-oxidant, Mito-tempo, also prevented the DOX-induced cardiomyocyte apoptosis.ConclusionOur results indicate that DOX results in a decreased cardiomyocyte Mfn2 expression which promotes mitochondrial fission and ROS production further leads to cardiomyocyte apoptosis.  相似文献   

7.
Oxygen sensor prolyl hydroxylases (PHDs) play important roles in the regulation of HIF-α and cell metabolisms. This study was designed to investigate the direct role of PHD2 in high fat-diet (HFD)-induced cardiac dysfunction. In HFD fed mice, PHD2 expression was increased without significant changes in PHD1 and PHD3 levels in the heart. This was accompanied by a significant upregulation of myeloid differentiation factor 88 (MYD88) and NF-κB. To explore the role of PHD2 in HFD-induced cardiac dysfunction, PHD2 conditional knockout mice were fed a HFD for 16 weeks. Intriguingly, knockout of PHD2 significantly reduced MYD88 and NF-κb expression in HFD mouse hearts. Moreover, knockout of PHD2 inhibited TNFα and ICAM-1 expression, and reduced cell apoptosis and macrophage infiltration in HFD mice. This was accompanied by a significant improvement of cardiac function. Most importantly, conditional knockout of PHD2 at late stage in HFD mice significantly improved glucose tolerance and reversed cardiac dysfunction. Our studies demonstrate that PHD2 activity is a critical contributor to the HFD-induced cardiac dysfunction. Inhibition of PHD2 attenuates HFD-induced cardiac dysfunction by a mechanism involving suppression of MYD88/NF-κb pathway and inflammation.  相似文献   

8.
Bcl-2-protein family members are essential regulators of apoptosis. Anti-apoptotic Bcl-2 proteins ensure cell survival via different mechanisms, including via binding of pro-apoptotic Bcl-2-family members and the modulation of intracellular Ca2+-transport systems. Many cancer cells upregulate these proteins to overcome the consequences of ongoing oncogenic stress. Bcl-2 inhibition leading to cell death, therefore emerged as a novel cancer therapy. Different Bcl-2 inhibitors have already been developed including the hydrophobic cleft-targeting BH3 mimetics, which antagonize Bcl-2’s ability to scaffold and neutralize pro-apoptotic Bcl-2-family members. As such, the BH3 mimetics have progressed into clinical studies as precision medicines. Furthermore, new inhibitors that target Bcl-2’s BH4 domain have been developed as promising anti-cancer tools. Given Bcl-2’s role in Ca2+ signaling, these drugs and tools can impact Ca2+ signaling. In addition to this, some Bcl-2 inhibitors may have “off-target” effects that cause Ca2+-signaling dysregulation not only in cancer cells but also in healthy cells, resulting in adverse effects. In this review, we aim to provide an up-to-date overview of the involvement of intracellular Ca2+ signaling in the working mechanism and “off-target” effects of the different Bcl-2-antagonizing small molecules and peptides.  相似文献   

9.
Tumour development requires a combination of defects that allow nascent neoplastic cells to become self-sufficient for cell proliferation and insensitive to signals that normally restrain cell growth. Among the latter, evasion of programmed cell death (apoptosis) has proven to be critical for the development and sustained growth of many, perhaps all, cancers. Apoptotic cell death is regulated by complex interactions between pro-survival members and two subgroups of pro-apoptotic members of the B-cell lymphoma-2 (Bcl-2) protein family. In this invited review article, we reminisce on the discovery of Bcl-2, the first regulator of cell death identified, we discuss the mechanisms that control apoptotic cell death, focussing on how defects in this process promote the development and sustained growth of tumours and also affect their responses to anticancer therapeutics and, finally, we describe how current knowledge of the regulatory networks of apoptosis is exploited to develop novel approaches for cancer therapy.  相似文献   

10.
Cardiomyocyte apoptosis is an important event in doxorubicin (DOX)-induced cardiac injury. The aim of the present study was to investigate the protection of berberine (Ber) against DOX- triggered cardiomyocyte apoptosis in neonatal rat cardiomyocytes and rats. In neonatal rat cardiomyocytes, Ber attenuated DOX-induced cellular injury and apoptosis in a dose-dependent manner. However, Ber has no significant effect on viability of MCF-7 breast cancer cells treated with DOX. Ber reduced caspase-3 and caspase-9, but not caspase-8 activity in DOX-treated cardiomyocytes. Furthermore, Ber decreased adenosine monophosphate-activated protein kinase α (AMPKα) and p53 phosphorylation at 2 h, cytosolic cytochrome c and mitochondrial Bax levels and increased Bcl-2 level at 6 h in DOX-stimulated cardiomyocytes. Pretreatment with compound C, an AMPK inhibitor, also suppressed p53 phosphorylation and apoptosis in DOX-treated cardiomyocytes. DOX stimulation for 30 min led to a loss of mitochondrial membrane potential and a rise in the AMP/ATP ratio. Ber markedly reduced DOX-induced mitochondrial membrane potential loss and an increase in the AMP/ATP ratio at 1 h and 2 h post DOX exposure. In in vivo experiments, Ber significantly improved survival, increased stroke volume and attenuated myocardial injury in DOX-challenged rats. TUNEL and Western blot assays showed that Ber not only decreased myocardial apoptosis, caspase-3 activation, AMPKα and p53 phosphorylation, but also increased Bcl-2 expression in myocardium of rats exposed to DOX for 84 h. These findings indicate that Ber attenuates DOX-induced cardiomyocyte apoptosis via protecting mitochondria, inhibiting an increase in the AMP/ATP ratio and AMPKα phosphorylation as well as elevating Bcl-2 expression, which offer a novel mechanism responsible for protection of Ber against DOX-induced cardiomyopathy.  相似文献   

11.
The overall goal of the current study was to examine the functional activity of the prolyl hydroxylases (PHDs) in maturing chondrocytes. Herein, we show for the first time that the PHDs are expressed in the maturing zone of the growth plate, and by a chondrocytic cell line. We determined if this protein and its substrate, hypoxia inducible factor (HIF)-1alpha, modulated the induction of apoptosis. Using a chondrocyte cell line that matured in culture, we inhibited HIF-1alpha expression using siRNA technology and pharmacologically blocked PHD activity. We noted that PHD suppression sensitized the cells to an apoptotic challenge with H(2)O(2). We next examined the interplay between the PHDs and HIF-1alpha by suppressing HIF-1alpha and blocking PHD activity. We noted reduced killing when the mature HIF-silenced cells were challenged with H(2)O(2). In contrast, there was limited change in the viability of immature cells. Based on these differences in chondrocyte susceptibility, it is concluded that HIF-1alpha sensitizes maturing cells to H(2)O(2)-mediated killing. We next determined if this change in the viability of the PHD-inhibited cells was linked to changes in activation of caspase-3. It was noted that there was a minimal change in enzyme activity of the PHD-inhibited HIF-1alpha suppressed cells. Finally, we found that as the chondrocytes mature, the activities of catalase and SOD were significantly reduced and that there was a decrease in the levels of Bcl-2 and Bcl(XL). This loss of protective activity together with the changes mediated by HIF would be expected to generate conditions that would favor the induction of chondrocyte apoptosis.  相似文献   

12.
Overexpression of anti-apoptotic Bcl-2 family proteins may play an important role in the aggressive behavior of prostate cancer cells and their resistance to therapy. The Bcl-2 homology 3 domain (BH3) is a uniquely important functional element within the pro-apoptotic class of the Bcl-2-related proteins, mediating their ability to dimerize with other Bcl-2-related proteins and promote apoptosis. The BH3 inhibitors (BH3Is) function by disrupting the interactions mediated by the BH3 domain between pro- and anti-apoptotic members of the Bcl-2 family and liberating more Bax/Bak to induce mitochondrial membrane permeabilization. LNCaP-derived C4-2 human prostate cancer cells are quite resistant to non-tagged, human recombinant soluble Apo2 ligand [Apo2L, also Tumor necrosis factor (TNF)-related apoptosis-inducing ligand, TRAIL], a tumor specific drug that is now in clinical trials. However, when Apo2L/TRAIL was combined with the Bcl-xL inhibitor, BH3I-2′, it induced apoptosis synergistically through activation of Caspase-8 and the proapoptotic Bcl-2 family member Bid, resulting in the activation of effector Caspase-3 and proteolytic cleavage of Poly(ADP-ribose) polymerase, events that were blocked by the pan-caspase inhibitor zVAD-fmk. Our data indicate that, in combination with the BH3 mimetic, BH3I-2′, Apo2L/TRAIL synergistically induces apoptosis in C4-2 human prostate cancer cells through both the extrinsic and intrinsic apoptotic pathways.  相似文献   

13.
Bcl-2 family of proteins are key regulators of apoptosis. Both proapoptotic and antiapoptotic members of this family are found in mammalian cells, but no such proteins have been described in insects. Here, we report the identification and characterization of Debcl, the first Bcl-2 homologue in Drosophila melanogaster. Structurally, Debcl is similar to Bax-like proapoptotic Bcl-2 family members. Ectopic expression of Debcl in cultured cells and in transgenic flies causes apoptosis, which is inhibited by coexpression of the baculovirus caspase inhibitor P35, indicating that Debcl is a proapoptotic protein that functions in a caspase-dependent manner. debcl expression correlates with developmental cell death in specific Drosophila tissues. We also show that debcl genetically interacts with diap1 and dark, and that debcl-mediated apoptosis is not affected by gene dosage of rpr, hid, and grim. Biochemically, Debcl can interact with several mammalian and viral prosurvival Bcl-2 family members, but not with the proapoptotic members, suggesting that it may regulate apoptosis by antagonizing prosurvival Bcl-2 proteins. RNA interference studies indicate that Debcl is required for developmental apoptosis in Drosophila embryos. These results suggest that the main components of the mammalian apoptosis machinery are conserved in insects.  相似文献   

14.
自噬(autophagy)是一种进化保守的溶酶体依赖性分解代谢途径,是细胞维持自稳态的重要机制之一,并参与多种疾病的发生. Beclin-1作为自噬体成核的关键分子之一,是1个调节自噬的关键靶点. Beclin-1有1个BH3结构域,Bcl-2、Bcl-XL等可以通过这个BH3结构域与Beclin-1结合而影响其活性. 抗凋亡Bcl-2家族蛋白和Beclin-1的表达水平、磷酸化、分子的亚细胞定位以及BH3-only蛋白等,均可调节Beclin-1蛋白和Bcl-2家族蛋白结合水平,进而调控自噬的发生,并可能对细胞最终走向自噬还是凋亡起着关键作用.  相似文献   

15.
细胞凋亡在神经细胞的生理性和病理性死亡中起着重要作用。唯BH3域蛋白是Bcl-2家族中的一类仅含有BH3同源结构域的促凋亡分子,它们通过抑制Bcl-2抗凋亡成员的活性或激活Bax/Bak样促凋亡成员的活性来调节细胞凋亡。最近研究表明,唯BH3域蛋白在凋亡的启动及凋亡通路的沟通中发挥着极其重要的作用。  相似文献   

16.
Cell death mediated through the intrinsic, Bcl-2-regulated mitochondrial apoptosis signalling pathway is critical for lymphocyte development and the establishment of central and maintenance of peripheral tolerance. Defects in Bcl-2-regulated cell death signalling have been reported to cause or correlate with autoimmunity in mice and men. This review focuses on the role of Bcl-2 family proteins implicated in the development of autoimmune disorders and their potential as targets for therapeutic intervention.  相似文献   

17.
How the Bcl-2 family of proteins interact to regulate apoptosis   总被引:24,自引:0,他引:24  
Commitment of cells to apoptosis is governed largely by protein-protein interactions between members of the Bcl-2 protein family. Its three sub-families have distinct roles: the BH3-only proteins trigger apoptosis by binding via their BH3 domain to pro-survival relatives, while the pro-apoptotic Bax and Bak have an essential downstream role involving disruption of organellar membranes and induction of caspase activation. The BH3-only proteins act as damage sensors, held inert until their activation by stress signals. Once activated, they were thought to bind promiscuously to pro-survival protein targets but unexpected selectivity has recently emerged from analysis of their interactions. Some BH3-only proteins also bind to Bax and Bak. Whether Bax and Bak are activated directly by these BH3-only proteins, or indirectly as a consequence of BH3-only proteins neutralizing their pro-survival targets is the subject of intense debate. Regardless of this, a detailed understanding of the interactions between family members, which are often selective, has notable implications for designing anti-cancer drugs to target the Bcl-2 family.  相似文献   

18.
Acquired resistance toward apoptosis represents one of the hallmarks of human cancer and a major cause of the inefficacy of most anticancer treatment regimens. Based on its ability to inhibit apoptosis, the B-cell lymphoma/leukemia 2 (Bcl-2) protein family has garnered the most attention as a promising therapeutic target in cancer. Accordingly, efforts have lately been focused on the development of drugs targeting Bcl-2 proteins with considerable therapeutic success, particularly in hematologic malignancies. Here, we review the previous studies and highlight the pivotal role of the Bcl-2 protein family in the homeostasis of hematologic tissue compartment. This knowledge provides more insight into why some cancers are more sensitive to Bcl-2 targeting than others and will foster the clinical evaluation of Bcl-2-targeting strategies in cancer by avoiding severe on-target side effects in the development of healthy tissues.  相似文献   

19.
The three major subgroups of the Bcl-2 family, including the prosurvival Bcl-2-like proteins, the proapoptotic Bcl-2 homology (BH)3-only proteins and Bax/Bak proteins, regulate the mitochondrial apoptotic pathway. In addition, some outliers within the Bcl-2 family do not fit into these subgroups. One of them, Bcl-G, has a BH2 and a BH3 region, and was proposed to trigger apoptosis. To investigate the physiological role of Bcl-G, we have inactivated the gene in the mouse and generated monoclonal antibodies to determine its expression. Although two isoforms of Bcl-G exist in human, only one is found in mice. mBcl-G is expressed in a range of epithelial as well as in dendritic cells. Loss of Bcl-G did not appear to affect any of these cell types. mBcl-G only binds weakly to prosurvival members of the Bcl-2 family, and in a manner that is independent of its BH3 domain. To understand what the physiological role of Bcl-G might be, we searched for Bcl-G-binding partners through immunoprecipitation/mass spectroscopy and yeast-two-hybrid screening. Although we did not uncover any Bcl-2 family member in these screens, we found that Bcl-G interacts specifically with proteins of the transport particle protein complex. We conclude that Bcl-G most probably does not function in the classical stress-induced apoptosis pathway, but rather has a role in protein trafficking inside the cell.  相似文献   

20.
Hypoxia inducible factors (HIF) coordinate cellular responses towards hypoxia. HIFs are mainly regulated by a group of prolyl-hydroxylases (PHDs) that in the presence of oxygen, target the HIFα subunit for degradation. Herein, we studied the role of nitric oxide (NO) in regulating PHD activities under normoxic conditions. In the present study we show that different NO-donors initially inhibited endogenous PHD2 activity which led to accumulation of HIF-1α subsequently to enhance HIF-1 dependent increased PHD2 promoter activity. Consequently PHD2 abundance and activity were strongly induced which caused downregulation of HIF-1α. Interestingly, upregulation of endogenous PHD2 activity by NO was not found in cells that lack an intact pVHL dependent degradation pathway. Recovery of PHD activity required intact cells and was not observed in cell extracts or recombinant PHD2. In conclusion induction of endogenous PHD2 activity by NO is dependent on a feedback loop initiated despite normoxic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号