首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several previous comparisons of the human genome with other primate and vertebrate genomes identified genomic regions that are highly conserved in vertebrate evolution but fast-evolving on the human lineage. These human accelerated regions (HARs) may be regions of past adaptive evolution in humans. Alternatively, they may be the result of non-adaptive processes, such as biased gene conversion. We captured and sequenced DNA from a collection of previously published HARs using DNA from an Iberian Neandertal. Combining these new data with shotgun sequence from the Neandertal and Denisova draft genomes, we determine at least one archaic hominin allele for 84% of all positions within HARs. We find that 8% of HAR substitutions are not observed in the archaic hominins and are thus recent in the sense that the derived allele had not come to fixation in the common ancestor of modern humans and archaic hominins. Further, we find that recent substitutions in HARs tend to have come to fixation faster than substitutions elsewhere in the genome and that substitutions in HARs tend to cluster in time, consistent with an episodic rather than a clock-like process underlying HAR evolution. Our catalog of sequence changes in HARs will help prioritize them for functional studies of genomic elements potentially responsible for modern human adaptations.  相似文献   

2.
Rates of molecular evolution: the hominoid slowdown   总被引:2,自引:0,他引:2  
It is proposed that early in phylogeny a large proportion of amino acid substitutions were selectively neutral, but that bursts of adaptive substitutions during major radiations of life so increased selective constraints that most mutations in modern proteins are detrimental. Recent findings on DNA nucleotide sequences indicate that decreasing mutation rates further slowed the rate of molecular evolution in the lineage to humans.  相似文献   

3.
A complete mitochondrial (mt) genome sequence was reconstructed from a 38,000 year-old Neandertal individual with 8341 mtDNA sequences identified among 4.8 Gb of DNA generated from approximately 0.3 g of bone. Analysis of the assembled sequence unequivocally establishes that the Neandertal mtDNA falls outside the variation of extant human mtDNAs, and allows an estimate of the divergence date between the two mtDNA lineages of 660,000 +/- 140,000 years. Of the 13 proteins encoded in the mtDNA, subunit 2 of cytochrome c oxidase of the mitochondrial electron transport chain has experienced the largest number of amino acid substitutions in human ancestors since the separation from Neandertals. There is evidence that purifying selection in the Neandertal mtDNA was reduced compared with other primate lineages, suggesting that the effective population size of Neandertals was small.  相似文献   

4.
Studying the emergence of distinctive human growth patterns is essential to understanding the evolution of our species. The large number of Neandertal fossils makes this species the best candidate for a comparative study of growth patterns in archaic and modern humans. Here, Neandertal height growth during infancy and early childhood is described using a mathematical model. Height growth velocities for individuals five years old or younger are modelled as age functions based on different estimates of height and age for a set of ten Neandertal infants and children. The estimated heights of each Neandertal individual are compared with those of two modern human populations based on longitudinal and cross-sectional data. The model highlights differences in growth velocity during infancy (from the age of five months onward). We find that statural growth in Neandertal infants is much slower than that seen in modern humans, Neandertal growth is similar to modern humans at birth, but decreases around the third or fourth month. The markedly slower growth rates of Neandertal infants may be attributable to ontogenetic constraints or to metabolic stress, and contribute to short achieved adult stature relative to modern humans.  相似文献   

5.
6.
The recent extraction of mitochondrial DNA sequences from three European Neandertal fossils has led many to the conclusion that ancient DNA analysis supports the African replacement model of modern human origins and rejects models of multiregional evolution that propose some Neandertal ancestry in living humans. This conclusion is based, in part, on the lack of regional affinity of Neandertal DNA to that from living Europeans. Consideration of migration matrix models shows that this conclusion is premature, since under a model of interregional gene flow we expect to see similar levels of Neandertal ancestry in all contemporary regions, and living Europeans should not necessarily show closer affinity. The absence of regional affinity in Neandertal DNA does not distinguish between replacement and multiregional models.  相似文献   

7.
No evidence of Neandertal mtDNA contribution to early modern humans   总被引:2,自引:1,他引:1  
The retrieval of mitochondrial DNA (mtDNA) sequences from four Neandertal fossils from Germany, Russia, and Croatia has demonstrated that these individuals carried closely related mtDNAs that are not found among current humans. However, these results do not definitively resolve the question of a possible Neandertal contribution to the gene pool of modern humans since such a contribution might have been erased by genetic drift or by the continuous influx of modern human DNA into the Neandertal gene pool. A further concern is that if some Neandertals carried mtDNA sequences similar to contemporaneous humans, such sequences may be erroneously regarded as modern contaminations when retrieved from fossils. Here we address these issues by the analysis of 24 Neandertal and 40 early modern human remains. The biomolecular preservation of four Neandertals and of five early modern humans was good enough to suggest the preservation of DNA. All four Neandertals yielded mtDNA sequences similar to those previously determined from Neandertal individuals, whereas none of the five early modern humans contained such mtDNA sequences. In combination with current mtDNA data, this excludes any large genetic contribution by Neandertals to early modern humans, but does not rule out the possibility of a smaller contribution.  相似文献   

8.
Genes that have experienced accelerated evolutionary rates on the human lineage during recent evolution are candidates for involvement in human-specific adaptations. To determine the forces that cause increased evolutionary rates in certain genes, we analyzed alignments of 10,238 human genes to their orthologues in chimpanzee and macaque. Using a likelihood ratio test, we identified protein-coding sequences with an accelerated rate of base substitutions along the human lineage. Exons evolving at a fast rate in humans have a significant tendency to contain clusters of AT-to-GC (weak-to-strong) biased substitutions. This pattern is also observed in noncoding sequence flanking rapidly evolving exons. Accelerated exons occur in regions with elevated male recombination rates and exhibit an excess of nonsynonymous substitutions relative to the genomic average. We next analyzed genes with significantly elevated ratios of nonsynonymous to synonymous rates of base substitution (dN/dS) along the human lineage, and those with an excess of amino acid replacement substitutions relative to human polymorphism. These genes also show evidence of clusters of weak-to-strong biased substitutions. These findings indicate that a recombination-associated process, such as biased gene conversion (BGC), is driving fixation of GC alleles in the human genome. This process can lead to accelerated evolution in coding sequences and excess amino acid replacement substitutions, thereby generating significant results for tests of positive selection.  相似文献   

9.
L L Shu  W J Bean    R G Webster 《Journal of virology》1993,67(5):2723-2729
This study examined the evolution and variation of the human influenza virus nucleoprotein gene from the earliest isolates to the present. Phylogenetic reconstruction of the most parsimonious evolutionary path connecting 49 nucleoprotein sequences yielded a single lineage. The average calculated rate of mutation was 3.6 nucleotide substitutions per year (2.3 x 10(-3) substitutions per site per year). Thirty-two percent of these mutations resulted in amino acid substitutions, and the remainder were silent mutations. Analysis of virus isolates from China and elsewhere showed no significant differences in their rate of evolution, genetic diversity, or mean survival time. The nearly constant rate of change was maintained through the two antigenic shifts, and there were no obvious changes in the number or types of mutations associated with the changes in the surface proteins. A detailed comparison of the changes that have occurred on the main evolutionary path with those that have occurred on the side branches of the phylogenetic tree was made. This showed that while 35% of the mutations on the side branches resulted in amino acid changes, only 21% of those on the main path affected the protein sequence. These results suggest that although the rate of change of the human influenza virus nucleoprotein is much higher than that previously described for avian influenza viruses, there are measurable constraints on the evolution of the surviving virus lineage. Comparison of the nucleoproteins of virus isolates adapted to chicken embryos with the nucleoproteins of those grown only in MDCK cells revealed no consistent differences between the virus pairs. Thus, although the nucleoprotein is known to be critical for host specificity, its adaptation to growth in eggs apparently involves no immediate selective pressures, such as are found with hemagglutinin.  相似文献   

10.
Adaptation to low temperatures has been reasonably developed in the human species during the colonization of the Eurasian landmass subsequent to Out of Africa migrations of anatomically modern humans. In addition to morphological and cultural changes, also metabolic ones are supposed to have favored human isolation from cold and body heat production and this can be hypothesized also for most Neandertal and at least for some Denisovan populations, which lived in geographical areas that strongly experienced the last glacial period. Modulation of non-shivering thermogenesis, for which adipocytes belonging to the brown adipose tissue are the most specialized cells, might have driven these metabolic adaptations. To perform an exploratory analysis aimed at looking into this hypothesis, variation at 28 genes involved in such functional pathway was investigated in modern populations from different climate zones, as well as in Neandertal and Denisovan genomes. Patterns of variation at the LEPR gene, strongly related to increased heat dissipation by mitochondria, appeared to have been shaped by positive selection in modern East Asians, but not in Europeans. Moreover, a single potentially cold-adapted LEPR allele, different from the supposed adaptive one identified in Homo sapiens, was found also in Neandertal and Denisovan genomes. These findings suggest that independent mechanisms for cold adaptations might have been developed in different non-African human groups, as well as that the evolution of possible enhanced thermal efficiency in Neandertals and in some Denisovan populations has plausibly entailed significant changes also in other functional pathways than in the examined one.  相似文献   

11.
Recent reports analyzing mitochondrial DNA sequences from Neandertal bones have claimed that Neandertals and modern humans are different species. The phylogenetic analyses carried out in these articles did not take into account the high substitution rate variation among sites observed in the human mitochondrial D-loop region and also lack an estimation of the parameters of the nucleotide substitution model. The separate phylogenetic position of Neandertals is not supported when these factors are considered. Our analysis shows that Neandertal-Human and Human-Human pairwise distance distributions overlap more than what previous studies suggested. We also show that the most ancient Neandertal HVI region is the most divergent when compared with modern human sequences. However, the opposite would be expected if the sequence had not been modified since the death of the specimen. Such incongruence is discussed in the light of diagenetic modifications in ancient Neandertal DNA sequences.  相似文献   

12.
A number of human disease-associated sequences have been reported in other species, such as rodents, but compensatory changes appear to prevent these deleterious mutations from being expressed. The aim of this work was to compare the mitochondrial DNA of multiple primates to ascertain whether mitochondrial disease-causing sequences in humans are fixed in nonhuman primates. Indeed, 46 sequences related to human pathology were identified in 1 or more of the 12 studied nonhuman primates, the majority of which were associated with late-onset diseases. Most of these sequences can be explained by the presence of secondary compensatory changes that render these mutations phenotypically inert. Nonetheless, and since humans not only are the longest-lived primate but feature the largest brain, one hypothesis is that a gradual optimization of the human mitochondrion occurred in the hominid lineage driven by the need to optimize the aerobic energy metabolism to delay neurodegeneration. Therefore, it is also proposed that some of these disease-associated sequences in nonhuman primates may be linked to the evolution of human longevity and intelligence, indicating a general pattern of selection on longevity in the course of evolution of the human mitochondrion. [Reviewing Editor: Dr. Martin Kreitman]  相似文献   

13.
The present study describes and analyzes new Neandertal and early modern human auditory ossicles from the sites of Qafzeh and Amud in southwest Asia. Some methodological issues in the measurement of these bones are considered, and a set of standardized measurement protocols is proposed. Evidence of erosive pathological processes, most likely attributed to otitis media, is present on the ossicles of Qafzeh 12 and Amud 7 but none can be detected in the other Qafzeh specimens. Qafzeh 12 and 15 extend the known range of variation in the fossil H. sapiens sample in some metric variables, but morphologically, the new specimens do not differ in any meaningful way from living humans. In most metric dimensions, the Amud 7 incus falls within our modern human range of variation, but the more closed angle between the short and long processes stands out. Morphologically, all the Neandertal incudi described to date show a very straight long process. Several tentative hypotheses can be suggested regarding the evolution of the ear ossicles in the genus Homo. First, the degree of metric and morphological variation seems greater among the fossil H. sapiens sample than in Neandertals. Second, there is a real difference in the size of the malleus between Neandertals and fossil H. sapiens, with Neandertals showing larger values in most dimensions. Third, the wider malleus head implies a larger articular facet in the Neandertals, and this also appears to be reflected in the larger (taller) incus articular facet. Fourth, there is limited evidence for a potential temporal trend toward reduction of the long process within the Neandertal lineage. Fifth, a combination of features in the malleus, incus, and stapes may indicate a slightly different relative positioning of either the tip of the incus long process or stapes footplate within the tympanic cavity in the Neandertal lineage.  相似文献   

14.
In this report, we present a morphometric comparative study of two Early Pleistocene humeri recovered from the TD6 level of the Gran Dolina cave site in Sierra de Atapuerca, northern Spain. ATD6-121 belongs to a child between 4 and 6 years old, whereas ATD6-148 corresponds to an adult. ATD6-148 exhibits the typical pattern of the genus Homo, but it also shows a large olecranon fossa and very thin medial and lateral pillars (also present in ATD6-121), sharing these features with European Middle Pleistocene hominins, Neandertals, and the Bodo Middle Pleistocene humerus. The morphology of the distal epiphysis, together with a few dental traits, suggests a phylogenetic relationship between the TD6 hominins and the Neandertal lineage. Given the older geochronological age of these hominins (ca. 900 ka), which is far from the age estimated by palaeogenetic studies for the population divergence of modern humans and Neandertals (ca. 400 ka), we suggest that this suite of derived "Neandertal" features appeared early in the evolution of the genus Homo. Thus, these features are not "Neandertal" apomorphies but traits which appeared in an ancestral and polymorphic population during the Early Pleistocene.  相似文献   

15.
MELK is a cell cycle-regulated protein kinase involved in cell cycle progression, proliferation, tumor growth and mRNA splicing. MELK is localized in the cytoplasm and the nucleus during interphase and at the cell cortex during anaphase and telophase. In this report, we show that the regulatory domain of Xenopus MELK when tagged at its C-terminus with the green fluorescent protein (GFP), co-localizes with mitochondria in Xenopus XL2 cells. Significantly, the presence of a mitochondrial targeting signal at the N-terminus of this fusion protein was predicted by bioinformatics analyses. In agreement with previous reports on mitochondrial proteins, placing the GFP at the N-terminus inhibited the mitochondrial targeting of the MELK fragment and, furthermore, the regulatory domain without a tag co-localizes with mitochondria. These results demonstrate the presence of a mitochondrial targeting signal at the N-terminus of the MC domain of MELK. This mitochondrial targeting signal was also functional in human HeLa cells.  相似文献   

16.
In this study, we report that the partitioning between mitochondria and cytoplasm of two variants, mCherry and DsRed Express (DRE), of the red fluorescent protein, DsRed, fused to one of the six matrix targeting sequences (MTSs) can be affected by both MTS and amino acid substitutions in DsRed. Of the six MTSs tested, MTSs from superoxide dismutase and DNA polymerase gamma failed to direct mCherry, but not DRE to mitochondria. By evaluating a series of chimeras between mCherry and DRE fused to the MTS of superoxide dismutase, we attribute the differences in the mitochondrial partitioning to differences in the primary amino acid sequence of the passenger polypeptide. The impairment of mitochondrial partitioning closely parallels the number of mCherry-specific mutations, and is not specific to mutations located in any particular region of the polypeptide. These observations suggest that both MTS and the passenger polypeptide affect the efficiency of mitochondrial import and provide a rationale for the observed diversity in the primary amino acid sequences of natural MTSs.  相似文献   

17.

Background

Clinical manifestations of enterovirus 71 (EV71) range from herpangina, hand-foot-and-mouth disease (HFMD), to severe neurological complications. Unlike the situation of switching genotypes seen in EV71 outbreaks during 1998–2008 in Taiwan, genotype B5 was responsible for two large outbreaks in 2008 and 2012, respectively. In China, by contrast, EV71 often persists as a single genotype in the population and causes frequent outbreaks. To investigate genetic changes in viral evolution, complete EV71 genome sequences were used to analyze the intra-genotypic evolution pattern in Taiwan, China, and the Netherlands.

Results

Genotype B5 was predominant in Taiwan’s 2008 outbreak and was re-emergent in 2012. EV71 strains from both outbreaks were phylogenetically segregated into two lineages containing fourteen non-synonymous substitutions predominantly in the non-structural protein coding region. In China, genotype C4 was first seen in 1998 and caused the latest large outbreak in 2008. Unlike shifting genotypes in Taiwan, genotype C4 persisted with progressive drift through time. A majority of non-synonymous mutations occurred in residues located in the non-structural coding region, showing annual increases. Interestingly, genotype B1/B2 in the Netherlands showed another stepwise evolution with dramatic EV71 activity increase in 1986. Phylogeny of the VP1 coding region in 1971–1986 exhibited similar lineage turnover with genotype C4 in China; however, phylogeny of the 3D-encoding region indicated separate lineage appearing after 1983, suggesting that the 3D-encoding region of genotype B2 was derived from an unidentified ancestor that contributed to intra-genotypic evolution in the Netherlands.

Conclusions

Unlike VP1 coding sequences long used for phylogenetic study of enteroviruses due to expected host immune escape, our study emphasizes a dominant role of non-synonymous mutations in non-structural protein regions that contribute to (re-)emergent genotypes in continuous stepwise evolution. Dozens of amino acid substitutions, especially in non-structural proteins, were identified via genetic changes driven through intra-genotypic evolution worldwide. These identified substitutions appeared to increase viral fitness in the population, affording valuable insights not only for viral evolution but also for prevention, control, and vaccine against EV71 infection.  相似文献   

18.
Organelles, such as mitochondria and chloroplasts, are derived from endosymbionts. Gene transfer events from organelles to the nucleus have occurred over evolutionary time. In the case that a transferred gene in the nucleus needs to go back to the original organelle, it must obtain targeting information for sorting its protein to that organelle. Here, we reveal that the genes for the ribosomal proteins L2 and S4 in the Arabidopsis thaliana mitochondrial (mt) genome contain information for protein targeting into the mitochondria. Similarly, the genes for the ribosomal proteins L2 and S19 in the Oryza sativa mt genome contain information for protein targeting into mitochondria. These results suggest that targeting information already existed in each gene in the plant mt genome before the transfer event to the nucleus occurred. We provide new insights into the timing of the appearance of targeting signals in evolution.  相似文献   

19.
The Middle Stone Age (MSA) layers at Blombos Cave contain abundant bifacial Still Bay points, formal and ad hoc bone artefacts, and an intentionally incised bone piece. These artefacts add weight to arguments that some aspects of modern human behavior developed earlier in sub-Saharan Africa than elsewhere. Four human teeth were recovered from the MSA strata at Blombos during the 1997-1998 excavations. Two are heavily worn deciduous teeth, and two are incomplete permanent premolar crowns. The Blombos di(1)is comparatively large in relation to modern African homologues, falling within the lower part of the observed Neandertal range. The dm(1)and P(3)are comparable to modern teeth and smaller than most Neandertal crowns. The premolars preserve horizontal circum-cervical striae that suggest palliative toothpick use. The di(1)evinces labial scratches that resemble neither the "cutmarks" that have been observed on Neandertal incisors, nor the striae that have been recorded on modern human teeth.  相似文献   

20.
Many highly specialised parasites have adapted to their environments by simplifying different aspects of their morphology or biochemistry. One interesting case is the mitochondrion, which has been subject to strong reductive evolution in parallel in several different parasitic groups. In extreme cases, mitochondria have degenerated so much in physical size and functional complexity that they were not immediately recognised as mitochondria, and are now referred to as 'cryptic'. Cryptic mitochondrion-derived organelles can be classified as either hydrogenosomes or mitosomes. In nearly all cases they lack a genome and all organellar proteins are nucleus-encoded and expressed in the cytosol. The same is true for the majority of proteins in canonical mitochondria, where the proteins are directed to the organelle by specific targeting sequences (transit peptides) that are recognised by translocases in the mitochondrial membrane. In this review, we compare targeting sequences of different parasitic systems with highly reduced mitochondria and give an overview of how the import machinery has been modified in hydrogenosomes and mitosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号