首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Oncostatin M (OSM), a member of the IL-6 superfamily of cytokines, is elevated in patients with rheumatoid arthritis and, in synergy with IL-1, promotes cartilage degeneration by matrix metalloproteinases (MMPs). We have previously shown that OSM induces MMP and tissue inhibitor of metalloproteinase-3 (TIMP-3) gene expression in chondrocytes by protein tyrosine kinase-dependent mechanisms. In the present study, we investigated signaling pathways regulating the induction of MMP and TIMP-3 genes by OSM. We demonstrate that OSM rapidly stimulated phosphorylation of Janus kinase (JAK) 1, JAK2, JAK3, and STAT1 as well as extracellular signal-regulated kinase (ERK) 1/2, p38, and c-Jun N-terminal kinase 1/2 mitogen-activated protein kinases in primary bovine and human chondrocytes. A JAK3-specific inhibitor blocked OSM-stimulated STAT1 tyrosine phosphorylation, DNA-binding activity of STAT1 as well as collagenase-1 (MMP-1), stromelysin-1 (MMP-3), collagenase-3 (MMP-13), and TIMP-3 RNA expression. In contrast, a JAK2-specific inhibitor, AG490, had no impact on these events. OSM-induced ERK1/2 activation was also not affected by these inhibitors. Similarly, curcumin (diferuloylmethane), an anti-inflammatory agent, suppressed OSM-stimulated STAT1 phosphorylation, DNA-binding activity of STAT1, and c-Jun N-terminal kinase activation without affecting JAK1, JAK2, JAK3, ERK1/2, and p38 phosphorylation. Curcumin also inhibited OSM-induced MMP-1, MMP-3, MMP-13, and TIMP-3 gene expression. Thus, OSM induces MMP and TIMP-3 genes in chondrocytes by activating JAK/STAT and mitogen-activated protein kinase signaling cascades, and interference with these pathways may be a useful approach to block the catabolic actions of OSM.  相似文献   

4.
Interleukin-1 (IL-1), IL-17 and tumor necrosis factor alpha (TNF-α) are the main proinflammatory cytokines implicated in cartilage breakdown by matrix metalloproteinase (MMPs) in arthritic joints. We studied the impact of an anti-neoplastic antibiotic, mithramycin, on the induction of MMPs in chondrocytes. MMP-3 and MMP-13 gene expression induced by IL-1β, TNF-α and IL-17 was downregulated by mithramycin in human chondrosarcoma SW1353 cells and in primary human and bovine femoral head chondrocytes. Constitutive and IL-1-stimulated MMP-13 levels in bovine and human cartilage explants were also suppressed. Mithramycin did not significantly affect the phosphorylation of the mitogen-activated protein kinases, extracellular signal-regulated kinase, p38 and c-Jun N-terminal kinase. Despite effective inhibition of MMP expression by mithramycin and its potential to reduce cartilage degeneration, the agent might work through multiple unidentified mechanisms.  相似文献   

5.
The role of extracellular signal-regulated kinase (ERK) in mediating the ability of thyrotropin-releasing hormone (TRH) to stimulate the prolactin gene has been well elucidated. ERK is inactivated by a dual specificity phosphatase, mitogen-activated protein kinase phosphatase (MKP). In this study, we examined the induction of MKP-1 protein by thyrotropin-releasing hormone (TRH) in pituitary GH3 cells, and investigated the possible role for MKP-1 in TRH-induced prolactin gene expression. MKP-1 protein was induced significantly from 60 min after TRH stimulation, and remained elevated at 4 h. The effect of TRH on MKP-1 expression was completely prevented in the presence of the MEK inhibitor, U0126. In the experiments using triptolide, a potent blocker for MKP-1, MKP-1 induction by TRH was completely inhibited in a dose-dependent manner. TRH-induced ERK activation was significantly enhanced in this condition. Prolactin promoter activity, activated by TRH, was reduced to the control level in the presence of triptolide in a dose-dependent manner. In GH3 cells, which were transfected with MKP-1 specific siRNA, both the basal and TRH-stimulated activities of the prolactin promoter were significantly reduced compared to the cells transfected with negative control siRNA. Our present results support a critical role of MKP-1 in TRH-induced, ERK-dependent, prolactin gene expression.  相似文献   

6.
7.
Foci of chondrocyte hypertrophy that commonly develop in osteoarthritic (OA) cartilage can promote dysregulated matrix repair and pathologic calcification in OA. The closely related chemokines IL-8/CXCL8 and growth-related oncogene alpha (GROalpha)/CXCL1 and their receptors are up-regulated in OA cartilage chondrocytes. Because these chemokines regulate leukocyte activation through p38 mitogen-activated protein kinase signaling, a pathway implicated in chondrocyte hypertrophic differentiation, we tested whether IL-8 and GROalpha promote chondrocyte hypertrophy. We observed that normal human and bovine primary articular chondrocytes expressed both IL-8Rs (CXCR1, CXCR2). IL-8 and the selective CXCR2 ligand GROalpha (10 ng/ml) induced tissue inhibitor of metalloproteinase-3 expression, markers of hypertrophy (type X collagen and MMP-13 expression, alkaline phosphatase activity), as well as matrix calcification. IL-8 and the selective CXCR2 ligand GROalpha also induced increased transamidation activity of chondrocyte transglutaminases (TGs), enzymes up-regulated in chondrocyte hypertrophy that have the potential to modulate differentiation and calcification. Under these conditions, p38 mitogen-activated protein kinase pathway signaling mediated induction of both type X collagen and TG activity. Studies using mouse knee chondrocytes lacking one of the two known articular chondrocyte-expressed TG isoenzymes (TG2) demonstrated that TG2 was essential for murine GROalpha homologue KC-induced TG activity and critically mediated induction by KC of type X collagen, matrix metalloproteinase-13, alkaline phosphatase, and calcification. In conclusion, IL-8 and GROalpha induce articular chondrocyte hypertrophy and calcification through p38 and TG2. Our results suggest a novel linkage between inflammation and altered differentiation of articular chondrocytes. Furthermore, CXCR2 and TG2 may be sites for intervention in the pathogenesis of OA.  相似文献   

8.
Interleukin-1β (IL-1β) induces the expression of matrix metalloproteinases (MMPs) implicated in cartilage and joint degradation in osteoarthritis (OA) and rheumatoid arthritis (RA). Polyoxypregnane glycoside (PPG), active compound was identified from Dregea volubilis extract by chemical analysis, shown to exert chondroprotective effects in cartilage explant models. However, no studies have been undertaken for the molecular investigation of whether PPG constituents protect the human articular chondrocyte (HAC). In the present studies, HAC was co-treated with IL-1β and PPG. The expression of MMPs, type II collagen, phosphorylation of mitogen-activated protein kinases (MAPKs) and NF-κB signaling pathway were determined by Western immunoblotting. PPG (6.25–25 μM) decreased the IL-1β-induced HA release from chondrocyte to culture medium. The mode of action of PPG was likely mediated through inhibiting expression of MMP-1, -3 and -13 in the medium, which was associated with the inhibition of mRNA expression. PPG had no effect on IL-1β-induced phosphorylation of MAPK pathway. Conversely, PPG decreased phosphorylation of IκB kinase and IκBα degradation. Taken together, these results indicate that PPG may inhibit cartilage degradation in OA and may also be used as nutritional supplement for maintaining joint integrity and function.  相似文献   

9.
10.
Although much is known about interleukin (IL)-1β and its role as a key mediator of cartilage destruction in osteoarthritis, only limited information is available on IL-1β signaling in chondrocyte dedifferentiation. Here, we have characterized the molecular mechanisms leading to the dedifferentiation of primary cultured articular chondrocytes by IL-1β treatment. IL-1β or lipopolysaccharide, but not phorbol 12-myristate 13-acetate, retinoic acid, or epidermal growth factor, induced nicotinamide phosphoribosyltransferase (NAMPT) expression, showing the association of inflammatory cytokines with NAMPT regulation. SIRT1, in turn, was activated NAMPT-dependently, without any alteration in the expression level. Activation or inhibition of SIRT1 oppositevely regulates IL-1β-mediated chondrocyte dedifferentiation, suggesting this protein as a key regulator of chondrocytes phenotype. SIRT1 activation promotes induction of ERK and p38 kinase activities, but not JNK, in response to IL-1β. Subsequently, ERK and p38 kinase activated by SIRT1 also induce SIRT1 activation, forming a positive feedback loop to sustain downstream signaling of these kinases. Moreover, we found that the SIRT1-ERK complex, but not SIRT1-p38, is engaged in IL-1β-induced chondrocyte dedifferentiation via a Sox-9-mediated mechanism. JNK is activated by IL-1β and modulates dedifferentiation of chondrocytes, but this pathway is independent on NAMPT-SIRT1 signaling. Based on these findings, we propose that IL-1β induces dedifferentiation of articular chondrocytes by up-regulation of SIRT1 activity enhanced by both NAMPT and ERK signaling.  相似文献   

11.
12.
The 12 kDa FK506-binding protein (FK506BP12), an immunosuppressor, modulates T cell activation via calcineurin inhibition. In this study, we investigated the ability of PEP-1-FK506BP12, consisting of FK506BP12 fused to the protein transduction domain PEP-1 peptide, to suppress catabolic responses in primary human chondrocytes and in a mouse carrageenan-induced paw arthritis model. Western blotting and immunofluorescence analysis showed that PEP-1-FK506BP12 efficiently penetrated chondrocytes and cartilage explants. In interleukin-1β (IL-1β)-treated chondrocytes, PEP-1-FK506BP12 significantly suppressed the expression of catabolic enzymes, including matrix metalloproteinases (MMPs)-1, -3, and -13 in addition to cyclooxygenase-2, at both the mRNA and protein levels, whereas FK506BP12 alone did not. In addition, PEP-1-FK506BP12 decreased IL-1β-induced phosphorylation of the mitogen-activated protein kinase (MAPK) complex (p38, JNK, and ERK) and the inhibitor kappa B alpha. In the mouse model of carrageenan-induced paw arthritis, PEP-1-FK506BP12 suppressed both carrageenan-induced MMP-13 production and paw inflammation. PEP-1-FK506BP12 may have therapeutic potential in the alleviation of OA progression. [BMB Reports 2015; 48(7): 407-412]  相似文献   

13.
14.
Matrix metalloproteinase-1 (MMP-1) is increased in inflammatory conditions leading to destruction of extracellular matrix. Many inflammatory stimuli activate sphingomyelinases (SMases), which generate ceramide. We aimed to define the relevance and type of SMase responsible for the regulation of MMP-1. Acid sphingomyelinase (ASM)-deficient human fibroblasts failed to phosphorylate extracellular signal-regulated kinase (ERK), or upregulate MMP-1 mRNA and protein expression upon stimulation with interleukin-1 beta (IL-1β), whereas phosphorylation of p38 mitogen-activated protein kinase and IL-8 production remained unaffected. Transfection of ASM restored MMP-1 production. Addition of exogenous SMase was sufficient to restore activation of ERK and increase MMP-1 mRNA. Inhibition of ASM with imipramine completely abrogated MMP-1 induction. The results suggest that IL-1β-induced expression of MMP-1 is dependent on ASM.  相似文献   

15.
16.
Vascular smooth muscle (VSM) cell migration is a critical step in the development of a neointima after angioplasty. Matrix metalloproteinases (MMPs) degrade the basement membrane and extracellular matrix, facilitating VSM cell migration. Recently, we demonstrated that nitric oxide (NO) inhibits interleukin-1 beta (IL-1 beta)-stimulated MMP-9 induction in rat aortic VSM cells. In this study, we examined the hypothesis that NO inhibits MMP-9 induction by attenuating superoxide generation and extracellular signal-regulated kinase (ERK) activation. Stimulation of VSM cells with IL-1 beta significantly (P < 0.05) increased superoxide production, ERK activation, and MMP-9 induction. Pretreatment of VSM cells with the NO donor DETA NONOate significantly (P < 0.05) decreased IL-1 beta-stimulated superoxide generation. In addition, pretreatment of VSM cells with a specific ERK pathway inhibitor, PD-98059, or DETA NONOate inhibited IL-1 beta-stimulated ERK activation and MMP-9 induction. Direct exposure of VSM cells to increased superoxide levels by treatment with xanthine/xanthine oxidase increased ERK activation and MMP-9 induction, whereas pretreatment of cells with PD-98059 significantly (P < 0.05) inhibited xanthine/xanthine oxidase-stimulated ERK activation and MMP-9 induction. We conclude that NO inhibits IL-1 beta-stimulated MMP-9 induction by inhibiting superoxide generation and subsequent ERK activation.  相似文献   

17.
Interleukin-1beta (IL-1beta) elicits the expression of inflammatory mediators through a mechanism involving the CD44 receptor. Hyaluronan (HA) depolymerization also contributes to CD44 activation. This study investigated the potential of HA fragments, obtained by hyaluronidase (HYAL) treatment, as mediators of CD44 activation on IL-1beta-induced inflammation in mouse chondrocytes.mRNA and related protein levels were measured for CD44, tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), matrix metalloproteinase-13 (MMP-13) and inducible nitric oxide synthase (iNOS) in chondrocytes, treated or untreated with IL-1beta, either with or without the addition of HYAL. The level of NF-kB activation was also assayed.CD44 mRNA expression was higher than controls in chondrocytes treated with IL-1beta. IL-1beta also induced NF-kB up-regulation and increased TNF-alpha, IL-6, MMP-13 and iNOS expression. Different effects resulted from HYAL treatment. Treatment of chondrocytes exposed to IL-1beta with HYAL synergistically increased the same parameters up-regulated by IL-1beta, while the same parameters were increased by HYAL in chondrocytes not exposed to IL-1beta but to a lesser extent. Specific CD44 blocking antibody and hyaluronan binding protein (HABP), which inhibit HA activity, were used to confirm CD44 to be the target of IL-1beta action through HA mediation. HA levels and molecular size further confirm the role of degraded HA.These findings suggest that IL-1beta exerts inflammatory activity via CD44 by the mediation of HA fragments derived from HA depolymerization.  相似文献   

18.
Hyaluronan exerts a variety of biological effects on cells including changes in cell migration, proliferation, and matrix metabolism. However, the signaling pathways associated with the action of hyaluronan on cells have not been clearly defined. In some cells, signaling is induced by the loss of cell-hyaluronan interactions. The goal of this study was to use hyaluronan oligosaccharides as a molecular tool to explore the effects of changes in cell-hyaluronan interactions and determine the underlying molecular events that become activated. In this study, hyaluronan oligosaccharides induced the loss of extracellular matrix proteoglycan and collagen from cultured slices of normal adult human articular cartilage. This loss was coincident with an increased expression of matrix metalloproteinase (MMP)-13. MMP-13 expression was also induced in articular chondrocytes by hyaluronan (HA) hexasaccharides but not by HA tetrasaccharides nor high molecular weight hyaluronan. MMP-13 promoter-reporter constructs in CD44-null COS-7 cells revealed that both CD44-dependent and CD44-independent events mediate the induction of MMP-13 by hyaluronan oligosaccharides. Electromobility gel shift assays demonstrated the activation of chondrocyte NFkappaB by hyaluronan oligosaccharides. NFkappaB activation was also documented in C-28/I2 immortalized human chondrocytes by luciferase promoter assays and phosphorylation of IKK-alpha/beta. The link between activation of NFkappaB and MMP-13 induction by HA oligosaccharides was further confirmed through the use of the NFkappaB inhibitor helenalin. Inhibition of MAP kinases also demonstrated the involvement of p38 MAP kinase in the hyaluronan oligosaccharide induction of MMP-13. Our findings suggest that hyaluronan-CD44 interactions affect matrix metabolism via activation of NFkappaB and p38 MAP kinase.  相似文献   

19.
Rat primary chondrocytes express the sphingosine-1-phosphate (S1P) receptor, S1P(2), S1P(3), S1P(4), but not S1P(1). When chondrocytes were stimulated with S1P or phytosphingosine-1-phosphate (PhS1P, an S1P(1)- and S1P(4)-selective agonist), phospholipase C-mediated cytosolic calcium increase was dramatically induced. S1P and PhS1P also stimulated two kinds of mitogen-activated protein kinases, extracellular signal-regulated kinase (ERK) and p38 kinase in chondrocytes. In terms of the two phospholipids-mediated functional modulation of chondrocytes, S1P and PhS1P stimulated cellular proliferation. The two phospholipids-induced chondrocyte proliferations were almost completely blocked by PD98059 but not by SB203580, suggesting that ERK but not p38 kinase is essentially required for the proliferation. Pertussis toxin almost completely inhibited the two phospholipids-induced cellular proliferation and ERK activation, indicating the crucial role of G(i) protein. This study demonstrates the physiological role of two important phospholipids (S1P and PhS1P) on the modulation of rat primary chondrocyte proliferation, and the crucial role played by ERK in the process.  相似文献   

20.
Proinflammatory cytokine such as interleukin (IL)-1β causes inflammation of articular cartilage. In this current study, we explored the chondroprotective effects of long noncoding RNA (lncRNA) MALAT-1 on cell proliferation, apoptosis, and matrix metabolism in IL-1β-induced inflammation in articular chondrocytes. Articular chondrocytes from knee joints of normal rats were isolated and cultured, followed by identification through observation of toluidine blue and COL II immunocytochemical stainings. The proliferation of chondrocytes at passage 2 was detected by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. The inflammatory chondrocytes induced by 10 ng/mL IL-1β were observed and identified by toluidine blue and COL II immunocytochemical stainings. pcDNA 3.1 and pcDNA-MALAT-1 were transfected in the chondrocytes. Ultrastructure of chondrocytes was observed by using a transmission electron microscope. The MTT assay was carried out to evaluate chondrocyte viability. Hoechst 33258 staining and flow cytometry were adopted to assess chondrocyte apoptosis. The chondrocytes at passage 2 with the biological characteristics of chondrocytes were used for subsequent experiments. In IL-1β-treated chondrocytes, the growth rate of chondrocytes slowed down, the cells became narrow and long, the vacuoles were seen in the cells, and the morphology of the chondrocytes was irregular. The toluidine blue staining and the immunohistochemical staining of COL II became weaker. In response to IL-1β induction, articular chondrocytes showed reduced MALAT-1 expression; moreover, obvious cartilage injury was observed with decreased chondrocyte viability and Col II expression and elevated chondrocyte apoptosis, MMP-13 expression, and p-JNK expression. With the treatment of pcDNA-MALAT-1, the cartilage injury was alleviated with increased chondrocyte viability and type II collagen (Col II) expression and reduced chondrocyte apoptosis, MMP-13 expression and p-JNK expression. Taken together these results, lncRNA MALAT-1 blocked the activation of the JNK signaling pathway; thereby, IL-1β-induced inflammation in articular chondrocytes was reduced with enhanced chondrocyte proliferation and suppressed chondrocyte apoptosis and extracellular matrix degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号