首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanisms of cell death induced by hypoxia or ischemia are not yet fully understood. We have previously demonstrated that cell death induced by hypoxia occurs independently of caspases, and is mediated by phospholipase A2 (PLA2).Here, we show that p38 mitogen-activated protein kinase is activated under hypoxia. A selective inhibitor of p38 or decrease in the p38alpha protein level prevents hypoxia-induced cell death. The p38 inhibitor abolishes PLA2 activation by hypoxia, indicating that p38 acts upstream of PLA2. The antioxidant N-acetyl-cysteine inhibits activation of p38 and cell death induced by hypoxia, indicating that reactive oxygen species (ROS) are responsible for p38 activation. These results demonstrate that the ROS/p38/PLA2 signaling axis has a crucial role in caspase-independent cell death induced by hypoxia.  相似文献   

2.
In Parkinson’s disease patients, α-synuclein is the major component of the intracellular protein aggregates found in dopaminergic neurons. Previously, short synthetic α-synuclein-derived peptides have been shown to not only prevent α-synuclein fibrillation but also dissolve preformed α-synuclein aggregates in vitro. The hexapeptide PGVTAV was the shortest peptide that retained the ability to block α-synuclein fibrillation. For preventative or therapeutic effectiveness, a treatment must suppress the neurotoxicity of α-synuclein aggregates and remain stable in plasma. The present study shows that specific peptides can protect neuronal cells from α-synuclein aggregation-induced cell death. The β-sheet-breaking hexapeptide PGVTAV remained intact in human plasma for longer than one day, suggesting that it may be a candidate for the development of therapeutics to treat Parkinson’s disease.  相似文献   

3.
Phospholipase A2 (PLA2) not only plays a role in the membrane vesiculation system but also mediates membrane-raft budding and fission in artificial giant liposomes. This study aimed to demonstrate the same effects in living cells. Differentiated Caco-2 cells were cultured on filter membranes. MDCK cells were challenged with Influenza virus. The MDCK cultures were harvested for virus titration with a plaque assay. Alkaline phosphatase (ALP), a membrane-raft associated glycosylphosphatidylinositol (GPI)-anchored protein, was 70% released by adding 0.2 mmol/l lysophosphatidylcholine, which was abolished by treatment with a membrane-raft disrupter, methyl-β-cyclodextrin. Activation of calcium-independent PLA2 (iPLA2) by brefeldin A increased the apical release of ALP by approximately 1.5-fold (p < 0.01), which was blocked by PLA2 inhibitor bromoenol lactone (BEL). BEL also reduced Influenza virus production into the media (< 10%) in the MDCK culture. These results suggest that cells utilize inverted corn-shaped lysophospholipids generated by PLA2 to modulate plasma membrane structure and assist the budding of raft-associated plasma membrane particles, which virus utilizes for its budding. Brush borders are enriched with membrane-rafts and undergo rapid turnover; thus, PLA2 may be involved in the regulatory mechanism in membrane dynamism. Further, iPLA2 may provide a therapeutic target for viral infections.  相似文献   

4.
Thaumatin, an intensely sweet-tasting protein, elicits a sweet-taste sensation at a level as low as 50 nM. Although previous sensory analyses have suggested that Lys67 and Arg82 are important to the sweetness of thaumatin, the exact effects of each residue on sweet receptors are still unknown. In the present study, various mutants of thaumatin altered at Arg82 as well as Lys67 were prepared and their sweetness levels were quantitatively evaluated by cell-based assays using HEK293 cells expressing human sweet receptors. Mutations at Arg82 had a more deteriorative effect on sweetness than mutations at Lys67. Particularly, a charge inversion at Arg82 (R82E) resulted in an abolishment of the response to sweet receptors even at a concentration as high as 1 mM. These results indicate that Arg82 plays a central role in determining the sweetness of thaumatin. A strict spatial charge location at residue 82 appears to be required for interaction with sweet receptors.  相似文献   

5.

Background

The concentration of extracellular nucleotides is regulated by enzymes that have their catalytic site facing the extracellular space, the so-called ecto-enzymes.

Methods

We used LLC-PK1 cells, a well-characterized porcine renal proximal tubule cell line, to biochemically characterize ecto-ATPase activity in the luminal surface. The [γ-32P]Pi released after reaction was measured in aliquots of the supernatant by liquid scintillation.

Results

This activity was linear with time up to 20 min of reaction and stimulated by divalent metals. The ecto-ATPase activity measured in the presence of 5 mM MgCl2 was (1) optimum at pH 8, (2) insensitive to different inhibitors of intracellular ATPases, (3) inhibited by 1 mM suramin, an inhibitor of ecto-ATPases, (4) sensitive to high concentrations of sodium azide (NaN3) and (5) also able to hydrolyze ADP in the extracellular medium. The ATP:ADP hydrolysis ratio calculated was 4:1. The ecto-ADPase activity was also inhibited by suramin and NaN3. The dose–response of ATP revealed a hyperbolic profile with maximal velocity of 25.2 ± 1.2 nmol Pi x mg− 1 x min− 1 and K0.5 of 0.07 ± 0.01 mM. When cells were submitted to ischemia, the E-NTPDase activity was reduced with time, achieving 71% inhibition at 60 min of ischemia.

Conclusion

Our results suggest that the ecto-ATPase activity of LLC-PK1 cells has the characteristics of a type 3 E-NTPDase which is inhibited by ischemia.

General Significance

This could represent an important pathophysiologic mechanism that explains the increase in ATP concentration in the extracellular milieu in the proximal tubule during ischemia.  相似文献   

6.
p38 mitogen-activated protein (MAP) kinase plays an important role in neurite outgrowth. However, the underlying molecular mechanism(s) remains unclear. Here, we demonstrate that phospholipase D2 (PLD2) mediates p38 signaling in neurite outgrowth. Stimulation of rat pheochromocytoma PC12 cells with nerve growth factor activated PLD2 and augmented neurite outgrowth, both of which were inhibited by pharmacological suppression of p38. Overexpression of constitutively active MAP kinase kinase 6 (MKK6-CA) activated coexpressed PLD2 in PC12 and mouse neuroblastoma N1E-115 cells. Overexpression of wild-type PLD2 in these cells strongly augmented the neurite outgrowth induced by MKK6-CA, whereas lipase-deficient PLD2 suppressed it. These findings provide evidence that PLD2 functions as a downstream molecule of p38 in the neurite outgrowth signaling cascade.  相似文献   

7.
Specific phospholipids and fatty acids altered during oxidant-induced neuronal cell injury were determined using electrospray ionization mass spectrometry (ESI-MS) and ion trapping. The oxidants hydrogen peroxide (H(2)O(2), 0-1000 microM) and tert-butylhydroperoxide (TBHP, 0-400 microM) induced time- and concentration-dependent increases in reactive oxygen species in primary cultures of mouse neocortical cells as determined by 2',7'-dichlorofluorescein diacetate staining and thiobarbituric acid formation. ESI-MS analysis of 26 m/z values, representing 42 different phospholipids, demonstrated that H(2)O(2) and TBHP increased the abundance of phospholipids containing polyunsaturated fatty acids, but had minimal affect on those containing mono- or di-unsaturated fatty acids. These increases correlated to time-dependent increase in 16:1-20:4, 16:0-20:4, 18:1-20:4 and 18:0-20:4 phosphatidylcholine. Oxidant exposure also increased mystric (14:0), palmitic (16:0), and stearic (18:0) acid twofold, oleic acid (18:1) two- to threefold, and arachidonic acid (20:4) fourfold, compared to controls. Increases in arachidonic acid levels occurred prior to increases in the phospholipids, but after increases in ROS, and correlated to increases in oxidized arachidonic acid species, specifically [20:4-OOH]-H(2)O-, 20:4-OH-, and Tri-OH-20:4-arachidonic acid. Treatment of cells with methyl arachidonyl flourophosphonate an inhibitor of Group IV and VI PLA(2), decreased oxidant-induced arachidonic acid release, while bromoenol lactone, an inhibitor of Group VI PLA(2), did not. Collectively, these data identify phospholipids and fatty acids altered during oxidant treatment of neurons and suggest differential roles for Group IV and VI PLA(2) in oxidant-induced neural cell injury.  相似文献   

8.
9.
Cathepsin V (L2), a lysosomal cysteine protease, is a member of cathepsin family, relating to cancer invasion and metastasis. Cathepsin V contains two predicted N-glycosylation sites, but it has not been reported whether cathepsin V is glycosylated or not. In this study, we clarified the role of N-glycosylation of cathepsin V for its functions. We demonstrated that cathepsin V is N-glycosylated at both Asn221 and Asn292 using mass spectrometry and site-directed mutagenesis. N-glycosylation of cathepsin V was important for transportation to lysosome, secretion, and activity in HT1080 cells. These data demonstrated that functions of cathepsin V are controlled by N-glycosylation.  相似文献   

10.
Oxidative stress plays an important role in neurodegenerative diseases. Reactive oxygen species (ROS)-mediated stress in microglia in vivo could result in cellular injuries and preferentially induces neuronal injury. Corilagin, a novel member of the phenolic tannin family, has been shown to possess antioxidant properties. In this study, we investigated the effects of corilagin on tert-butyl hydroperoxide (TBHP)-induced injury in cultured N9 murine microglial cells and the underlying mechanisms by a methyltetrazolium assay and oxidative damage assay. We found that exposure of N9 cells to TBHP induced cytotoxicity as demonstrated by cell shrinkage, loss of cell viability, increased lactate dehydrogenase (LDH) leakage, and increased intracellular levels of ROS. By contrast, TBHP reduced both superoxide dismutase activity and total cell anti-oxidation capacity, but glutathione was not reduced. Moreover, TBHP treatment was associated with the loss of mitochondrial membrane potential, and it induced cell apoptosis through the mitochondrial-mediated pathway involving the down-regulation of Bcl-2 expression and up-regulation of the Bax/Bcl-2 ratio. Interestingly, pre-treatment with corilagin reversed these reactions. These data collectively indicated that corilagin could attenuate TBHP-induced oxidative stress injury in microglial cells, and its protective effects may be ascribed to its antioxidant and antiapoptotic properties. Our findings suggest that corilagin should be a potential candidate for the treatment of oxidative stress-induced neurodegenerative diseases.  相似文献   

11.
Wisp2/CCN5 belongs to CCN family proteins which are involved in cell proliferation, angiogenesis, tumorigenesis and wound healing. Although a number of studies on the roles of Wisp2/CCN5 in cancers have been reported, no study on the expression and function of Wisp2/CCN5 in the central nervous system has been reported. In this study, we focused on Wisp2/CCN5 that was up-regulated in nervous tissues in GM3-only mice. Over-expression of Wisp2/CCN5 enhanced neurite outgrowth potently after serum withdrawal with increased phosphorylation levels of Akt and ERKs. When cells were cultured with recombinant Wisp2/CCN5 proteins, more and longer neurites were formed than in the controls. Thus, we demonstrated for the first time that Wisp2/CCN5 facilitates neurite formation in a mouse neuroblastoma cell line, Neuro2a. Akt phosphorylation induced by recombinant Wisp2/CCN5 was suppressed after knockdown of integrin β1. Moreover, Wisp2/CCN5-over-expressing cells were resistant to apoptosis induced by H2O2. These results suggested that secreted Wisp2/CCN5 induces Akt and ERK phosphorylation via integrins, and consequently facilitates neurite formation and conferred resistance to apoptosis. Up-regulation of Wisp2/CCN5 in GM3-only mice should be, therefore, a reaction to protect nervous tissues from neurodegeneration caused by ganglioside deficiency.  相似文献   

12.
We have previously shown that mitochondrial membrane potential disruption is involved in mechanisms underlying differential vulnerabilities to the excitotoxicity mediated by N-methyl-d-aspartate (NMDA) receptors between primary cultured neurons prepared from rat cortex and hippocampus. To further elucidate the role of mitochondria in the excitotoxicity after activation of NMDA receptors, neurons were loaded with the fluorescent dye calcein diffusible in the cytoplasm and organelles for determination of the activity of mitochondrial permeability transition pore (mPTP) responsible for the leakage of different mitochondrial molecules. The addition of CoCl2 similarly quenched the intracellular fluorescence except mitochondria in both cultured neurons, while further addition of NMDA led to a leakage of the dye into the cytoplasm in hippocampal neurons only. An mPTP inhibitor prevented the NMDA-induced loss of viability in hippocampal neurons, while an activator of mPTP induced a similarly potent loss of viability in cortical and hippocampal neurons. Although NMDA was more effective in increasing rhodamine-2 fluorescence as a mitochondrial calcium indicator in hippocampal than cortical neurons, a mitochondrial calcium uniporter inhibitor significantly prevented the NMDA-induced loss of viability in hippocampal neurons. Expression of mRNA was significantly higher for the putative uniporter uncoupling protein-2 in hippocampal than cortical neurons. These results suggest that mitochondrial calcium uniporter would be at least in part responsible for the NMDA neurotoxicity through a mechanism relevant to promotion of mPTP orchestration in hippocampal neurons.  相似文献   

13.
EGF-induced activation of EGFR tyrosine kinase is known to be inhibited by ganglioside GM3, its dimer, and other mimetics. However, details of the interaction, such as kinetic properties, have not yet been clarified. The direct interaction is now defined by the surface plasmon resonance (SPR) technique. To determine the affinity of EGFR for lyso-GM3 or lyso-GM3 mimetic, these glycolipid ligands were covalently immobilized onto a sensor chip, and binding affinities were investigated. Results of these studies confirmed the direct interaction of lyso-GM3 or its mimetic with EGFR. A strong interaction between EGFR and lyso-GM3 or its mimetic was indicated by increased binding of EGFR to glycolipid-immobilized surface, in an EGFR dose-dependent manner.  相似文献   

14.
Ochratoxin A (OTA), one of the major food-borne mycotoxins, induces apoptosis in various types of cells. Induction of apoptosis is suggested to be one of the major cellular mechanisms behind OTA-induced diverse toxic effects. However, the molecular mechanisms involved, especially the role of p53 in OTA-induced apoptosis have not been clearly elucidated. In the present study, we find that p53 activation exerts pro-survival function to inhibit apoptosis induction in MARC-145, Vero monkey kidney cells and HEK293 human kidney cells in response to ochratoxin A treatment. We further demonstrate that the pro-survival activity of p53 is attributed to its ability to suppress JNK activation that mediates apoptotic signaling through down-regulation of Bcl-xL. To our knowledge, this is first report of pro-survival role of p53 in OTA-induced apoptosis in kidney epithelial cells. Our findings provide a novel insight into the mechanisms of OTA-induced apoptosis in kidney epithelial cells.  相似文献   

15.
Naphthoquinone derivatives have been reported to possess various pharmacological activities, such as antiplatelet, anticancer, antifungal, and antiviral properties. In this study, we investigated the effects of a newly-synthesized naphthoquinone derivative, 2-decylamino-5,8-dimethoxy-1,4-naphthoquinone (2-decylamino-DMNQ), on VSMC proliferation and examined the molecular basis of the underlying mechanism. In a dose-dependent manner, 2-decylamino-DMNQ inhibited PDGF-stimulated VSMC proliferation with no apparent cytotoxic effect. While 2-decylamino-DMNQ did not affect PDGF-Rβ or Akt, it did inhibit the phosphorylation of Erk1/2 and PLCγ1 induced by PDGF. Moreover, 2-decylamino-DMNQ suppressed DNA synthesis through the arrest of cell cycle progression at the G0/G1 phase, including the suppression of pRb phosphorylation and a decrease in PCNA expression, which was related to the downregulation of cell cycle regulatory factors, such as cyclin D1/E and CDK 2/4. It was demonstrated that both U0126, an Erk1/2 inhibitor, and U73122, a PLCγ inhibitor, increased the proportion of cells in the G0/G1 phase of the cell cycle. Thus, these results suggest that 2-decylamino DMNQ has an inhibitory effect on PDGF-induced VSMC proliferation and the mechanism of this action is through cell cycle arrest at the G0/G1 phase. This may be a useful tool for studying interventions for vascular restenosis in coronary revascularization procedures and stent implantation.  相似文献   

16.
Sirtuin 6 (SIRT6) belongs to the sirtuin family of NAD+-dependent deacetylases and has been implicated in the regulation of metabolism, inflammation, and aging. Here, we found that SIRT6 was predominantly expressed in neuronal cells throughout the entire brain. Ischemia models using transient middle cerebral artery occlusion in rats and oxygen/glucose deprivation (OGD) in SH-SY5Y neuronal cells showed that ischemia reduced SIRT6 expression and induced the release of high mobility group box-1 (HMGB1) from cell nuclei. The reduced expression of SIRT6 via treatment with SIRT6 siRNA dramatically enhanced the OGD-induced release of HMGB1 in SH-SY5Y cells. Together, our data suggest that SIRT6 may serve as a potential therapeutic target for HMGB1-mediated inflammation after cerebral ischemia.  相似文献   

17.
Masaki Wakabayashi 《FEBS letters》2009,583(17):2854-36097
Human islet amyloid polypeptide (hIAPP) is the primary component of the amyloid deposits found in the pancreatic islets of patients with type 2 diabetes mellitus. However, it is unknown how amyloid fibrils are formed in vivo. In this study, we demonstrate that gangliosides play an essential role in the formation of amyloid deposits by hIAPP on plasma membranes. Amyloid fibrils accumulated in ganglioside- and cholesterol-rich microscopic domains (‘lipid rafts’). The depletion of gangliosides or cholesterol significantly reduced the amount of amyloid deposited. These results clearly showed that the formation of amyloid fibrils was mediated by gangliosides in lipid rafts.  相似文献   

18.
19.
Mitochondrial cardiolipin undergoes extensive remodeling of its acyl groups to generate uniformly substituted species, such as tetralinoleoyl-cardiolipin, but the mechanism of this remodeling has not been elucidated, except for the fact that it requires tafazzin. Here we show that purified recombinant Drosophila tafazzin exchanges acyl groups between cardiolipin and phosphatidylcholine by a combination of forward and reverse transacylations. The acyl exchange is possible in the absence of phospholipase A2 because it requires only trace amounts of lysophospholipids. We show that purified tafazzin reacts with various phospholipid classes and with various acyl groups both in sn-1 and sn-2 position. Expression studies in Sf9 insect cells suggest that the effect of tafazzin on cardiolipin species is dependent on the cellular environment and not on enzymatic substrate specificity. Our data demonstrate that tafazzin catalyzes general acyl exchange between phospholipids, which raises the question whether pattern formation in cardiolipin is the result of the equilibrium distribution of acyl groups between multiple phospholipid species.  相似文献   

20.
Qi Y  Wang H  Zou Y  Liu C  Liu Y  Wang Y  Zhang W 《FEBS letters》2011,(1):231-239
In this study, we identified and functionally characterized the mitochondrial heat shock protein 70 (mtHsp70). Over-expression of mtHsp70 suppressed heat- and H2O2-induced programmed cell death (PCD) in rice protoplasts, as reflected by higher cell viability, decreased DNA laddering and chromatin condensation. Mitochondrial membrane potential (Δψm) after heat shock was destroyed gradually in protoplasts, but mtHsp70 over-expression showed higher Δψm relative to the vector control cells, and partially inhibited cytochrome c release from mitochondria to cytosol. Heat treatment also significantly increased reactive oxygen species (ROS) generation, a phenomenon not observed in protoplasts over-expressing mtHsp70. Together, these results suggest that mtHsp70 may suppress PCD in rice protoplasts by maintaining mitochondrial Δψm and inhibiting the amplification of ROS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号