首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
INE: a rice genome database with an integrated map view   总被引:7,自引:1,他引:6  
The Rice Genome Research Program (RGP) launched a large-scale rice genome sequencing in 1998 aimed at decoding all genetic information in rice. A new genome database called INE (INtegrated rice genome Explorer) has been developed in order to integrate all the genomic information that has been accumulated so far and to correlate these data with the genome sequence. A web interface based on Java applet provides a rapid viewing capability in the database. The first operational version of the database has been completed which includes a genetic map, a physical map using YAC (Yeast Artificial Chromosome) clones and PAC (P1-derived Artificial Chromosome) contigs. These maps are displayed graphically so that the positional relationships among the mapped markers on each chromosome can be easily resolved. INE incorporates the sequences and annotations of the PAC contig. A site on low quality information ensures that all submitted sequence data comply with the standard for accuracy. As a repository of rice genome sequence, INE will also serve as a common database of all sequence data obtained by collaborating members of the International Rice Genome Sequencing Project (IRGSP). The database can be accessed at http://www. dna.affrc.go.jp:82/giot/INE.html or its mirror site at http://www.staff.or.jp/giot/INE.html  相似文献   

2.
GEPIS--quantitative gene expression profiling in normal and cancer tissues   总被引:1,自引:0,他引:1  
MOTIVATION: Expression profiling in diverse tissues is fundamental to understanding gene function as well as therapeutic target identification. The vast collection of expressed sequence tags (ESTs) and the associated tissue source information provides an attractive opportunity for studying gene expression. RESULTS: To facilitate EST-based expression analysis, we developed GEPIS (gene expression profiling in silico), a tool that integrates EST and tissue source information to compute gene expression patterns in a large panel of normal and tumor samples. We found EST-based expression patterns to be consistent with published papers as well as our own experimental results. We also built a GEPIS Regional Atlas that depicts expression characteristics of all genes in a selected genomic region. This program can be adapted for large-scale screening for genes with desirable expression patterns, as illustrated by our large-scale mining for tissue- and tumor-specific genes. AVAILABILITY: The email server version of the GEPIS application is freely available at http://share.gene.com/share/gepis. An interactive version of GEPIS will soon be freely available at http://www.cgl.ucsf.edu/Research/genentech/gepis/. The source code, modules, data and gene lists can be downloaded at http://share.gene.com/share/gepis.  相似文献   

3.
IslandPath: aiding detection of genomic islands in prokaryotes   总被引:11,自引:0,他引:11  
Genomic islands (clusters of genes of potential horizontal origin in a prokaryotic genome) are frequently associated with a particular adaptation of a microbe that is of medical, agricultural or environmental importance, such as antibiotic resistance, pathogen virulence, or metal resistance. While many sequence features associated with such islands have been adopted separately in applications for analysis of genomic islands, including pathogenicity islands, there is no single application that integrates multiple features for island detection. IslandPath is a network service which incorporates multiple DNA signals and genome annotation features into a graphical display of a bacterial or archaeal genome, to aid the detection of genomic islands. AVAILABILITY: This application is available at http://www.pathogenomics.sfu.ca/islandpath and the source code is freely available, under GNU public licence, from the authors. SUPPLEMENTARY INFORMATION: An online help file, which includes analyses of the utility of IslandPath, can be found at http://www.pathogenomics.sfu.ca/islandpath/current/islandhelp.html  相似文献   

4.
Genomic data visualization on the Web   总被引:2,自引:0,他引:2  
Many types of genomic data can be represented in matrix format, with rows corresponding to genes and columns corresponding to gene features. The heat map is a popular technique for visualizing such data, plotting the data on a two-dimensional grid and using a color scale to represent the magnitude of each matrix entry. Prism is a Web-based software tool for generating annotated heat map visualizations of genome-wide data quickly. The tool provides a selection of genome-specific annotation catalogs as well as a catalog upload capability. The heat maps generated are clickable, allowing the user to drill down to examine specific matrix entries, and gene annotations are linked to relevant genomic databases. AVAILABILITY: http://noble.gs.washington.edu/prism  相似文献   

5.
A total of 10 882 porcine microsatellite repeats were identified in genomic shotgun sequences from the Sino-Danish Pig Genome Sequencing Consortium (http://www.piggenome.dk). Of these, 4528 microsatellites were placed on a pig-human comparative map by blast analysis of porcine sequences against the human genome (blast cut-off threshold =1 x 10(-5)). All microsatellite sequences placed on the comparative map are accessible at http://www.animalgenome.org/QTLdb/pig.html. These sequences increase the number of identified microsatellites in the porcine genome by several orders of magnitude. They are a new resource of microsatellite sequences for generating markers to be used in linkage studies and in fine mapping and positional cloning of quantitative trait loci.  相似文献   

6.
Non-circular plots of whole genomes are natural representations of genomic data aligned along all chromosomes.Currently,there is no specialized graphical user interface(GUI) designed to produce non-circular whole genome diagrams,and the use of existing tools requires considerable coding effort from users.Moreover,such tools also require improvement,including the addition of new functionalities.To address these issues,we developed a new R/Shiny application,named shiny Chromosome,as a GUI for the interactive creation of non-circular whole genome diagrams.shiny Chromosome can be easily installed on personal computers for own use as well as on local or public servers for community use.Publication-quality images can be readily generated and annotated from user input using diverse widgets.shiny Chromosome is deployed at http://150.109.59.144:3838/shiny Chromosome/,http://shiny Chromosome.ncpgr.cn,and https://yimingyu.shinyapps.io/shiny Chromosome for online use.The source code and manual of shiny Chromosome are freely available at https://github.com/venyao/shiny Chromosome.  相似文献   

7.
MOTIVATION: Accurate gene structure annotation is a challenging computational problem in genomics. The best results are achieved with spliced alignment of full-length cDNAs or multiple expressed sequence tags (ESTs) with sufficient overlap to cover the entire gene. For most species, cDNA and EST collections are far from comprehensive. We sought to overcome this bottleneck by exploring the possibility of using combined EST resources from fairly diverged species that still share a common gene space. Previous spliced alignment tools were found inadequate for this task because they rely on very high sequence similarity between the ESTs and the genomic DNA. RESULTS: We have developed a computer program, GeneSeqer, which is capable of aligning thousands of ESTs with a long genomic sequence in a reasonable amount of time. The algorithm is uniquely designed to tolerate a high percentage of mismatches and insertions or deletions in the EST relative to the genomic template. This feature allows use of non-cognate ESTs for gene structure prediction, including ESTs derived from duplicated genes and homologous genes from related species. The increased gene prediction sensitivity results in part from novel splice site prediction models that are also available as a stand-alone splice site prediction tool. We assessed GeneSeqer performance relative to a standard Arabidopsis thaliana gene set and demonstrate its utility for plant genome annotation. In particular, we propose that this method provides a timely tool for the annotation of the rice genome, using abundant ESTs from other cereals and plants. AVAILABILITY: The source code is available for download at http://bioinformatics.iastate.edu/bioinformatics2go/gs/download.html. Web servers for Arabidopsis and other plant species are accessible at http://www.plantgdb.org/cgi-bin/AtGeneSeqer.cgi and http://www.plantgdb.org/cgi-bin/GeneSeqer.cgi, respectively. For non-plant species, use http://bioinformatics.iastate.edu/cgi-bin/gs.cgi. The splice site prediction tool (SplicePredictor) is distributed with the GeneSeqer code. A SplicePredictor web server is available at http://bioinformatics.iastate.edu/cgi-bin/sp.cgi  相似文献   

8.
MOTIVATION: Microsatellites, also known as simple sequence repeats, are the tandem repeats of nucleotide motifs of the size 1-6 bp found in every genome known so far. Their importance in genomes is well known. Microsatellites are associated with various disease genes, have been used as molecular markers in linkage analysis and DNA fingerprinting studies, and also seem to play an important role in the genome evolution. Therefore, it is of importance to study distribution, enrichment and polymorphism of microsatellites in the genomes of interest. For this, the prerequisite is the availability of a computational tool for extraction of microsatellites (perfect as well as imperfect) and their related information from whole genome sequences. Examination of available tools revealed certain lacunae in them and prompted us to develop a new tool. RESULTS: In order to efficiently screen genome sequences for microsatellites (perfect as well as imperfect), we developed a new tool called IMEx (Imperfect Microsatellite Extractor). IMEx uses simple string-matching algorithm with sliding window approach to screen DNA sequences for microsatellites and reports the motif, copy number, genomic location, nearby genes, mutational events and many other features useful for in-depth studies. IMEx is more sensitive, efficient and useful than the available widely used tools. IMEx is available in the form of a stand-alone program as well as in the form of a web-server. AVAILABILITY: A World Wide Web server and the stand-alone program are available for free access at http://203.197.254.154/IMEX/ or http://www.cdfd.org.in/imex.  相似文献   

9.
The Histone Database (HDB) is an annotated and searchable collection of all full-length sequences and structures of histone and non-histone proteins containing the histone fold motif. These sequences are both eukaryotic and archaeal in origin. Several new histone fold-containing proteins have been identified, including Spt7p, and a few false positives have been removed from the earlier version of HDB. Database contents include compilations of post-translational modifications for each of the core and linker histones, as well as genomic information in the form of map loci for the human histone gene complement, with the genetic loci linked to Online Mendelian Inheritance in Man (OMIM). Conflicts between similar sequence entries from a number of source databases are also documented. Newly added to the HDB are multiple sequence alignments in which predicted functions of histone fold amino acid residues are annotated. The database is freely accessible through the WWW at http://genome.nhgri.nih.gov/histones/  相似文献   

10.
11.
The large number of genomes that will be sequenced will need to be annotated with genes and other functional features. Aligning gene sequences from a related species to the target genome is an economical and highly reliable method to identify genes; unfortunately, existing tools have been lacking in sensitivity and speed. A program we reported, sim4cc, was shown to be highly accurate but is limited to comparing one cDNA with one genomic sequence. We present here an optimization of the tool, implemented in the packages sim4db and leaff. The new tool performs batch alignments of cDNA and genomic sequences in a fraction of the time required by its predecessor, and thus is very well suited for genome-wide analyses. AVAILABILITY: Sim4db and leaff are written in C, C++ and Perl for Linux and other Unix platforms. Source code is distributed free of charge from http://sourceforge.net/projects/kmer/. CONTACT: florea@umiacs.umd.edu  相似文献   

12.
SUMMARY: Contact maps are a valuable visualization tool in structural biology. They are a convenient way to display proteins in two dimensions and to quickly identify structural features such as domain architecture, secondary structure and contact clusters. We developed a tool called CMView which integrates rich contact map analysis with 3D visualization using PyMol. Our tool provides functions for contact map calculation from structure, basic editing, visualization in contact map and 3D space and structural comparison with different built-in alignment methods. A unique feature is the interactive refinement of structural alignments based on user selected substructures. AVAILABILITY: CMView is freely available for Linux, Windows and MacOS. The software and a comprehensive manual can be downloaded from http://www.bioinformatics.org/cmview/. The source code is licensed under the GNU General Public License.  相似文献   

13.
14.
15.
The Histone Sequence Database is an annotated and searchable collection of all available histone and histone fold sequences and structures. Particular emphasis has been placed on documenting conflicts between similar sequence entries from a number of source databases, conflicts that are not necessarily documented in the source databases themselves. New additions to the database include compilations of post-translational modifications for each of the core and linker histones, as well as genomic information in the form of map loci for the human histone gene complement, with the genetic loci linked to Online Mendelian Inheritance in Man (OMIM). The database is freely accessible through the World Wide Web at either http://genome.nhgri.nih.gov/histones/ or http://www.ncbi.nlm.nih. gov/Baxevani/HISTONES  相似文献   

16.
We present an interactive web application for visualizing genomic data of prokaryotic chromosomes. The tool (GeneWiz browser) allows users to carry out various analyses such as mapping alignments of homologous genes to other genomes, mapping of short sequencing reads to a reference chromosome, and calculating DNA properties such as curvature or stacking energy along the chromosome. The GeneWiz browser produces an interactive graphic that enables zooming from a global scale down to single nucleotides, without changing the size of the plot. Its ability to disproportionally zoom provides optimal readability and increased functionality compared to other browsers. The tool allows the user to select the display of various genomic features, color setting and data ranges. Custom numerical data can be added to the plot allowing, for example, visualization of gene expression and regulation data. Further, standard atlases are pre-generated for all prokaryotic genomes available in GenBank, providing a fast overview of all available genomes, including recently deposited genome sequences. The tool is available online from http://www.cbs.dtu.dk/services/gwBrowser. Supplemental material including interactive atlases is available online at http://www.cbs.dtu.dk/services/gwBrowser/suppl/.  相似文献   

17.
Lee W  Chen SL 《BioTechniques》2002,33(6):1334-1341
Genome-tools is a Perl module, a set of programs, and a user interface that facilitates access to genome sequence information. The package is flexible, extensible, and designed to be accessible and useful to both nonprogrammers and programmers. Any relatively well-annotated genome available with standard GenBank genome files may be used with genome-tools. A simple Web-based front end permits searching any available genome with an intuitive interface. Flexible design choices also make it simple to handle revised versions of genome annotation files as they change. In addition, programmers can develop cross-genomic tools and analyses with minimal additional overhead by combining genome-tools modules with newly written modules. Genome-tools runs on any computer platform for which Perl is available, including Unix, Microsoft Windows, and Mac OS. By simplifying the access to large amounts of genomic data, genome-tools may be especially useful for molecular biologists looking at newly sequenced genomes, for which few informatics tools are available. The genome-tools Web interface is accessible at http://genome-tools.sourceforge.net, and the source code is available at http://sourceforge.net/projects/genome-tools.  相似文献   

18.
19.

Background

Cross-species comparisons of gene neighborhoods (also called genomic contexts) in microbes may provide insight into determining functionally related or co-regulated sets of genes, suggest annotations of previously un-annotated genes, and help to identify horizontal gene transfer events across microbial species. Existing tools to investigate genomic contexts, however, lack features for dynamically comparing and exploring genomic regions from multiple species. As DNA sequencing technologies improve and the number of whole sequenced microbial genomes increases, a user-friendly genome context comparison platform designed for use by a broad range of users promises to satisfy a growing need in the biological community.

Results

Here we present JContextExplorer: a tool that organizes genomic contexts into branching diagrams. We implement several alternative context-comparison and tree rendering algorithms, and allow for easy transitioning between different clustering algorithms. To facilitate genomic context analysis, our tool implements GUI features, such as text search filtering, point-and-click interrogation of individual contexts, and genomic visualization via a multi-genome browser. We demonstrate a use case of our tool by attempting to resolve annotation ambiguities between two highly homologous yet functionally distinct genes in a set of 22 alpha and gamma proteobacteria.

Conclusions

JContextExplorer should enable a broad range of users to analyze and explore genomic contexts. The program has been tested on Windows, Mac, and Linux operating systems, and is implemented both as an executable JAR file and java WebStart. Program executables, source code, and documentation is available at http://www.bme.ucdavis.edu/facciotti/resources_data/software/.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号