首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Taurine has been shown to have potent anti‐oxidant properties under various pathophysiological conditions. We reported previously a cellular dysfunction and mitochondrial damage in cardiac myocytes of methionine sulfoxide reductase A (MsrA) gene knockout mice (MsrA?/?). In the present study, we have explored the protective effects of taurine against oxidative stress in the heart of MsrA?/? mice with or without taurine treatment. Cardiac cell contractility and Ca2+ dynamics were measured using cell‐based assays and in vivo cardiac function was monitored using high‐resolution echocardiography in the tested animals. Our data have shown that MsrA?/? mice exhibited a progressive cardiac dysfunction with a significant decrease of ejection fraction (EF) and fraction shortening (FS) at age of 8 months compared to the wild type controls at the same age. However, the dysfunction was corrected in MsrA?/? mice treated with taurine supplement in the diet for 5 months. We further investigated the cellular mechanism underlying the protective effect of taurine in the heart. Our data indicated that cardiac myocytes from MsrA?/? mice treated with taurine exhibited an improved cell contraction and could tolerate oxidative stress better. Furthermore, taurine treatment reduced significantly the protein oxidation levels in mitochondria of MsrA?/? hearts, suggesting an anti‐oxidant effect of taurine in cardiac mitochondria. Our study demonstrates that long‐term treatment of taurine as a diet supplement is beneficial to a heart that is vulnerable to environmental oxidative stresses. J. Cell. Biochem. 113: 3559–3566, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
We report here that the Leishmania major ascorbate peroxidase (LmAPX), having similarity with plant ascorbate peroxidase, catalyzes the oxidation of suboptimal concentration of ascorbate to monodehydroascorbate (MDA) at physiological pH in the presence of added H2O2 with concurrent evolution of O2. This pseudocatalatic degradation of H2O2 to O2 is solely dependent on ascorbate and is blocked by a spin trap, α-phenyl-n-tert-butyl nitrone (PBN), indicating the involvement of free radical species in the reaction process. LmAPX thus appears to catalyze ascorbate oxidation by its peroxidase activity, first generating MDA and H2O with subsequent regeneration of ascorbate by the reduction of MDA with H2O2 evolving O2 through the intermediate formation of O2. Interestingly, both peroxidase and ascorbate-dependent pseudocatalatic activity of LmAPX are reversibly inhibited by SCN in a concentration dependent manner. Spectral studies indicate that ascorbate cannot reduce LmAPX compound II to the native enzyme in presence of SCN. Further kinetic studies indicate that SCN itself is not oxidized by LmAPX but inhibits both ascorbate and guaiacol oxidation, which suggests that SCN blocks initial peroxidase activity with ascorbate rather than subsequent nonenzymatic pseudocatalatic degradation of H2O2 to O2. Binding studies by optical difference spectroscopy indicate that SCN binds LmAPX (Kd = 100 ± 10 mM) near the heme edge. Thus, unlike mammalian peroxidases, SCN acts as an inhibitor for Leishmania peroxidase to block ascorbate oxidation and subsequent pseudocatalase activity.  相似文献   

3.
Cardiac TRPM2 channels were activated by intracellular adenosine diphosphate-ribose and blocked by flufenamic acid. In adult cardiac myocytes the ratio of GCa to GNa of TRPM2 channels was 0.56 ± 0.02. To explore the cellular mechanisms by which TRPM2 channels protect against cardiac ischemia/reperfusion (I/R) injury, we analyzed proteomes from WT and TRPM2 KO hearts subjected to I/R. The canonical pathways that exhibited the largest difference between WT-I/R and KO-I/R hearts were mitochondrial dysfunction and the tricarboxylic acid cycle. Complexes I, III, and IV were down-regulated, whereas complexes II and V were up-regulated in KO-I/R compared with WT-I/R hearts. Western blots confirmed reduced expression of the Complex I subunit and other mitochondria-associated proteins in KO-I/R hearts. Bioenergetic analyses revealed that KO myocytes had a lower mitochondrial membrane potential, mitochondrial Ca2+ uptake, ATP levels, and O2 consumption but higher mitochondrial superoxide levels. Additionally, mitochondrial Ca2+ uniporter (MCU) currents were lower in KO myocytes, indicating reduced mitochondrial Ca2+ uptake was likely due to both lower ψm and MCU activity. Similar to isolated myocytes, O2 consumption and ATP levels were also reduced in KO hearts. Under a simulated I/R model, aberrant mitochondrial bioenergetics was exacerbated in KO myocytes. Reactive oxygen species levels were also significantly higher in KO-I/R compared with WT-I/R heart slices, consistent with mitochondrial dysfunction in KO-I/R hearts. We conclude that TRPM2 channels protect the heart from I/R injury by ameliorating mitochondrial dysfunction and reducing reactive oxygen species levels.  相似文献   

4.
The reactions of a dioxotetraamine Cu(II) complex [Cu(H−2L)] (L is 6-(9-fluorenyl)-1,4,8,11-tetraazaandencane-5,7-dione)with O2 − were investigated by electrochemistry, UV-Vis spectrophotometry and pulse radiolysis, respectively. In DMSO solution, [CuII(H−2L)] was oxidized into [CuIII(H−2L)]+ by O2 −, a consecutive reaction was observed with [CuIII(H−2L)(O2 2−)] − as intermediates (k1=1.71×103 M−1 s−1, k2=1.2×10−2 s−1). The mechanism of O2 − dismutation catalyzed by the complex involved alternate oxidation and reduction of Cu(II) by O2 − and the kcat is 6.07 × 107 M−1 s−1 (pH 7.4).  相似文献   

5.

Background

It has been suggested that mitochondrial function plays a central role in cardiovascular diseases associated with particulate matter inhalation. The aim of this study was to evaluate this hypothesis, with focus on cardiac O2 and energetic metabolism, and its impact over cardiac contractility.

Methods

Swiss mice were intranasally instilled with either residual oil fly ash (ROFA) (1.0 mg/kg body weight) or saline solution. After 1, 3 or 5 h of exposure, O2 consumption was evaluated in heart tissue samples. Mitochondrial respiration, respiratory chain complexes activity, membrane potential and ATP content and production rate were assessed in isolated mitochondria. Cardiac contractile reserve was evaluated according to the Langendorff technique.

Results

Three hours after ROFA exposure, tissue O2 consumption was significantly decreased by 35% (from 1180 ± 70 to 760 ± 60 ng-at O/min g tissue), as well as mitochondrial rest (state 4) and active (state 3) respiration, by 30 and 24%, respectively (control state 4: 88 ± 5 ng-at O/min mg protein; state 3: 240 ± 20 ng-at O/min mg protein). These findings were associated with decreased complex II activity, mitochondrial depolarization and deficient ATP production. Even though basal contractility was not modified (control: 75 ± 5 mm Hg), isolated perfused hearts failed to properly respond to isoproterenol in ROFA-exposed mice. Tissue O2 consumption rates positively correlated with cardiac contractile state in controls (r2 = 0.8271), but not in treated mice (r2 = 0.1396).

General Significance

The present results show an impaired mitochondrial function associated with deficient cardiac contractility, which could represent an early cardiovascular alteration after the exposure to environmental particulate matter.  相似文献   

6.
Although a major contribution to myocardial ischemia-reperfusion (I/R) injury is suggested to be provided by formation of reactive oxygen species (ROS) within mitochondria, sites and mechanisms are far from being elucidated. Besides a dysfunctional respiratory chain, other mitochondrial components, such as monoamine oxidase and p66Shc, might be involved in oxidative stress. In particular, p66Shc has been shown to catalyze the formation of H2O2.The relationship among p66Shc, ROS production and cardiac damage was investigated by comparing hearts from p66Shc knockout mice (p66Shc−/−) and wild-type (WT) littermates. Perfused hearts were subjected to 40 min of global ischemia followed by 15 min of reperfusion. Hearts devoid of p66Shc were significantly protected from I/R insult as shown by (i) reduced release of lactate dehydrogenase in the coronary effluent (25.7 ± 7.49% in p66Shc−/− vs. 39.58 ± 5.17% in WT); (ii) decreased oxidative stress as shown by a 63% decrease in malondialdehyde formation and 40 ± 8% decrease in tropomyosin oxidation. The degree of protection was independent of aging.The cardioprotective efficacy associated with p66Shc ablation was comparable with that afforded by other antioxidant interventions and could not be increased by antioxidant co-administration suggesting that p66Shc is downstream of other pathways involved in ROS formation. In addition, the absence of p66Shc did not affect the protection afforded by ischemic preconditioning.In conclusion, the absence of p66Shc reduces the susceptibility to reperfusion injury by preventing oxidative stress. The present findings provide solid and direct evidence that mitochondrial ROS formation catalyzed by p66Shc is causally related to reperfusion damage.  相似文献   

7.
The methionine sulfoxide reductase (Msr) system (comprised of MsrA and MsrB) is responsible for reducing methionine sulfoxide (MetO) to methionine. One major form of MsrB is a selenoprotein. Following prolonged selenium deficient diet (SD), through F2 generation, the MsrA ? / ?mice exhibited higher protein–MetO and carbonyl levels relative to their wild-type (WT) control in most organs. More specifically, the SD diet caused alteration in the expression and/or activities of certain antioxidants as follows: lowering the specific activity of MsrB in the MsrA ? / ?cerebellum in comparison to WT mice; lowering the activities of glutathione peroxidase (Gpx) and thioredoxin reductase (Trr) especially in brains of MsrA ? / ?mice; elevation of the cellular levels of selenoprotein P (SelP) in most tissues of the MsrA ? / ?relative to WT. Unexpectedly, the expression and activity of glucose-6-phosphate dehydrogenase (G6PD) were mainly elevated in lungs and hearts of MsrA ? / ?mice. Moreover, the body weight of the MsrA ? / ?mice lagged behind the WT mice body weight up to 120 days of the SD diet. In summary, it is suggested that the lack of the MsrA gene in conjunction with prolonged SD diet causes decreased antioxidant capability and enhanced protein oxidation.  相似文献   

8.
Mixed ligand complexes: [Co(L)(bipy)] · 3H2O (1), [Ni(L)(phen)] · H2O (2), [Cu(L)(phen)] · 3H2O (3) and [Zn(L)(bipy)] · 3H2O (4), where L2− = two -COOH deprotonated dianion of N-(2-benzimidazolyl)methyliminodiacetic acid (H2bzimida, hereafter, H2L), bipy = 2,2′ bipyridine and phen = 1,10-phenanthroline have been isolated and characterized by elemental analysis, spectral and magnetic measurements and thermal studies. Single crystal X-ray diffraction studies show octahedral geometry for 1, 2 and 4 and square pyramidal geometry for 3. Equilibrium studies in aqueous solution (ionic strength I = 10−1 mol dm−3 (NaNO3), at 25 ± 1 °C) using different molar proportions of M(II):H2L:B, where M = Co, Ni, Cu and Zn and B = phen, bipy and en (ethylene diamine), however, provides evidence of formation of mononuclear and binuclear binary and mixed ligand complexes: M(L), M(H−1L), M(B)2+, M(L)(B), M(H−1L)(B), M2(H−1L)(OH), (B)M(H−1L)M(B)+, where H−1L3− represents two -COOH and the benzimidazole N1-H deprotonated quadridentate (O, N, O, N), or, quinquedentate (O, N, O, N, N) function of the coordinated ligand H2L. Binuclear mixed ligand complex formation equilibria: M(L)(B) + M(B)2+ ? (B)M(H−1L)M(B)+ + H+ is favoured with higher π-acidity of the B ligands. For Co(II), Ni(II) and Cu(II), these equilibria are accompanied by blue shift of the electronic absorption maxima of M(II) ions, as a negatively charged bridging benzimidazolate moiety provides stronger ligand field than a neutral one. Solution stability of the mixed ligand complexes are in the expected order: Co(II) < Ni(II) < Cu(II) > Zn(II). The Δ log KM values are less negetive than their statistical values, indicating favoured formation of the mixed ligand complexes over the binary ones.  相似文献   

9.
Copper(II) complex with a new ligand 1,4,7-tris(carbamoylethyl)-1,4,7-triazacyclononane (L) has been synthesized and characterized by elemental analysis, FT-IR, ES-MS, UV-Vis and cyclic voltammetry. Determined by X-ray analysis, the crystal structure shows the metal center is six-coordinated. The compound can catalyze the oxygenation of ethyl phenyl sulfide (EPS) utilizing H2O2 under ambient conditions. EPS was converted to the corresponding sulfoxide and sulfone step by step which was confirmed by 1H NMR spectra. The existence of sulfoxide and sulfone was identified by GC-MS. The gradually disappearance of EPS’s ultraviolet absorption at 290 nm was significantly correlated with the rates of sulfide consumption. The initial reaction rate during the first 3 h is consistent with the first-order law in substrate concentration. The averaged pseudo-first-order rate constant is calculated to be (2.25 ± 0.42) × 10−3 min−1 at 25 °C and (4.44 ± 0.17) × 10−3 min−1 at 30 °C. The oxidation product is almost sulfoxide by choosing the molar concentrations of Cu complex (2% of substrate) and H2O2 (seven times as much as substrate).  相似文献   

10.
This article describes the employment of a novel p-phenol derivative, 4-(1,2,4-triazol-1-yl)phenol (TRP), as a highly potent signal enhancer of the luminol-hydrogen peroxide (H2O2)-horseradish peroxidase (HRP) chemiluminescence (CL) system. The CL reaction conditions were optimized, and the enhancement characteristics of TRP were compared with those of p-iodophenol (PIP). TRP produced a strong enhancement of the CL with the effect of prolonging the light emission. The developed system was then applied to the determination of H2O2 with immobilized HRP using magnetic beads as a solid support. The linear range for H2O2 was 2.0 × 10−6 to 1.0 × 10−3 M. The detection limit for H2O2 was 2.0 × 10−6 M. The proposed sensor was applied successfully to the determination of H2O2 in rainwater.  相似文献   

11.
12.
Oxidative stress remodels Ca2+ signaling in cardiomyocytes, which promotes altered heart function in various heart diseases. Ca2+/calmodulin-dependent protein kinase II (CaMKII) was shown to be activated by oxidation, but whether and how CaMKII links oxidative stress to pathophysiological long-term changes in Ca2+ signaling remain unknown. Here, we present evidence demonstrating the role of CaMKII in transient oxidative stress-induced long-term facilitation (LTF) of L-type Ca2+ current (ICa,L) in rat cardiomyocytes. A 5-min exposure of 1 mM H2O2 induced an increase in ICa,L, and this increase was sustained for ~ 1 h. The CaMKII inhibitor KN-93 fully reversed H2O2-induced LTF of ICa,L, indicating that sustained CaMKII activity underlies this oxidative stress-induced memory. Simultaneous inhibition of oxidation and autophosphorylation of CaMKII prevented the maintenance of LTF, suggesting that both mechanisms contribute to sustained CaMKII activity. We further found that sarcoplasmic reticulum Ca2+ release and mitochondrial ROS generation have critical roles in sustaining CaMKII activity via autophosphorylation- and oxidation-dependent mechanisms. Finally, we show that long-term remodeling of the cardiac action potential is induced by H2O2 via CaMKII. In conclusion, CaMKII and mitochondria confer oxidative stress-induced pathological cellular memory that leads to cardiac arrhythmia.  相似文献   

13.
In plants, it has been proposed that hexacoordinate (class 1) non-symbiotic Hbs (nsHb-1) function in vivo as peroxidases. However, little is known about peroxidase activity of nsHb-1. We evaluated the peroxidase activity of rice recombinant Hb1 (a nsHb-1) by using the guaiacol/H2O2 system at pH 6.0 and compared it to that from horseradish peroxidase (HRP). Results showed that the affinity of rice Hb1 for H2O2 was 86-times lower than that of HRP (Km = 23.3 and 0.27 mM, respectively) and that the catalytic efficiency of rice Hb1 for the oxidation of guaiacol using H2O2 as electron donor was 2838-times lower than that of HRP (kcat/Km = 15.8 and 44 833 mM−1 min−1, respectively). Also, results from this work showed that rice Hb1 is not chemically modified and binds CO after incubation with high H2O2 concentration, and that it poorly protects recombinant Escherichia coli from H2O2 stress. These observations indicate that rice Hb1 inefficiently scavenges H2O2 as compared to a typical plant peroxidase, thus indicating that non-symbiotic Hbs are unlikely to function as peroxidases in planta.  相似文献   

14.
Contractile dysfunction and diminished response to β-adrenergic agonists are characteristics for failing hearts. Chemically donated nitroxyl (HNO) improves contractility in failing hearts and thus may have therapeutic potential. Yet, there is a need for pharmacologically suitable donors. In this study we tested whether the pure and long acting HNO donor, 1-nitrosocyclohexyl acetate (NCA), affects contractile force in normal and pathological ventricular myocytes (VMs) as well as in isolated hearts. VMs were isolated from mice either subjected to isoprenaline-infusion (ISO; 30 μg/g per day) or to vehicle (0.9% NaCl) for 5 days. Sarcomere shortening and Ca2+ transients were simultaneously measured using the IonOptix system. Force of contraction of isolated hearts was measured by a Langendorff-perfusion system. NCA increased peak sarcomere shortening by + 40-200% in a concentration-dependent manner (EC50 ∼55 μM). Efficacy and potency did not differ between normal and chronic ISO VMs, despite the fact that the latter displayed a markedly diminished inotropic response to acute β-adrenergic stimulation with ISO (1 μM). NCA (60 μM) increased peak sarcomere shortening and Ca2+ transient amplitude by ∼200% and ∼120%, respectively, suggesting effects on both myofilament Ca2+ sensitivity and sarcoplasmic reticulum (SR) Ca2+ cycling. Importantly, NCA did not affect diastolic Ca2+ or SR Ca2+ content, as assessed by rapid caffeine application. NCA (45 μM) increased force of contraction by 30% in isolated hearts. In conclusion, NCA increased contractile force in normal and β-adrenergically desensitized VMs as well as in isolated mouse hearts. This profile warrants further investigations of this HNO donor in the context of heart failure.  相似文献   

15.
The kinetics of the formation of the purple complex [FeIII(EDTA)O2]3−, between FeIII-EDTA and hydrogen peroxide was studied as a function of pH (8.22-11.44) and temperature (10-40 °C) in aqueous solutions using a stopped-flow method. The reaction was first-order with respect to both reactants. The observed second-order rate constants decrease with an increase in pH and appear to be related to deprotonation of FeIII-EDTA ([Fe(EDTA)H2O] ⇔ Fe(EDTA)OH]2− + H+). The rate law for the formation of the complex was found to be d[FeIIIEDTAO2]3−/dt=[(k4[H+]/([H+] + K1)][FeIII-EDTA][H2O2], where k4=8.15±0.05×104 M−1 s−1 and pK1=7.3. The steps involved in the formation of [Fe(EDTA)O2]3− are briefly discussed.  相似文献   

16.
The effect of bicarbonate on the rates of the H2O2 oxidation of cysteine, gluthathione, and N-acetylcysteine to the corresponding disulfides was investigated. The relative oxidation rates at pH 8 for the different thiols are inversely related to the pKa values of the thiol groups, and the reactive nucleophiles are identified as the thiolate anions or their kinetic equivalents. The second-order rate constants at 25 °C for the reaction of the thiolate anions with hydrogen peroxide are 17 ± 2 M−1 s−1 for all three substrates. In the presence of bicarbonate (>25 mM), the observed rate of thiolate oxidation is increased by a factor of two or more, and the catalysis is proposed to be associated with the formation of peroxymonocarbonate from the equilibrium reaction of hydrogen peroxide with bicarbonate (via CO2). The calculated second-order rate constants for the direct reaction of the three thiolate anions with peroxymonocarbonate fall within the range of 900-2000 M−1 s−1. Further oxidation of disulfides by peroxymonocarbonate results in the formation of thiosulfonate and sulfonate products. These results strongly suggest that peroxymonocarbonate should be considered as a reactive oxygen species in aerobic metabolism with relevance in thiol oxidations.  相似文献   

17.

Background

Besides its role as a fuel source in intermediary metabolism, lactate has been considered a signaling molecule modulating lactate-sensitive genes involved in the regulation of skeletal muscle metabolism. Even though the flux of lactate is significantly high in the heart, its role on regulation of cardiac genes regulating lactate oxidation has not been clarified yet. We tested the hypothesis that lactate would increase cardiac levels of reactive oxygen species and up-regulate the expression of genes related to lactate oxidation complex.

Methods/Principal Findings

Isolated hearts from male adult Wistar rats were perfused with control, lactate or acetate (20mM) added Krebs-Henseleit solution during 120 min in modified Langendorff apparatus. Reactive oxygen species (O2 ●-/H2O2) levels, and NADH and NADPH oxidase activities (in enriched microsomal or plasmatic membranes, respectively) were evaluated by fluorimetry while SOD and catalase activities were evaluated by spectrophotometry. mRNA levels of lactate oxidation complex and energetic enzymes MCT1, MCT4, HK, LDH, PDH, CS, PGC1α and COXIV were quantified by real time RT-PCR. Mitochondrial DNA levels were also evaluated. Hemodynamic parameters were acquired during the experiment. The key findings of this work were that lactate elevated cardiac NADH oxidase activity but not NADPH activity. This response was associated with increased cardiac O2 ●-/H2O2 levels and up-regulation of MCT1, MCT4, LDH and PGC1α with no changes in HK, PDH, CS, COXIV mRNA levels and mitochondrial DNA levels. Lactate increased NRF-2 nuclear expression and SOD activity probably as counter-regulatory responses to increased O2 ●-/H2O2.

Conclusions

Our results provide evidence for lactate-induced up-regulation of lactate oxidation complex associated with increased NADH oxidase activity and cardiac O2 ●-/H2O2 driving to an anti-oxidant response. These results unveil lactate as an important signaling molecule regulating components of the lactate oxidation complex in cardiac muscle.  相似文献   

18.
Binding of ouabain to Na+/K+-ATPase activated multiple signal transduction pathways including stimulation of Src, Ras, p42/44 MAPKs and production of reactive oxygen species (ROS) in rat cardiac myocytes. Inhibition of either Src or Ras ablated ouabain-induced increase in both [Ca2+]i and contractility. While PD98059 abolished the effects of ouabain on [Ca2+]i, it only caused a partial inhibition of ouabain-induced increases in contractility. On the other hand, pre-incubation of myocytes with N-acetyl cysteine (NAC) reduced the effects of ouabain on contractility, but not [Ca2+]i. Furthermore, 5-hydroxydecanoate (5-HD) blocked ouabain-induced ROS production and partially inhibited ouabain-induced increases in contractility in cardiac myocytes. Pre-incubation of myocytes with both 5-HD and PD98059 completely blocked ouabain's effect on contractility. Finally, we found that opening of mitochondrial KATP channel by diazoxide increased intracellular ROS and significantly raised contractility in cardiac myocytes. These new findings indicate that ouabain regulates cardiac contractility via both [Ca2+]i and ROS. While activation of MAPKs leads to increases in [Ca2+]i, opening of mitochondrial KATP channel relays the ouabain signal to increased ROS production in cardiac myocytes.  相似文献   

19.
The effects of short term hypoxia on bioturbation activity and inherent solute fluxes are scarcely investigated even if increasing number of coastal areas are subjected to transient oxygen deficits. In this work dark fluxes of oxygen (O2), dissolved inorganic carbon (TCO2) and nutrients across the sediment-water interface, as well as rates of denitrification (isotope pairing), were measured in intact sediment cores collected from the dystrophic pond of Sali e Pauli (Sardinia, Italy). Sediments were incubated at 100, 70, 40 and 10% of O2 saturation in the overlying water, with both natural benthic communities, dominated by the polychaete Polydora ciliata (11.100 ± 2.500  ind. m− 2), and after the addition of individuals of the deep-burrower polychaete Hediste diversicolor. Below an uppermost oxic layer of ~ 1 mm, sediments were highly reduced, with up to 6 mM of S2− in the 5 mm layer. Flux of S2− and O2 calculated from pore water gradients were 8.61 ± 1.12 and − 2.27 ± 0.56 mmol m− 2 h− 1, respectively. However, sediment oxygen demand (SOD) calculated from core incubation was − 10.52 ± 0.33 mmol m− 2 h− 1, suggesting a major contribution of P. ciliata to O2-mediated sulphide oxidation. P. ciliata also strongly stimulated NH4+ and PO43− fluxes, with rates ~ 15 and ~ 30 folds higher, respectively, than those estimated from pore water gradients. P. ciliata activity was significantly reduced at 10% O2 saturation, coupled to decreased rates of solutes transfer. The addition of H. diversicolor further stimulated SOD, NH4+ efflux and SiO2 mobilisation. Similarly to P. ciliata, the degree of stimulation of SOD and NH4+ flux by H. diversicolor depended on the level of oxygen saturation. TCO2 regeneration, respiratory quotients, PO43− fluxes and denitrification of added 15NO3 were not affected by the addition of H. diversicolor, but depended upon the O2 levels in the water column. Denitrification rates supported by water column 14NO3 and sedimentary nitrification were both negligible (< 0.5 µmol m− 2 h− 1). They were not significantly affected by oxygen saturation nor by bioturbation, probably due to the limited availability of NO3 in the water column (< 3 µM) and O2 in the sediments. This study demonstrates for the first time the integrated short term effect of transient hypoxia and bioturbation on solute fluxes across the sediment-water interface within a simplified lagoonal benthic community.  相似文献   

20.
The ruthenium(II) hexaaqua complex [Ru(H2O)6]2+ reacts with dihydrogen under pressure to give the η2-dihydrogen ruthenium(II) pentaaqua complex [Ru(H2)(H2O)5]2+.The complex was characterized by 1H, 2H and 17O NMR: δH = −7.65 ppm, JHD = 31.2 Hz, δO = −80.4 ppm (trans to H2) and δO = −177.4 ppm (cis to H2).The H-H distance in coordinated dihydrogen was estimated to 0.889 Å from JHD, which is close to the value obtained from DFT calculations (0.940 Å).Kinetic studies were performed by 1H and 2H NMR as well as by UV-Vis spectroscopy, yielding the complex formation rate and equilibrium constants: kf = (1.7 ± 0.2) × 10−3 kg mol−1 s−1 and Keq = 4.0 ± 0.5 mol kg−1.The complex formation rate with dihydrogen is close to values reported for other ligands and thus it is assumed that the reaction with dihydrogen follows the same mechanisn (Id).In deuterated water, one can observe that [Ru(H2)(H2O)5]2+ catalyses the hydrogen exchange between the solvent and the dissolved dihydrogen.A hydride is proposed as the intermediate for this exchange.Using isotope labeling, the rate constant for the hydrogen exchange on the η2-dihydrogen ligand was determined as k1 = (0.24 ± 0.04) × 10−3 s−1.The upper and lower limits of the pKa of the coordinated dihydrogen ligand have been estimated:3 < pKa < 14.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号