首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
The Ixodes scapularis salivary protein Salp15 inhibits the activation of T cells through its interaction with the coreceptor CD4. Salp15 prevents the activation of Lck upon TCR engagement and the formation of lipid rafts. We have now analyzed the signaling pathways that are inhibited by the tick salivary protein in CD4(+) T cells. Salp15 affects tyrosine phosphorylation of several early signal components downstream of Lck, including LAT and Vav1, which results in improper actin polymerization. The effect of Salp15 is due to its interaction with CD4, as no effect was observed in CD4-negative T cells. Finally, we demonstrate that the peptide that mediates the interaction of Salp15 with CD4, P11, is able to recapitulate the immunosuppressive activity of the whole protein. These results clarify the molecular mechanisms of action of Salp15 on T cells and suggest that binding to CD4 is sufficient to elicit its immunosuppressive effect.  相似文献   

2.
Th17 cells, which produce IL-17 and IL-22, promote autoimmunity in mice and have been implicated in the pathogenesis of autoimmune/inflammatory diseases in humans. However, the Th17 immune response in the aging process is still not clear. In the present study, we found that the induction of IL-17-produing CD4+ T cells was significantly increased in aged individuals compared with young healthy ones. The mRNA expression of IL-17, IL-17F, IL-22, and RORC2 was also significantly increased in aged people. Similar to humans, Th17 cells as well as mRNAs encoding IL-17, IL-22 and RORγt were dramatically elevated in naïve T cells from aged mouse compared to young ones. In addition, CD44 positive IL-17-producing CD4+ T cells were significantly higher in aged mice, suggesting that memory T cells are an important source of IL-17 production. Furthermore, the percentage of IL-17-produing CD4+ T cells generated in co-culture with dendritic cells from either aged or young mice did not show significant differences, suggesting that dendritic cells do not play a primary role in the elevation of Th17 cytokines in aged mouse cells. Importantly, transfer of CD4+CD45Rbhi cells from aged mice induced more severe colitis in RAG−/− mice compared to cells from young mice, Taken together, these results suggest that Th17 immune responses are elevated in aging humans and mice and may contribute to the increased development of inflammatory disorders in the elderly.  相似文献   

3.
Interleukin 17 (IL-17), produced mainly by T helper 17 (Th17) cells, is increasingly recognized as a key regulator in various autoimmune diseases, including human multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Although several microRNAs (miRNAs) with aberrant expression have been shown to contribute to the pathogenesis of MS and EAE, the mechanisms underlying the regulation of abnormal miRNA expression in astrocytes upon IL-17 stimulation remain unclear. In the present study, we detected the changes of miRNA expression profiles both in the brain tissue of EAE mice and in cultured mouse primary astrocytes stimulated with IL-17 and identified miR-873 as one of the co-up-regulated miRNAs in vivo and in vitro. The overexpression of miR-873, demonstrated by targeting A20 (TNFα-induced protein 3, TNFAIP3), remarkably reduced the A20 level and promoted NF-κB activation in vivo and in vitro as well as increasing the production of inflammatory cytokines and chemokines (i.e. IL-6, TNF-α, MIP-2, and MCP-1/5). More importantly, silencing the endogenous miR-873 or A20 gene with lentiviral vector of miR-873 sponge (LV-miR-873 sponge) or short hairpin RNA (shRNA) of A20 (LV-A20 shRNA) in vivo significantly lessened or aggravated inflammation and demyelination in the central nervous system (CNS) of EAE mice, respectively. Taken together, these findings indicate that miR-873 induced by IL-17 stimulation promotes the production of inflammatory cytokines and aggravates the pathological process of EAE mice through the A20/NF-κB pathway, which provides a new insight into the mechanism of inflammatory damage in MS.  相似文献   

4.
Th17细胞分化、调节及效应研究进展   总被引:1,自引:0,他引:1  
Th17细胞作为一个不同于Th1、Th2的细胞亚群,已经被证实在自身免疫病、感染等疾病中发挥重要的作用.为了进一步认识Th17细胞的效应机制,近来对于Th17细胞的分化及调节进行了深入的研究,证实TGF-β与IL-6或者IL-21的协同作用是诱导Th17细胞分化的关键因素,而IL-23在促进IL-17分泌,增强Th17细胞效应功能方面发挥重要作用.与Th1、Th2、Treg细胞特异性的转录调节因子T-bet、GATA3、Foxp3相对应,现证实ROR-γt(retinoid-related orphanreceptors-γr)是促进Th17细胞分化、调节其功能的特异性转录调节因子.Th17细胞通过分泌IL-17A、IL-17F、IL-21、IL-22、IL-6、TNF-α等细胞因子发挥效应功能.其中IL-21作为Th17细胞的一个自分泌调节凶子,在诱导Th17分化、抑制Th1、Treg功能方面发挥关键作用.而另一方面,近来发现,重要的T细胞生长因子IL-2在维持、促进Th1、Th2、Treg及CD8 T细胞功能活性的同时,却发挥着抑制Th17细胞分化的作用.Th1、Treg、Th17细胞的分化之间存在微妙的调节关系,TGF-β的水平、作用的时间决定着上述三群T细胞的分化结局.Th17细胞与Th1细胞均是自身免疫病及感染性疾病的重要效应细胞,二者的作用是否有时间、空间、功能方面的特异性?TGF-β如何调节两群效应细胞的分化方向及功能?以及Th17细胞在体内免疫平衡中的作用,是否可以通过Th17细胞诱导免疫耐受等,是人们急于回答的非常有意义的课题.  相似文献   

5.
6.
《Cell》2021,184(26):6281-6298.e23
  1. Download : Download high-res image (193KB)
  2. Download : Download full-size image
  相似文献   

7.
8.
9.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号