首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The trimeric Vps29-Vps35-Vps26 sub-complex of retromer mediates retrograde transport of transmembrane proteins from endosomes to the trans-Golgi network. Our group has recently identified a Vps26 paralogue, Vps26B, which is able to suppress the expression of Vps26A when exogenously expressed in mammalian cells and defines a distinct retromer complex (Vps26B-retromer) in vivo and in vitro. In this study, we use HEK293 cells stably expressing either Vps26A-myc or Vps26B-myc to address the role of retromer cargo transport and subcellular localization of the two core retromer complexes as defined by the two mammalian-specific Vps26 paralogues. Vps26B-retromer, like Vps26A-retromer, associates with TBC1D5 and GOLPH3. In contrast, no interaction between Vps26B-retromer and cation-independent mannose 6-phosphate receptor (CI-M6PR) was detected, leading to a degradation of this receptor and an increase in cathepsin D secretion. Colocalization of Vps26 paralogues with different endosomally located Rab proteins shows prolonged association of Vps26B-retromer with maturing endosomes relative to Vps26A-retromer. Interestingly, the cycling of CI-M6PR is restored upon deletion of the variable Vps26B C-terminal region indicating that this region is directly responsible for the differential function of the two paralogues. In summary, we show that the two distinct retromer complexes defined by different Vps26 paralogues are not functionally equivalent and that the Vps26B C-terminal region can control cargo selection of the Vps26B-retromer.  相似文献   

2.
The retromer is a cytosolic/peripheral membrane protein complex that mediates the retrieval of the cation-independent mannose 6-phosphate receptor from endosomes to the trans-Golgi network (TGN) in mammalian cells. Previous studies showed that the mammalian retromer comprises three proteins, named Vps26, Vps29, and Vps35, plus the sorting nexin, SNX1. There is conflicting evidence, however, as to whether a homologous sorting nexin, SNX2, is truly a component of the retromer. In addition, the nature of the subunit interactions and assembly of the mammalian retromer complex are poorly understood. We have addressed these issues by performing biochemical and functional analyses of endogenous retromers in the human cell line HeLa. We found that the mammalian retromer complex consists of two autonomously assembling subcomplexes, namely, a Vps26-Vps29-Vps35 obligate heterotrimer and a SNX1/2 alternative heterodimer or homodimer. The association of Vps26-Vps29-Vps35 with endosomes requires the presence of either SNX1 or SNX2, whereas SNX1/2 can be recruited to endosomes independently of Vps26-Vps29-Vps35. We also found that the presence of either SNX1 or SNX2 is essential for the retrieval of the cation-independent mannose 6-phosphate receptor to the TGN. These observations indicate that the mammalian retromer complex assembles by sequential association of SNX1/2 and Vps26-Vps29-Vps35 subcomplexes on endosomal membranes and that SNX1 and SNX2 play interchangeable but essential roles in retromer structure and function.  相似文献   

3.
Retromer is a heteromeric protein complex with important roles in endosomal membrane trafficking, most notably in the retrograde transport of lysosomal hydrolase receptors from endosomes to the Golgi. The core of retromer is composed of three subunits vacuolar protein sorting (Vps)35, Vps26 and Vps29, and in mammals, there are two paralogues of the medium subunit Vps26A and Vps26B. We find that both Vps26A and Vps26B bind to Vps35/Vps29 with nanomolar affinity and compete for a single-binding site to define distinct retromer complexes in vitro and in vivo. We have determined the crystal structure of mouse Vps26B and compare this structure with that of Vps26A. Vps26 proteins have a striking similarity to the arrestin family of proteins that regulate the signalling and endocytosis of G-protein-coupled receptors, although we observe that surface residues involved in arrestin function are not conserved in Vps26. Using structure-based mutagenesis, we show that both Vps26A and Vps26B are incorporated into retromer complexes through binding of Vps35 to a highly conserved surface patch within the C-terminal subdomain and that this interaction is required for endosomal recruitment of the proteins.  相似文献   

4.
Retromer is a multimeric protein complex that mediates intracellular receptor sorting. One of the roles of retromer is to promote transcytosis of the polymeric immunoglobulin receptor (pIgR) and its ligand polymeric immunoglobulin A (pIgA) in polarized epithelial cells. In Madin-Darby Canine Kidney (MDCK) cells, overexpression of Vps35, the retromer subunit key for cargo recognition, restores transcytosis to a pIgR mutant that is normally degraded. Here we show that pIgA transcytosis was not restored in these cells when treated with the specific phosphoinositide 3-kinase (PI3K) inhibitor LY294002. Likewise, the decrease in pIgA transcytosis by wild-type pIgR seen upon PI3K inhibition was not reverted by Vps35 overexpression. PI3K inhibition reduced membrane association of sorting-nexins (SNX) 1 and 2, which constitute the retromer subcomplex involved in membrane deformation, while association of the Vps35-Vps26-Vps29 subcomplex, involved in cargo recognition, remained virtually unaffected. Colocalization between the two retromer subcomplexes was reduced upon the treatment. Whereas the interaction among the subunits of the Vps35-Vps26-Vps29 subcomplex remained unchanged, less Vps35 was found associated with pIgR upon PI3K inhibition. In addition, colocalization of internalized pIgA with subunits of both retromer subcomplexes throughout the transcytotic pathway was substantially reduced by LY294002 treatment. These data implicate PI3K in controlling retromer's role in pIgR-pIgA transcytosis.  相似文献   

5.
Retromer, a peripheral membrane protein complex, plays an instrumental role in host of cellular processes by its ability to recycle receptors from endosomes to the trans‐Golgi network. It consists of two distinct sub‐complexes, a membrane recognizing, sorting nexins (SNX) complex and a cargo recognition, vacuolar protein sorting (Vps) complex. Small GTPase, Rab7 is known to recruit retromer on endosomal membrane via interactions with the Vps sub‐complex. The molecular mechanism underlying the recruitment process including the role of individual Vps proteins is yet to be deciphered. In this study, we developed a FRET‐based assay in HeLa cells that demonstrated the interaction of Rab7 with Vps35 and Vps26 in vivo. Furthermore, we showed that Rab7 recruits retromer to late endosomes via direct interactions with N‐terminal conserved regions in Vps35. However, the single point mutation, which disrupts the interaction between Vps35 and Vps26, perturbed the Rab7‐mediated recruitment of retromer in HeLa cells. Using biophysical measurements, we demonstrate that the association of Vps26 with Vps35 resulted in high affinity binding between the Vps sub‐complex and the activated Rab7 suggesting for a possible allosteric role of Vps26. Thus, this study provides molecular insights into the essential role of Vps26 and Vps35 in Rab7‐mediated recruitment of the core retromer complex.   相似文献   

6.
Retromer   总被引:3,自引:0,他引:3  
The retromer is a heteropentameric complex that associates with the cytosolic face of endosomes and mediates retrograde transport of transmembrane cargo from endosomes to the trans-Golgi network. The mammalian retromer complex comprises a sorting nexin dimer composed of a still undefined combination of SNX1, SNX2, SNX5 and SNX6, and a cargo-recognition trimer composed of Vps26, Vps29 and Vps35. The SNX subunits contain PX and BAR domains that allow binding to PI(3)P enriched, highly curved membranes of endosomal vesicles and tubules, while Vps26, Vps29 and Vps35 have arrestin, phosphoesterase and alpha-solenoid folds, respectively. Recent studies have implicated retromer in a broad range of physiological, developmental and pathological processes, underscoring the critical nature of retrograde transport mediated by this complex.  相似文献   

7.
The retromer is a trimeric cargo‐recognition protein complex composed of Vps26, Vps29 and Vps35 associated with protein trafficking within endosomes. Recently, a pathogenic point mutation within the Vps35 subunit (D620N) was linked to the manifestation of Parkinson's disease (PD). Here, we investigated details underlying the molecular mechanism by which the D620N mutation in Vps35 modulates retromer function, including examination of retromer's subcellular localization and its capacity to sort cargo. We show that expression of the PD‐linked Vps35 D620N mutant redistributes retromer‐positive endosomes to a perinuclear subcellular localization and that these endosomes are enlarged in both model cell lines and fibroblasts isolated from a PD patient. Vps35 D620N is correctly folded and binds Vps29 and Vps26A with the same affinity as wild‐type Vps35. While PD‐linked point mutant Vps35 D620N interacts with the cation‐independent mannose‐6‐phosphate receptor (CI‐M6PR), a known retromer cargo, we find that its expression disrupts the trafficking of cathepsin D, a CI‐M6PR ligand and protease responsible for degradation of α‐synuclein, a causative agent of PD. In summary, we find that the expression of Vps35 D620N leads to endosomal alterations and trafficking defects that may partly explain its action in PD.  相似文献   

8.
The retromer complex is a heteropentameric protein unit associated with retrograde transport of cargo proteins from endosomes to the trans-Golgi network. Functional silencing study of the Vps26a gene indicated the important role of the retromer complex during early developmental stages in the mouse. However, individual expression patterns and quantitative analysis of individual members of the retromer complex during the early developmental stages has not been investigated. In this study, we conducted quantitative expression analysis of six retromer complex genes (Vps26a, Vps26b, Vps29, Vps35, Snx1, and Snx2) and one related receptor gene (Ci-mpr) during the eleven embryonic stages with normal MEF (mouse embryonic fibroblast) and Vps26a(-/-) MEF cells. Remarkably, except for Vps26a (maternal expression pattern), all tested genes showed maternal-zygotic expression patterns. And five genes (Vps26b, Vps29, Vps35, Snx2, and Ci-mpr) showed a pattern of decreased expression in Vps26a(-/-) MEF cells by comparative analysis between normal MEF and Vps26a(-/-) MEF cells. However, the Snx1 gene showed a pattern of increased expression in Vps26a(-/-) MEF cells. From our results, we could assume that retromer complex-related genes have important roles during oocyte development. However, in the preimplantation stage, they did not have significant roles.  相似文献   

9.
The retromer complex mediates retrograde transport of transmembrane cargo from endosomes to the trans-Golgi network (TGN). Mammalian retromer is composed of a sorting nexin (SNX) dimer that binds to phosphatidylinositol 3-phosphate–enriched endosomal membranes and a vacuolar protein sorting (Vps) 26/29/35 trimer that participates in cargo recognition. The mammalian SNX dimer is necessary but not sufficient for recruitment of the Vps26/29/35 trimer to membranes. In this study, we demonstrate that the guanosine triphosphatase Rab7 contributes to this recruitment. The Vps26/29/35 trimer specifically binds to Rab7–guanosine triphosphate (GTP) and localizes to Rab7-containing endosomal domains. Interference with Rab7 function causes dissociation of the Vps26/29/35 trimer but not the SNX dimer from membranes. This blocks retrieval of mannose 6-phosphate receptors to the TGN and impairs cathepsin D sorting. Rab5-GTP does not bind to the Vps26/29/35 trimer, but perturbation of Rab5 function causes dissociation of both the SNX and Vps26/29/35 components from membranes through inhibition of a pathway involving phosphatidylinositol 3-kinase. These findings demonstrate that Rab5 and Rab7 act in concert to regulate retromer recruitment to endosomes.  相似文献   

10.
A novel mammalian retromer component, Vps26B   总被引:1,自引:0,他引:1  
The mammalian retromer protein complex, which consists of three proteins--Vps26, Vps29, and Vps35--in association with members of the sorting nexin family of proteins, has been implicated in the trafficking of receptors and their ligands within the endosomal/lysosomal system of mammalian cells. A bioinformatic analysis of the mouse genome identified an additional transcribed paralog of the Vps26 retromer protein, which we termed Vps26B. No paralogs were identified for Vps29 and Vps35. Phylogenetic studies indicate that the two paralogs of Vps26 become evident after the evolution of the chordates. We propose that the chordate Vps26-like gene published previously be renamed Vps26A to differentiate it from Vps26B. As for Vps26A, biochemical characterization of Vps26B established that this novel 336 amino acid residue protein is a peripheral membrane protein. Vps26B co-precipitated with Vps35 from transfected cells and the direct interaction between these two proteins was confirmed by yeast 2-hybrid analysis, thereby establishing Vps26B as a subunit of the retromer complex. Within HeLa cells, Vps26B was found in the cytoplasm with low levels at the plasma membrane, while Vps26A was predominantly associated with endosomal membranes. Within A549 cells, both Vps26A and Vps26B co-localized with actin-rich lamellipodia at the cell surface. These structures also co-localized with Vps35. Total internal reflection fluorescence microscopy confirmed the association of Vps26B with the plasma membrane in a stable HEK293 cell line expressing cyan fluorescent protein (CFP)-Vps26B. Based on these observations, we propose that the mammalian retromer complex is located at both endosomes and the plasma membrane in some cell types.  相似文献   

11.
Retromer and sorting nexins (SNXs) transport cargoes from endosomes to the trans-Golgi network or plasma membrane. Recent studies have unveiled the emerging roles for retromer and SNXs in the life cycle of viruses, including members of Coronaviridae, Flaviviridae and Retroviridae. Key components of retromer/SNXs, such as Vps35, Vps26, SNX5 and SNX27, can affect multiple steps of the viral life cycle, including facilitating the entry of viruses into cells, participating in viral replication, and promoting the assembly of virions. Here we present a comprehensive updated review on the interplay between retromer/SNXs and virus, which will shed mechanistic insights into controlling virus infection.  相似文献   

12.
Epithelial cells have separate apical and basolateral plasma membrane domains with distinct compositions. After delivery to one surface, proteins can be endocytosed and then recycled, degraded or transcytosed to the opposite surface. Proper sorting into the transcytotic pathway is essential for maintaining polarity, as most proteins are endocytosed many times during their lifespan. The polymeric immunoglobulin receptor (pIgR) transcytoses polymeric IgA (pIgA) from the basolateral to the apical surface of epithelial cells and hepatocytes. However, the molecular machinery that controls polarized sorting of pIgR-pIgA and other receptors is only partially understood. The retromer is a multimeric protein complex, originally described in yeast, which mediates intracellular sorting of Vps10p, a receptor that transports vacuolar enzymes. The yeast retromer contains two sub-complexes. One includes the Vps5p and Vps17p subunits, which provide mechanical force for vesicle budding. The other is the Vps35p-Vps29p-Vps26p subcomplex, which provides cargo specificity. The mammalian retromer binds to the mannose 6-phosphate receptor, which sorts lysosomal enzymes from the trans-Golgi network to the lysosomal pathway. Here, we show a function for the mammalian Vps35-Vps29-Vps26 retromer subcomplex in promoting pIgR-pIgA transcytosis.  相似文献   

13.
The retromer protein complex assists in recycling selected integral membrane proteins from endosomes to the trans Golgi network. One protein subcomplex (Vps35p, Vps26p and Vps29p) combines with a second (Vps17p and Vps5p) to form a coat involved in sorting and budding of endosomal vesicles. Yeast Vps35p (yVps35) exhibits similarity to human Vps35 (hVps35), especially in a completely conserved PRLYL motif contained within an amino-terminal domain. Companion studies indicate that an R(98)W mutation in yVps35 causes defective retromer assembly in Saccharomyces cerevisiae. Herein, we find that the expression of hVps35 in yeast confers dominant-negative vacuolar proenzyme secretion and defective secretory proprotein processing. The mutant phenotype appears to be driven by hVps35 competing with endogenous yVps35, becoming incorporated into defective retromer complexes and causing proteasomal degradation of endogenous Vps26 and Vps29. Increased expression of yVps35 displaces some hVps35 to a 100 000 x g supernatant and suppresses the dominant-negative phenotype. Remarkably, mutation of the conserved R(107)W of hVps35 displaces some of the protein to the 100 000 x g supernatant, slows protein turnover and restores stability of Vps26p and Vps29p and completely abrogates dominant-negative trafficking behavior. We show that hVps35 coprecipitates Vps26, whereas the R(107)W mutant does not. In pancreatic beta cells, the R(107)W mutant shifts hVps35 from peripheral endosomes to a juxtanuclear compartment, affecting both mannose phosphate receptors and insulin. These data underscore importance of the Vps35 PRLYL motif in retromer subcomplex interactions and function.  相似文献   

14.
The mammalian retromer complex consists of SNX1, SNX2, Vps26, Vps29 and Vps35, and retrieves lysosomal enzyme receptors from endosomes to the trans-Golgi network. The structure of human Vps26A at 2.1-A resolution reveals two curved beta-sandwich domains connected by a polar core and a flexible linker. Vps26 has an unpredicted structural relationship to arrestins. The Vps35-binding site on Vps26 maps to a mobile loop spanning residues 235-246, near the tip of the C-terminal domain. The loop is phylogenetically conserved and provides a mechanism for Vps26 integration into the complex that leaves the rest of the structure free for engagements with membranes and for conformational changes. Hydrophobic residues and a glycine in this loop are required for integration into the retromer complex and endosomal localization of human Vps26, and for the function of yeast Vps26 in carboxypeptidase Y sorting.  相似文献   

15.
16.
Sorting nexin (SNX) 1 and SNX2 are mammalian orthologs of Vps5p, a yeast protein that is a subunit of a large multimeric complex, termed the retromer complex, involved in retrograde transport of proteins from endosomes to the trans-Golgi network. We report the cloning and characterization of human orthologs of three additional components of the complex: Vps26p, Vps29p, and Vps35p. The close structural similarity between the yeast and human proteins suggests a similarity in function. We used both yeast two-hybrid assays and expression in mammalian cells to define the binding interactions among these proteins. The data suggest a model in which hVps35 serves as the core of a multimeric complex by binding directly to hVps26, hVps29, and SNX1. Deletional analyses of hVps35 demonstrate that amino acid residues 1-53 and 307-796 of hVps35 bind to the coiled coil-containing domain of SNX1. In contrast, hVps26 binds to amino acid residues 1-172 of hVps35, whereas hVps29 binds to amino acid residues 307-796 of hVps35. Furthermore, hVps35, hVps29, and hVps26 have been found in membrane-associated and cytosolic compartments. Gel filtration chromatography of COS7 cell cytosol showed that both recombinant and endogenous hVps35, hVps29, and hVps26 coelute as a large complex ( approximately 220-440 kDa). In the absence of hVps35, neither hVps26 nor hVps29 is found in the large complex. These data provide the first insights into the binding interactions among subunits of a putative mammalian retromer complex.  相似文献   

17.
The retromer complex, composed of sorting nexin subunits and a Vps26/Vps29/Vps35 trimer, mediates sorting of retrograde cargo from the endosome to the trans-Golgi network. The retromer trimer subcomplex is an effector of Rab7 (Ypt7 in yeast). Whereas endosome targeting of human retromer has been shown to require Rab7-GTP, targeting of yeast retromer to the endosome is independent of Ypt7-GTP and requires the Vps5 and Vps17 retromer sorting nexin subunits. An evolutionarily conserved amino acid segment within Vps35 is required for Ypt7/Rab7 recognition in vivo by both yeast and human retromer, establishing that Rab recognition is a conserved feature of this subunit. Recognition of Ypt7 by retromer is required for its function in retrograde sorting, and in yeast cells lacking the guanine nucleotide exchange factor for Ypt7, retrograde cargo accumulates in endosomes that are decorated with retromer, revealing an additional role for Rab recognition at the cargo export stage of the retromer functional cycle. In addition, yeast retromer trimer antagonizes Ypt7-regulated organelle tethering and fusion of endosomes/vacuoles via recognition of Ypt7. Thus retromer has dual roles in retrograde cargo export and in controlling the fusion dynamics of the late endovacuolar system.  相似文献   

18.
Trafficking of human papillomaviruses to the Golgi apparatus during virus entry requires retromer, an endosomal coat protein complex that mediates the vesicular transport of cellular transmembrane proteins from the endosome to the Golgi apparatus or the plasma membrane. Here we show that the HPV16 L2 minor capsid protein is a retromer cargo, even though L2 is not a transmembrane protein. We show that direct binding of retromer to a conserved sequence in the carboxy-terminus of L2 is required for exit of L2 from the early endosome and delivery to the trans-Golgi network during virus entry. This binding site is different from known retromer binding motifs and can be replaced by a sorting signal from a cellular retromer cargo. Thus, HPV16 is an unconventional particulate retromer cargo, and retromer binding initiates retrograde transport of viral components from the endosome to the trans-Golgi network during virus entry. We propose that the carboxy-terminal segment of L2 protein protrudes through the endosomal membrane and is accessed by retromer in the cytoplasm.  相似文献   

19.
In C. elegans and Drosophila, retromer mediated retrograde transport of Wntless (Wls) from endosomes to the trans-Golgi network (TGN) is required for Wnt secretion. When this retrograde transport pathway is blocked, Wls is missorted to lysosomes and degraded, resulting in reduced Wnt secretion and various Wnt related phenotypes. In the mammalian intestine, Wnt signaling is essential to maintain stem cells. This prompted us to ask if retromer mediated Wls recycling is also important for Wnt signaling and stem cell maintenance in this system. To answer this question, we generated a conditional Vps35 fl allele. As Vps35 is an essential subunit of the retromer complex, this genetic tool allowed us to inducibly interfere with retromer function in the intestinal epithelium. Using a pan-intestinal epithelial Cre line (Villin-CreERT2), we did not observe defects in crypt or villus morphology after deletion of Vps35 from the intestinal epithelium. Wnt secreted from the mesenchyme of the intestine may compensate for a reduction in epithelial Wnt secretion. To exclude the effect of the mesenchyme, we generated intestinal organoid cultures. Loss of Vps35 in intestinal organoids did not affect the overall morphology of the organoids. We were able to culture Vps35 ∆/∆ organoids for many passages without Wnt supplementation in the growth medium. However, Wls protein levels were reduced and we observed a subtle growth defect in the Vps35 ∆/∆ organoids. These results confirm the role of retromer in the retrograde trafficking of Wls in the intestine, but show that retromer mediated Wls recycling is not essential to maintain Wnt signaling or stem cell proliferation in the intestinal epithelium.  相似文献   

20.
The retromer complex is involved in the retrograde transport of the CI-M6PR (cation-independent mannose 6-phosphate receptor) from endosomes to the Golgi. It is a hetero-trimeric complex composed of Vps26 (vacuolar sorting protein 26), Vps29 and Vps35 proteins, which are conserved in eukaryote evolution. Recently, elucidation of the crystal structure of Vps29 revealed that Vps29 contains a metallo-phosphoesterase fold [Wang, Guo, Liang, Fan, Zhu, Zang, Zhu, Li, Teng, Niu et al. (2005) J. Biol. Chem. 280, 22962-22967; Collins, Skinner, Watson, Seaman and Owen (2005) Nat. Struct. Mol. Biol. 12, 594-602]. We demonstrate that recombinant hVps29 (human Vps29) displays in vitro phosphatase activity towards a serine-phosphorylated peptide, containing the acidic-cluster dileucine motif of the cytoplasmatic tail of the CI-M6PR. Efficient dephosphorylation required the additional presence of recombinant hVps26 and hVps35 proteins, which interact with hVps29. Phosphatase activity of hVps29 was greatly decreased by alanine substitutions of active-site residues that are predicted to co-ordinate metal ions. Using inductively coupled plasma MS, we demonstrate that recombinant hVps29 binds zinc. Moreover, hVps29-dependent phosphatase activity is greatly reduced by non-specific and zinc-specific metal ion chelators, which can be completely restored by addition of excess ZnCl2. The binuclear Zn2+ centre and phosphate group were modelled into the hVps29 catalytic site and pKa calculations provided further insight into the molecular mechanisms of Vps29 phosphatase activity. We conclude that the retromer complex displays Vps29-dependent in vitro phosphatase activity towards a serinephosphorylated acidic-cluster dileucine motif that is involved in endosomal trafficking of the CI-M6PR. The potential significance of these findings with respect to regulation of transport of cycling trans-Golgi network proteins is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号