首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vasoactive intestinal peptide (VIP) facilitates a “pro-allergy” phenotype when signaling through its G protein-coupled receptor, VPAC2. We have shown that VPAC2 knock-out (KO) mice developed an allergic phenotype marked by eosinophilia and elevated serum IgE. Therefore, we hypothesized that the humoral response to allergen challenge in these mice was TH2 dominant similar to wild-type (WT) C57BL/6 mice. Antibody responses in WT and KO mice were measured after Aspergillus fumigatus conidia inhalation. In contrast to previous reports, basal levels of serum IgG2a and IgA were significantly higher in naïve VPAC2 KO animals. Antibody availability in the serum as well as the bronchoalveolar lavage fluid after fungal challenge was dominated by the pro-inflammatory isotype IgG2a and the mucosal isotype, IgA. IgA localizing cells dominated in the peribronchovascular areas of allergic KO mice while IgE immune complexes were found in WT allergic lungs. This research shows for the first time that VPAC2 has a significant effect on antibody regulation, in the context of allergy.  相似文献   

2.
R. Pipkorn  R. Håkanson 《Peptides》1984,5(2):267-269
Truncated sequences of VIP1–28 i.e., VIP1–6, VIP15–28 and VIP18–28, were synthesized. The biological activity of the peptides was tested on the isolated taenia coli from guinea-pig. Unlike VIP1–28, the truncated peptides had no effect alone or in combination. We also synthesized two peptides where VIP1–6 or VIP1–9 were joined with VIP20–28 or VIP21–28, respectively, with omission of the mid portion of VIP1–28. These peptides had no detectable biological activity. Finally, we synthesized Gly17,18,19-VIP, and tested it in the above mentioned system. It had a greatly reduced bioactivity compared with native VIP.  相似文献   

3.
4.
5.
Vasoactive intestinal peptide (VIP) is a well-known anti-inflammatory neuropeptide. The capacity of VIP can be exhibited through inhibiting inflammatory responses, shifting the Th1/Th2 balance in favor of anti-inflammatory Th2 immunity and inducing regulatory T cells (Tregs) with suppressive activity. In addition to pro-inflammatory Th1 response, Th17 are also believed to play important roles in the pathogenesis of rheumatoid arthritis (RA). In this study, we used collagen-induced arthritis (CIA) model in Wistar rats to investigate the role of VIP in the balance of CD4+ CD25+ Tregs and Th17 on RA. Data presented here showed that administration of VIP decreased incidence and severity of CIA. Disease suppression was associated with the upregulation of CD4+ CD25+ Tregs, downregulation of Th17- and Th1-type response and influence on the RANK/RANKL/OPG system. The results provide novel evidence that the therapeutic effects of VIP on CIA rats were associated with the balance of CD4+ CD25+ Tregs and Th17.  相似文献   

6.
1. Vasoactive intestinal peptide (VIP) receptors were identified in crude rat hepatic membranes by 125I-labelled VIP binding and by the ability of VIP to stimulate adenylate cyclase activity. The specificity of these receptors was evaluated by the capacity of secretin, synthetic secretin analogues, and secretin fragments to inhibit 125I-labelled VIP binding and to stimulate adenylate cyclase. 2. The results were compatible with the existence of two classes of VIP binding sites that could be distinguised according to their affinity for VIP and their specificity. High-affinity sites were more specific for VIP as secretin was 175 times less potent than VIP for recognition of these sites while being only 33 times less potent than VIP for recognition of low-affinity sites. 3. Secretin analogues, monosubstituted in position 2, 3, 4, or 6 were less potent than secretin for adenylate cyclase stimulation as well as for the recognition of the two classes of receptors. [Val5]Secretin was more potent than secretin and appeared definitely more VIP-like than secretin; [Ala4, Val5]secretin were equipotent to secretin. 4. The fragment secretin (7–27) was unable to recognize VIP receptors and to stimulate adenylate cyclase. The substituted fragment [Gln[9,Asn15]secretin (5–27) recognized these receptors with weak potency but could not activate the enzyme.  相似文献   

7.
The effects of retinoic acid (RA) on lung cancer cells were investigated. Both all-trans (t-RA) and 13-cis RA (c-RA) decreased specific 125I-VIP binding to NCI-H1299 cells in a time- and concentration-dependent manner. After 20 hr, 30 μM t-RA decreased specific 125I-VIP binding by 60%. By Scatchard analysis, the density of VIP binding sites but not the affinity was reduced by 42%. NCI-H1299 VPAC1 receptor mRNA was reduced by 48%. VIP caused a 3-fold elevation in the NCI-H1299 cAMP, and the increase in cAMP caused by VIP was reduced by 38% if the NCI-H1299 cells were treated with t-RA. Using the MTT assay, 3 μM t-RA and 3 μM c-RA inhibited NCI-H1299 proliferation by 60 and 23% respectively. Also, transforming growth factor (TGF)-β2 increased after treatment of NCI-H1299 cells with t-RA whereas TGF-β1 mRNA was unaffected and TGF-β3 mRNA was decreased. These results suggest that RA may inhibit lung cancer growth by down-regulating VPAC1 receptor and TGF-β3 mRNA but up-regulating TGF-β2 mRNA.  相似文献   

8.
Bovine t hymic peptide extract (1–100 g/ml) is shown to completely inhibit the binding of [125I]VIP to rat blood mononuclear cells, lymphoid cells of spleen, and liver plasma membranes. In the three models, the bovine thymic peptide extract inhibits [125I]VIP binding with a potency that is 4000–7000 times lower than that of the native VIP, on a weight basis. In rat liver plasma membranes, the bovine thymic peptide extract stimulates adenylate cyclase with a maximal efficiency that is similar to that of VIP. At maximal doses, VIP and thymic peptide extract do not exert an additive effect on adenylate cyclase, suggesting that the activation of the enzyme by the bovine thymic peptide extract occurs through VIP receptors. Finally, no VIP-like immunoreactivity was detected in the thymic peptide extract using an antiserum raised against mammalian VIP. All these data suggest the presence in the bovine thymic peptide extract of a new substance which behaves as a VIP agonist in rat.  相似文献   

9.
Interleukin (IL)-35 is a newly identified immune negative molecule which is secreted by CD4+Foxp3+ T regulatory cells (Tregs) and contributes to their suppressive capacity. Early data have shown that IL-35 inhibits development of several autoimmune diseases. However, the role of IL-35 in atherosclerosis, a lipid-driven chronic inflammatory disease in arterial wall, remains to be investigated. Here, we found that IL-35 was involved in atherosclerosis in apolipoprotein E-deficient (ApoE−/−) mice. ApoE−/− mice with established atherosclerotic lesion displayed a lower level of IL-35 compared to age-matched wild type C57BL/6 mice without plaque. However, IL-35 expression increased significantly in ApoE−/− mice with attenuated plaque. More importantly, we found that modulation of ER stress treated by chemical chaperone, 4-Phenyl butyric acid (PBA) in vivo, mainly upregulated immune negative regulating molecule IL-35, as well as IL-10 and Foxp3, accompanied by increased Tregs. However, no obvious impact on pro-inflammatory molecules such as TNF-α, IFN-γ, IL-17 and IL-23 was observed, which provides new insight into the benefit of ER stress recovery from attenuated plaque. Our results suggest that IL-35 might have a potential value for atherosclerotic therapy.  相似文献   

10.

Aim

15-Deoxy-Δ12,14 Prostaglandin J2 (15d-PGJ2) is a ligand of peroxisome proliferator-activated receptor γ (PPARγ) having diverse effects such as the differentiation of adipocytes and atherosclerotic lesion formation. 15d-PGJ2 can also regulate the expression of inflammatory mediators on immune cells independent of PPARγ. We investigated the antiatherogenic effect of 15d-PGJ2.

Methods

We fed apolipoprotein (apo) E-deficient female mice a Western-type diet from 8 to 16 wk of age and administered 1 mg/kg/day 15d-PGJ2 intraperitoneally. We measured atherosclerotic lesions at the aortic root, and examined the expression of macrophage and inflammatory atherosclerotic molecules by immunohistochemical and real-time PCR in the lesion.

Results

Atherosclerotic lesion formation was reduced in apo E-null mice treated with 15d-PGJ2, as compared to in the controls. Immunohistochemical and real-time PCR analyses showed that the expression of MCP-1, TNF-α, and MMP-9 in atherosclerotic lesions was significantly decreased in 15d-PGJ2 treated mice. The 15d-PGJ2 also reduced the expression of macrophages and RelA mRNA in atherosclerotic lesions.

Conclusion

This is the first report 15d-PGJ2, a natural PPARγ agonist, can improve atherosclerotic lesions in vivo. 15d-PGJ2 may be a beneficial therapeutic agent for atherosclerosis.  相似文献   

11.
In this study, vasoactive intestinal peptide (VIP) is shown to inhibit substrate adherence capacity of rat peritoneal macrophages. The inhibitory response occurred in the 0.1-1, 000 nM range of VIP concentrations and it was a time-dependent process. At 15 min, half maximal inhibition (ICw) was obtained at 0.37 ± 0.26 nM and maximal inhibition (53.8%) at 10?6 M VIP. The inhibitory effect of VIP was correlated with the stimulation by this peptide of cyclic AMP (cAMP) production in rat peritoneal macrophages. Moreover, agents that inhibited VIP-stimulated cAMP production, such as the VIP-antagonist [4-Cl-D-Phe6 Leu17]-VIP and somatostatin, also decreased the inhibitory effect of VIP on substrate adherence capacity of macrophages. On the contrary, the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) and the lipid-soluble derivative of cAMP N6 2′-O-dibutyryl cAMP (Bu-cAMP) inhibited the adherence of macrophages to substrate and potentiated the inhibitory action of VIP. These results demonstrate that VIP inhibits substrate adherence capacity of rat peritoneal macrophages by a mechanism that involves cAMP, and show, for the first time, an action of VIP on the function of peritoneal macrophages.  相似文献   

12.
As part of an investigation on the coordination ability of peptides, the dipeptide glycylalanine (H-Gly-Ala-OH), tripeptide glycylalanylalanine (H-Gly-Ala-Ala-OH) and their Au(III)-complexes have been characterized structurally. The quantum chemical calculations and linear-dichroic infrared (IR-LD) spectroscopy predict structures of the compound studied, which are compared with a single crystal X-ray diffraction of H-Gly-Ala-OH. The coordination processes with Au(III) are supported by data for 1H NMR, ESI-MS, HPLC-MS-MS, TGV and DSC methods. The [Au(Gly-Ala)H−1Cl] and [Au(Gly-Ala-Ala)H−2] · 2H2O complexes are formed via -NH2, Namide/s and groups of the peptides. One Cl ion is attached to the metal center as terminal ligand in the first complex. In both cases a near to square-planar geometry of the chromophors AuN2OCl and AuN3O is yielded.  相似文献   

13.
14.
15.
Human beta-defensin 3 (hBD3) is an antimicrobial peptide showing immunomodulatory effect on both innate and acquired immune response. Atherosclerosis is an inflammatory disease characterized by accumulation of lipids in the vascular wall. In this study, we evaluated whether hBD3 could attenuate the atherosclerosis development accelerated by Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) with apolipoprotein E-deficient (ApoE−/−) mice. We observed that, in vivo, hBD3 inhibited serum MCP-1, sICAM-1 levels of ApoE-deficient mice exposed to Pg-LPS in a chronic inflammation model. Serum levels of total cholesterol (TC) and low-density lipoprotein (LDL) were also markedly reduced with hBD3 intervention. In addition, thinned vascular walls, less macrophage infiltration and the formation of atherosclerotic lesions were observed in the hBD3-treated group. Furthermore, in vitro, hBD3 profoundly suppressed the production of TNF-α and IL-6 in RAW 264.7 cells induced by Pg-LPS in a dose-dependent manner. Moreover, hBD3 attenuated the phosphorylation of p38 and ERK1/2 in the mitogen-activated protein kinase (MAPK) pathway. Taken together, our work has revealed that hBD3 exhibits potent anti-inflammatory properties both in vitro and in vivo, and this effect might be correlated with inhibition of MAPK pathway.  相似文献   

16.
The present work shows that α-adrenergic agonists induce the suppression of basal and hormone-stimulated cyclic AMP levels in rat intestinal epithelial cells. Epinephrine (100 μM) suppresses by 35% the cyclic AMP levels evoked by the vasoactive intestinal peptide (VIP). The adrenergic agent induces a similar percentage of inhibition at 15, 30 and 37°C. Addition of epinephrine 20 min prior to, on 5 or 20 min after VIP yields the same magnitude of inhibition as when performed together with the stimulus. The α-adrenergic agent does not alter the K0.5 of VIP in stimulating cyclic AMP production but reduces its efficacy. Epinephrine also suppresses prostaglandin E1- and E2-stimulated cyclic AMP levels by about 35%. The lowest effective concentration of epinephrine required to suppress VIP-stimulated cyclic AMP levels is 0.1 μM, half-maximal (K0.5) and maximal effects being observed at 5 and 100 μM, respectively. Norepinephrine has the same efficacy but a slightly lower potency (K0.5 = 18 μM) than epinephrine. Phenylephrine acts as a partial agonist of very low potency; clonidine has very little intrinsic activity and antagonizes the inhibition by epinephrine. The inhibition of VIP-stimulated cyclic AMP levels is observed in the absence of any blocking agents. It is not affected by the β blocker propranolol, but is completely reversed with α blockers with the following order of potency: dihydroergotamine>yohimbine>phentolamine. Yohimbine is much more potent than prazosin, which only partially reverses the inhibition induced by epinephrine. It is concluded that α-adrenoreceptors of the α2 subtype mediate the suppression of VIP-stimulated cyclic AMP levels in intestinal epithelial cells. This effect is likely to be due to the inhibition of adenylate cyclase within intact cells as epinephrine is able to reduce adenylate cyclase activity of intestinal epithelial cell plasma membranes.  相似文献   

17.
C1q tumor necrosis factor-related protein 12 (CTRP12), a conserved paralog of adiponectin, is closely associated with cardiovascular disease. However, little is known about its role in atherogenesis. The aim of this study was to examine the influence of CTRP12 on atherosclerosis and explore the underlying mechanisms. Our results showed that lentivirus-mediated CTRP12 overexpression inhibited lipid accumulation and inflammatory response in lipid-laden macrophages. Mechanistically, CTRP12 decreased miR-155-5p levels and then increased its target gene liver X receptor α (LXRα) expression, which increased ATP binding cassette transporter A1 (ABCA1)- and ABCG1-dependent cholesterol efflux and promoted macrophage polarization to the M2 phenotype. Injection of lentiviral vector expressing CTRP12 decreased atherosclerotic lesion area, elevated plasma high-density lipoprotein cholesterol levels, promoted reverse cholesterol transport (RCT), and alleviated inflammatory response in apolipoprotein E-deficient (apoE−/−) mice fed a Western diet. Similar to the findings of in vitro experiments, CTRP12 overexpression diminished miR-155-5p levels but increased LXRα, ABCA1, and ABCG1 expression in the aortas of apoE−/− mice. Taken together, these results suggest that CTRP12 protects against atherosclerosis by enhancing RCT efficiency and mitigating vascular inflammation via the miR-155-5p/LXRα pathway. Stimulating CTRP12 production could be a novel approach for reducing atherosclerosis.Subject terms: Non-coding RNAs, Cardiovascular diseases  相似文献   

18.

Aim

Atherosclerosis is the complex lesion that consists of endothelial inflammation, macrophage foam cell formation, vascular smooth muscle cell (VSMC) migration and proliferation, and extracellular matrix production. Human urocortin 1 (Ucn1), a 40-amino acid peptide member of the corticotrophin-releasing factor/urotensin I family, has potent cardiovascular protective effects. This peptide induces potent and long-lasting hypotension and coronary vasodilation. However, the relationship of Ucn1 with atherosclerosis remains unclear. The present study was performed to clarify the effects of Ucn1 on atherosclerosis.

Methods

We assessed the effects of Ucn1 on the inflammatory response and proliferation of human endothelial cells (ECs), human macrophage foam cell formation, migration and proliferation of human VSMCs, extracellular matrix expression in VSMCs, and the development of atherosclerosis in apolipoprotein E-deficient (Apoe −/−) mice.

Results

Ucn1 significantly suppressed cell proliferation without inducing apoptosis, and lipopolysaccharide-induced up-regulation of monocyte chemoattractant protein-1 and intercellular adhesion molecule-1 in human ECs. Ucn1 significantly reduced oxidized low-density lipoprotein-induced foam cell formation with a significant down-regulation of CD36 and acyl-CoA:cholesterol acyltransferase 1 in human monocyte-derived macrophages. Ucn1 significantly suppressed the migration and proliferation of human VSMCs and increased the activities of matrix metalloproteinase-2 (MMP2) and MMP9 in human VSMCs. Intraperitoneal injection of Ucn1 into Apoe −/− mice for 4 weeks significantly retarded the development of aortic atherosclerotic lesions.

Conclusions

This study provided the first evidence that Ucn1 prevents the development of atherosclerosis by suppressing EC inflammatory response and proliferation, macrophage foam cell formation, and VSMC migration and proliferation. Thus, Ucn1 could serve as a novel therapeutic target for atherosclerotic cardiovascular diseases.  相似文献   

19.
Stearyl-Nle-17-VIP (SNV) is a novel agonist of vasoactive intestinal peptide (VIP) exhibiting a 100-fold greater potency than the parent molecule and specificity for a receptor associated with neuronal survival. Here, mice deficient in apolipoprotein E (ApoE), a molecule associated with the etiology of Alzheimer's disease, served as a model to investigate the developmental and protective effects of SNV. In comparison to control animals, the deficient mice exhibited (a) reduced amounts of VIP messenger RNA; (b) decreased cholinergic activity (c) significant retardation in the acquisition of developmental milestones: forelimb placing behavior and cliff avoidance behavior; and (d) learning and memory impairments. Daily injections of SNV to ApoE-deficient newborn pups resulted in increased cholinergic activity and marked improvements in the time of acquisition of behavioral milestones, with peptide-treated animals developing as fast as control animals and exhibiting improved cognitive functions after cessation of peptide treatment. Specificity was demonstrated in that treatment with a related peptide (PACAP), pituitary adenylate cyclase-activating peptide, produced only limited amelioration. As certain genotypes of ApoE increase the probability of Alzheimer's disease, early counseling and preventive treatments may now offer an important route for therapeutics design. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 329–342, 1997  相似文献   

20.
The average level of VIP was found to be 17 pmol/g wet weight in the brain of the newborn rat. This level ramained constant during the first two weeks after birth then increased progressively to 40 pmol/g wet weight at 20 days, a value comparable to that found in adult animals. VIP was already able to stimulate brain membrane adenylate cyclase activity at birth. The stimulation with 10?6 M VIP allowed a 2.5-fold increase in basal activity in membranes from 1 to 14-days-old pups as compared to a 1.7-fold stimulation in membranes from adult brain. The apparent activation constant for VIP adenylate cyclase stimulation was 4.10?7 M at all ages. The efficiency of VIP activation amounted to as much as 70% of that of fluoride at birth and to 35% only of fluoride activation in brain membranes from adult rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号