首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inositol hexakisphosphate kinase (IP6K) is an important mammalian enzyme involved in various biological processes such as insulin signalling and blood clotting. Recent analyses on drug metabolism and pharmacokinetic properties on TNP (N2-(m-trifluorobenzyl), N6-(p-nitrobenzyl)purine), a pan-IP6K inhibitor, have suggested that it may inhibit cytochrome P450 (CYP450) enzymes and induce unwanted drug-drug interactions in the liver. In this study, we confirmed that TNP inhibits CYP3A4 in type I binding mode more selectively than the other CYP450 isoforms. In an effort to find novel purine-based IP6K inhibitors with minimal CYP3A4 inhibition, we designed and synthesised 15 TNP analogs. Structure-activity relationship and biochemical studies, including ADP-Glo kinase assay and quantification of cell-based IP7 production, showed that compound 9 dramatically reduced CYP3A4 inhibition while retaining IP6K-inhibitory activity. Compound 9 can be a tool molecule for structural optimisation of purine-based IP6K inhibitors.  相似文献   

2.
3.
Cytochrome P450 3A4 and 3A7 (CYP3A4 and CYP3A7, respectively) are predominant forms in the human adult and fetal liver, respectively. 1,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) is known to be a potent inducer of CYP3A4 in human colon carcinoma Caco-2 via vitamin D receptor (VDR). However, whether CYP3A7 is inducible by 1,25(OH)(2)D(3) has not yet been elucidated. In the present study, we examined the effect of 1,25(OH)(2)D(3) on CYP3A7 gene expression in Caco-2 cells, which express CYP3A4 and CYP3A7 mRNAs. 1,25(OH)(2)D(3) hardly induced the expression of CYP3A7 mRNA in contrast to the marked induction of CYP3A4 mRNA. Reporter assay using 5'-franking region CYP3A4 and CYP3A7 genes also revealed that 1,25(OH)(2)D(3) activates CYP3A4 promoter, but not CYP3A7 promoter, which has two mutations in the proximal ER6 site compared with CYP3A4 promoter. In addition, we found that the binding of VDR to the proximal ER6 in CYP3A7 gene was markedly less than that to the proximal ER6 in CYP3A4 gene using gel shift assay. Taken together, the decrease of VDR binding to the proximal ER6 caused by the mutation results in the loss of CYP3A7 gene activation by 1,25(OH)(2)D(3).  相似文献   

4.
The metabolism of pyrene to hydroxypyrene by CYP3A4 was investigated to determine the effect of cytochrome b5 (b5) on turnover kinetics. In the absence of b5, formation of hydroxypyrene in in vitro incubations showed a biphasic substrate-velocity curve where K(m1) and V(max1) were 1.3 microM and 0.5 pmol/min/pmol P450, respectively. The addition of testosterone to the incubation mixture completely abolished the second phase to yield a typical, hyperbolic curve, presumably through the disruption in the formation of a pi-pi stacked pyrene complex within the CYP3A4 active site. Finally, the addition of b5 yielded an increase hydroxypyrene formation that resulted in a sigmoidal substrate velocity curve. The V(max) was 15.7 pmol/min/pmol P450, the K(m) was 7.5 microM, and the Hill coefficient was greater than two. This demonstrated that b5 could directly induce positive cooperativity on CYP3A4 and that this biological factor needs to be carefully considered when included in in vitro P450 reactions.  相似文献   

5.
As a promiscuous redox partner, the biological role of cytochrome P450 reductase (CPR) depends significantly on protein–protein interactions. We tested a hypothesized CPR docking site by mutating D113, E115, and E116 to alanine and assaying activity toward various electron acceptors as a function of ionic strength. Steady-state cytochrome c studies demonstrated the mutations improved catalytic efficiency and decreased the impact of ionic strength on catalytic parameters when compared to wild type. Based on activity toward 7-ethoxy-4-trifluoro-methylcoumarin, CYP2B1 and CPR favored formation of an active CYP2B1•CPR complex and inactive (CYP2B1)2•CPR complex until higher ionic strength whereby only the binary complex was observed. The mutations increased dissociation constants only for the binary complex and suppressed the ionic strength effect. Studies with a non-binding substrate, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) suggest changes in activity toward cytochrome c and CYP2B1 reflect alterations in the route of electron transfer caused by the mutations. Electrostatic modeling of catalytic and binding parameters confirmed the importance of D113 and especially the double mutant E115 and E116 as mediators in forming charge–charge interactions between CPR and complex partners.  相似文献   

6.
Traditional reconstitution of membrane cytochromes P450 monooxygenase system requires efficient solubilization of both P450 heme enzymes and redox partner NADPH dependent reductase, CPR, either in mixed micellar solution or by incorporation in liposomes. Here we describe a simple alternative approach to assembly of soluble complexes of monomeric human hepatic cytochrome P450 CYP3A4 with CPR by co-incorporation into nanoscale POPC bilayer Nanodiscs. Stable and fully functional complexes with different CPR:CYP3A4 stoichiometric ratios are formed within several minutes after addition of the full-length CPR to the solution of CYP3A4 preassembled into POPC Nanodiscs at 37 °C. We find that the steady state rates of NADPH oxidation and testosterone hydroxylation strongly depend on CPR:CYP3A4 ratio and reach maximum at tenfold molar access of CPR. The binding of CPR to CYP3A4 in Nanodiscs is tight, such that complexes with different stoichiometry can be separated by size-exclusion chromatography. Reconstitution systems based on the co-incorporation of CPR into preformed Nanodiscs with different human cytochromes P450 are suitable for high-throughput screening of substrates and inhibitors and for drug-drug interaction studies.  相似文献   

7.
Cytochrome P450 (CYP)-dependent drug metabolism decreases in vivo and in cultured hepatocytes under various immunostimulatory conditions. Nitric oxide (NO) released during inflammation is presumed to be involved in this phenomenon. CYP3A4, which is abundant in the liver and small intestine and participates in the metabolism of various drugs, is known to be induced by 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) in the colon carcinoma cell line Caco-2. In this study we examined whether NO affected CYP3A4 gene expression induced by 1,25(OH)2D3 in Caco-2 cells. Induction of CYP3A4 mRNA by 1,25(OH)2D3 was suppressed in a dose-dependent manner by treatment with the NO donors NOR-4 (15–500 μM) or S-nitroso-N-acetyl-penicillamine (30 μM-1 mM), which spontaneously release NO. These results indicated that NO has an inhibitory effect on the induction of CYP3A4 mRNA by 1,25(OH)2D3 in Caco-2 cells. Treatment with the guanylate cyclase inhibitor ODQ failed to prevent the inhibition of induction of CYP3A4 mRNA by 1,25(OH)2D3. 8-Bromo cGMP had no effect on 1,25-(OH)2D3-induced CYP3A4 gene expression. Therefore, the suppression of CYP3A4 mRNA by NO might be mediated through a guanylate cyclase-independent pathway.  相似文献   

8.
Heterologous expression systems can be utilized to great advantage in the study of cytochrome P450 enzymes. P450 3A4 is one of the major forms of cytochrome P450 found in liver. It is also involved in the metabolism of numerous widely used drugs and xenobiotics. In the present study human liver cytochrome P450 3A4 gene was transferred into the fission yeast Schizosaccharomyces pombe via two different S. pombe expression vectors carrying thiamine repressible promoter — nmt1 (pREP42) and constitutive promoter — adh1 (pART1). Heterologously expressed cytochrome P450 3A4 was detected in the cells grown in minimal (EMM) or rich medium (YEL) containing 0.5% (w/v) glucose. A typical cytochrome P450 peak for 3A4 was observed at 448 nm in microsomal fraction. The presence of heterologous expression of 3A4 form was also determined by SDS-PAGE and it molecular mass was identified as 52 kDa. The enzyme activity was confirmed by HPLC analysis, using testosterone as substrate.  相似文献   

9.
Chemotherapy of clonorchiasis with praziquantel (PZQ) is effective but about 15% of treated cases have been reported uncured. The present study investigated correlation of single nucleotide polymorphisms (SNPs) of the cytochrome P450 gene, CYP3A5 and cure of clonorchiasis. A total of 346 egg passing residents were subjected and treated by 3 doses of 25 mg/kg PZQ. Reexamination recognized 33 (9.5%) uncured and 313 cured. Numbers of eggs per gram of feces (EPGs) before treatment were significantly lower in the cured group than in the uncured group (2,011.2±3,600.0 vs 4,998.5±7,012.0, P<0.001). DNAs of the subjects were screened for SNPs at 7 locations of CYP3A5 using PCR. In the uncured group, the SNP frequencies at g.-20555G>A and g.27526C>T of CYP3A5 were 15.2% and 9.1% while those were 3.8% and 1.0%, respectively, in the cured group. The cure rate was significantly lower in the cases with SNP at g.27526C>T and EPGs≥1,000. In conclusion, EPGs and SNPs of CYP3A5 are factors which influence cure of clonorchiasis by PZQ therapy. It is strongly suggested to recommend 2-day medication for individuals with high EPGs≥1,000.  相似文献   

10.
Prosser DE  Guo Y  Jia Z  Jones G 《Biophysical journal》2006,90(10):3389-3409
Human CYP27A1 is a mitochondrial cytochrome P450, which is principally found in the liver and plays important roles in the biological activation of vitamin D(3) and in the biosynthesis of bile acids. We have applied a systematic analysis of hydrogen bonding patterns in 11 prokaryotic and mammalian CYP crystal structures to construct a homology-based model of CYP27A1. Docking of vitamin D(3) structures into the active site of this model identified potential substrate contact residues in the F-helix, the beta-3 sheet, and the beta-5 sheet. Site-directed mutagenesis and expression in COS-1 cells confirmed that these positions affect enzymatic activity, in some cases shifting metabolism of 1alpha-hydroxyvitamin D(3) to favor 25- or 27-hydroxylation. The results suggest that conserved hydrophobic residues in the beta-5 hairpin help define the shape of the substrate binding cavity and that this structure interacts with Phe-248 in the F-helix. Mutations directed toward the beta-3a strand suggested a possible heme-binding interaction centered on Asn-403 and a structural role for substrate contact residues Thr-402 and Ser-404.  相似文献   

11.
Cytochrome P450 3A4 (CYP3A4), the major P450 present in human liver metabolizes approximately half the drugs in clinical use and requires electrons supplied from NADPH through NADPH-P450 reductase (POR, CPR). Mutations in human POR cause a rare form of congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. In this study we examined the effect of mutations in POR on CYP3A4 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified CYP3A4 to perform kinetic studies. We are reporting that mutations in POR identified in patients with disordered steroidogenesis/Antley-Bixler syndrome (ABS) may reduce CYP3A4 activity, potentially affecting drug metabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had more than 99% loss of CYP3A4 activity, while POR mutations A287P, C569Y and V608F lost 60-85% activity. Loss of CYP3A4 activity may result in increased risk of drug toxicities and adverse drug reactions in patients with POR mutations.  相似文献   

12.
13.
Recently, several mutants of cytochrome P450 BM3 (CYP102A1) with high activity toward drugs have been obtained by a combination of site-directed and random mutagenesis. In the present study, the applicability of these mutants as biocatalysts in the production of reactive metabolites from the drugs clozapine, diclofenac and acetaminophen was investigated. We showed that the four CYP102A1 mutants used in this study formed the same metabolites as human and rat liver microsomes, with an activity up to 70-fold higher compared to human enzymes. Using these CYP102A1 mutants, three novels GSH adducts of diclofenac were discovered which were also formed in incubations with human liver microsomes. This work shows that CYP102A1 mutants are very useful tools for the generation of high levels of reference metabolites and reactive intermediates of drugs. Producing high levels of those reactive metabolites, that might play a role in adverse drug reactions (ADRs) in humans, will facilitate their isolation, structural elucidation, and could be very useful for the toxicological characterization of novel drugs and/or drug candidates.  相似文献   

14.
In this work, we examined the impact of polymorphism in the cytochrome P450 (CYP) 3A5 gene, CYP3A5*1 (6986A > G, rs 776746), on the reduction in the lipid levels caused by simvastatin and atorvastatin. We studied 350 hyperlipidemic patients who received 10-40 mg of atorvastatin (n = 175) or simvastatin (n = 175) daily. Genotyping for CYP3A5 was done by PCR-RFLP analysis. Differences in the lipid profile before and after treatment were expressed as the % difference. The frequency of CYP3A5polymorphism was 13.4% for heterozygotes and 86.6% for homozygotes. Comparison of the responses to same dose of each drug showed that the highest % difference was associated with total cholesterol (TC) in subjects receiving atorvastatin 40 mg compared with simvastatin 40 mg (p = 0.048). However, comparison of the responses to equivalent doses of atorvastatin vs. simvastatin revealed no difference in the % change in any of the lipid parameters examined. In individuals with the same CYP3A5 genotype, a head to head comparison of the efficacy of the same dose of simvastatin vs. atorvastatin revealed an advantage for atorvastatin. For equivalent doses of atorvastatin vs. simvastatin there was no difference in the % change in any of the lipid parameters examined. Within the same genotype there was a significant difference in the % change related to the drug treatment.  相似文献   

15.
The genus Streptomyces produces two-thirds of microbially derived antibiotics. Polyketides form the largest and most diverse group of these natural products. Antibiotic diversity of polyketides is generated during their biosynthesis by several means, including postpolyketide modification performed by oxidoreductases, a broad group of enzymes including cytochrome P450 monooxygenases (CYPs). CYPs catalyze site-specific oxidation of macrolide antibiotic precursors significantly affecting antibiotic activity. Efficient manipulation of Streptomyces CYPs in generating new antibiotics will require identification and/or engineering of monooxygenases with activities toward a diverse array of chemical substrates. To begin to link structure to function of CYPs involved in secondary metabolic pathways of industrially important species, we determined the X-ray structure of Streptomyces coelicolor A3(2) CYP154A1 at 1.85 A and analyzed it in the context of the closely related CYP154C1 and more distant CYPs from polyketide synthase (EryF) and nonribosomal peptide synthetase (OxyB) biosynthetic pathways. In contrast to CYP154C1, CYP154A1 reveals an active site inaccessible from the molecular surface, and an absence of catalytic activities observed for CYP154C1. Systematic variations in the amino acid patterns and length of the surface HI loop correlate with degree of rotation of the F and G helices relative to the active site in CYP154A1-related CYPs, presumably regulating the degree of active site accessibility and its dimensions. Heme in CYP154A1 is in a 180 degrees flipped orientation compared with most other structurally determined CYPs.  相似文献   

16.
17.
The solution structure of oxidized bovine microsomal cytochrome b(5) mutant (E48, E56/A, D60/A) has been determined through 1524 meaningful nuclear Overhauser effect constraints together with 190 pseudocontact shift constraints. The final family of 35 conformers has rmsd values with respect to the mean structure of 0.045+/-0.009 nm and 0.088+/-0.011 nm for backbone and heavy atoms, respectively. A characteristic of this mutant is that of having no significant changes in the whole folding and secondary structure compared with the X-ray and solution structures of wild-type cytochrome b(5). The binding of different surface mutants of cytochrome b(5) with cytochrome c shows that electrostatic interactions play an important role in maintaining the stability and specificity of the protein complex formed. The differences in association constants demonstrate the electrostatic contributions of cytochrome b(5) surface negatively charged residues, which were suggested to be involved in complex formation in the Northrup and Salemme models, have cumulative effect on the stability of cyt c-cyt b(5) complex, and the contribution of Glu48 is a little higher than that of Glu44. Moreover, our result suggests that the docking geometry proposed by Northrup, which is involved in the participation of Glu48, Glu56, Asp60, and heme propionate of cytochrome b(5), do occur in the association between cytochrome b(5) and cytochrome c.  相似文献   

18.
Cytochrome P450 CYP17A1 catalyzes a series of reactions that lie at the intersection of corticoid and androgen biosynthesis and thus occupies an essential role in steroid hormone metabolism. This multifunctional enzyme catalyzes the 17α-hydroxylation of Δ4- and Δ5-steroids progesterone and pregnenolone to form the corresponding 17α-hydroxy products through its hydroxylase activity, and a subsequent 17,20-carbon–carbon scission of pregnene-side chain produce the androgens androstenedione (AD) and dehydroepiandrosterone (DHEA). While the former hydroxylation reaction is believed to proceed through a conventional “Compound I” rebound mechanism, it has been suggested that the latter carbon cleavage is initiated by an iron-peroxy intermediate. We report on the role of Thr306 in CYP17 catalysis. Thr306 is a member of the conserved acid/alcohol pair thought to be essential for the efficient delivery of protons required for hydroperoxoanion heterolysis and formation of Compound I in the cytochromes P450. Wild type and T306A CYP17A1 self-assembled in Nanodiscs were used to quantitate turnover and coupling efficiencies of CYP17’s physiological Δ4- and Δ5-substrates. We observed that T306A co-incorporated in Nanodiscs with its redox partner cytochrome P450 oxidoreductase, coupled NADPH only by 0.9% and 0.7% compared to the wild type (97% and 22%) during the conversion of pregnenolone and progesterone, respectively, to the corresponding 17-OH products. Despite increased oxidation of pyridine nucleotide, hydroxylase activity was drastically diminished in the T306A mutant, suggesting a high degree of uncoupling in which reducing equivalents and protons are funneled into non-productive pathways. This is similar to previous work with other P450 catalyzed hydroxylation. However, catalysis of carbon–carbon bond scission by the T306A mutant was largely unimpeded by disruption of the CYP17A1 acid-alcohol pair. The unique response of CYP17A1 lyase activity to mutation of Thr306 is consistent with a reactive intermediate formed independently of proton delivery in the active site, and supports involvement of a nucleophilic peroxo-anion rather than the traditional Compound I in catalysis.  相似文献   

19.
A systematic analysis of conserved H-bonding patterns and tertiary structural motifs from 13 crystal structures was used to create a homology model for the human multicatalytic cytochrome P450, CYP24A1, involved in catabolism of 1alpha,25-dihydroxyvitamin D3. The substrate was docked in the active site and used to identify potential substrate contact residues in the B' helix, B'/C loop, F-helix and the beta-5 hairpin. Seven CYP24A1 mutants were created and studied by mammalian cell transfection and CYP24A1 activity assay. Mutants showed reduced metabolic rates and altered metabolite patterns compared to wild-type. We conclude that: Ile-131 positions substrate via A-ring and cis-triene contacts; Trp-134 and Gly-499 are determinants of substrate access; Leu-148 contacts the substrate side-chain; Met-246 is important in mediating regioselectivity. Our findings validate the new model of CYP24A1, which can now be used to predict structural modifications for rational vitamin D drug design.  相似文献   

20.
An intronic single nucleotide polymorphism (SNP) in the CYP3A5 gene (CYP3A5∗3; SNP rs776746) affects RNA splicing and enzymatic activity. The CYP3A5∗3 frequency increased with distance from the equator and natural selection has been proposed to explain the worldwide distribution of this allele. CYP3A activity has been related with the risk for hypertension in pregnancy, a major cause of morbidity and mortality among women, and CYP3A5∗3 could reduce the risk for this disease in populations from regions with high sodium and water availability. The CYP3A5 genotype was related with blood pressure in the general population, but the effect on the risk for hypertension in pregnancy has not been evaluated.We compared the allele and genotype frequencies of three functional SNPs in the CYP3A5 (rs776746), CYP3A4 (rs2740574), and CYP21A2 (rs6471) genes between pregnant women who developed hypertension (n = 250) or who remained normotensive (control group, n = 250). In addition, we sequenced the full CYP3A5 coding sequence in 40 women from the two groups to determine whether some gene variants could explain the risk for hypertensive pregnancies in our population.Allele and genotype frequencies did not differ between hypertensive and normotensive women for the three CYP variants. We did not find CYP3A5 nucleotide changes that could explain a higher risk for hypertension in pregnancy. Our data suggests that the variation in CYP3A5, CYP3A4, and CYP21A2 did not contribute to the risk for hypertension in pregnancy in our population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号