共查询到20条相似文献,搜索用时 0 毫秒
1.
Miki H Inoue K Kohda T Honda A Ogonuki N Yuzuriha M Mise N Matsui Y Baba T Abe K Ishino F Ogura A 《Genesis (New York, N.Y. : 2000)》2005,41(2):81-86
That mammals can be cloned by nuclear transfer indicates that it is possible to reprogram the somatic cell genome to support full development. However, the developmental plasticity of germ cells is difficult to assess because genomic imprinting, which is essential for normal fetal development, is being reset at this stage. The anomalous influence of imprinting is corroborated by the poor development of mouse clones produced from primordial germ cells (PGCs) during imprinting erasure at embryonic day 11.5 or later. However, this can also be interpreted to mean that, unlike somatic cells, the genome of differentiated germ cells cannot be fully reprogrammed. We used younger PGCs (day 10.5) and eventually obtained four full-term fetuses. DNA methylation analyses showed that only embryos exhibiting normal imprinting developed to term. Thus, germ cell differentiation is not an insurmountable barrier to cloning, and imprinting status is more important than the origin of the nucleus donor cell per se as a determinant of developmental plasticity following nuclear transfer. 相似文献
2.
We used nuclear transfer (NT) to develop transgenic female pigs harboring goat beta-casein promoter/human granulocyte-macrophage colony stimulating factor (hGM-CSF). The expression of hGM-CSF was specific to the mammary gland, and the glycosylation-derived size heterogeneity corresponded to that of the native human protein. Although various cell types have been used to generate cloned animals, little is currently known about the potential use of fibroblasts derived from a cloned fetus as donor cells for nuclear transfer. The developmental potential of porcine cloned fetal fibroblasts transfected with hGM-CSF was evaluated in the present study. Cloned fetal fibroblasts were isolated from a recipient following the transplantation of NT embryos. The cells were transfected with both hGM-CSF and the neomycin resistance gene in order to be used as donor cells for NT. Reconstructed embryos were implanted into six sows during estrus; two of the recipient sows delivered seven healthy female piglets with the hGM-CSF gene (confirmed with PCR and fluorescent in situ hybridization) and microsatellite analysis confirmed that the clones were genetically identical to the donor cells. The expression of hGM-CSF was strong in the mammary glands of a transgenic pig that died a few days prior to parturition (110 d after AI). These results demonstrated that somatic cells derived from a cloned fetus can be used to produce recloned and transgenic pigs. 相似文献
3.
Rabbit embryonic stem cell lines derived from fertilized, parthenogenetic or somatic cell nuclear transfer embryos 总被引:8,自引:0,他引:8
Fang ZF Gai H Huang YZ Li SG Chen XJ Shi JJ Wu L Liu A Xu P Sheng HZ 《Experimental cell research》2006,312(18):3669-3682
Embryonic stem cells were isolated from rabbit blastocysts derived from fertilization (conventional rbES cells), parthenogenesis (pES cells) and nuclear transfer (ntES cells), and propagated in a serum-free culture system. Rabbit ES (rbES) cells proliferated for a prolonged time in an undifferentiated state and maintained a normal karyotype. These cells grew in a monolayer with a high nuclear/cytoplasm ratio and contained a high level of alkaline phosphate activity. In addition, rbES cells expressed the pluripotent marker Oct-4, as well as EBAF2, FGF4, TDGF1, but not antigens recognized by antibodies against SSEA-1, SSEA-3, SSEA-4, TRA-1-10 and TRA-1-81. All 3 types of ES cells formed embryoid bodies and generated teratoma that contained tissue types of all three germ layers. rbES cells exhibited a high cloning efficiency, were genetically modified readily and were used as nuclear donors to generate a viable rabbit through somatic cell nuclear transfer. In combination with genetic engineering, the ES cell technology should facilitate the creation of new rabbit lines. 相似文献
4.
Efficient production of omega-3 fatty acid desaturase (sFat-1)-transgenic pigs by somatic cell nuclear transfer 总被引:3,自引:0,他引:3
DengKe Pan Li Zhang YanRong Zhou Chong Feng Chuan Long Xiao Liu Rong Wan Jian Zhang AiXing Lin EnQiu Dong ShuChen Wang HouGang Xu HongXing Chen 《中国科学:生命科学英文版》2010,53(4):517-523
Omega-3(ω-3) fatty acid desaturase transgenic pigs may improve carcass fatty acid composition. The use of transgenic pigs is also an excellent large animal model for studying the role of ω-3 fatty acids in the prevention and treatment of coronary heart disease and cancer. Transgenic pigs carrying synthesized fatty acid desaturase-1 gene (sFat-1) from Caenorhabditis briggsae by somatic cell nuclear transfer (SCNT) were produced for the first time in China. Porcine fetal fibroblast cells were transfected with a sFat-1 expression cassette by the liposome-mediated method. Transgenic embryos were reconstructed by nuclear transfer of positive cells into enucleated in vitro matured oocytes. A total of 1889 reconstructed embryos were transferred into 10 naturally cycling gilts. Nine early pregnancies were established, 7 of which went to term. Twenty-one piglets were born. The cloning efficiency was 1.1% (born piglets/transferred embryos). The integration of the sFat-1 gene was confirmed in 15 live cloned piglets by PCR and Southern blot except for 2 piglets. Expression of the sFat-1 gene in 12 of 13 piglets was detected with RT-PCR. The data demonstrates that an efficient system for sFat-1 transgenic cloned pigs was developed, which led to the successful production of piglets expressing the sFat-1 gene. 相似文献
5.
Yoshiki Shimatsu Wataru Horii Tetsuo Nunoya Akira Iwata Jianglin Fan Masayuki Ozawa 《Experimental Animals》2016,65(1):37-43
Most cases of ischemic heart disease and stroke occur as a result of atherosclerosis. Thepurpose of this study was to produce a new Nippon Institute for Biological Science (NIBS)miniature pig model by somatic cell nuclear transfer (SCNT) for studying atherosclerosis.The human apolipoprotein(a) (apo(a)) genes were transfected into kidney epithelial cellsderived from a male and a female piglet. Male cells were used as donors initially, and 275embryos were transferred to surrogates. Three offspring were delivered, and the productionefficiency was 1.1% (3/275). Serial female cells were injected into 937 enucleatedoocytes. Eight offspring were delivered (production efficiency: 0.9%) from surrogates. Onemale and 2 female transgenic miniature pigs matured well. Lipoprotein(a) was found in themale and one of the female transgenic animals. These results demonstrate successfulproduction of human apo(a) transgenic NIBS miniature pigs by SCNT. Our goal is toestablish a human apo(a) transgenic NIBS miniature pig colony for studyingatherosclerosis. 相似文献
6.
目的:探讨利用IVF废弃胚胎构建人体细胞克隆胚胎的发育潜能及其在人治疗性克隆应用的可能性。方法:收集2008年7-12月在广州医学院第三附属医院进行体外受精-胚胎移植周期中的多精受精胚胎和MII期体外受精失败卵母细胞,运用显微操作技术构建人体细胞克隆胚胎,观察胚胎发育情况。结果:多精受精胚胎为核移植受体的克隆胚胎能够发育到8-细胞期,受精失败MII期卵母细胞为核移植受体的克隆胚胎能够激活,但不能够卵裂。两种IVF废弃的胚胎构建的人体细胞克隆胚胎在去核成功率,注核成功率上无显著差异(P>0.05),但卵裂率和8细胞率上具有显著差异(P<0.05)。结论:多精受精胚胎比MII期体外受精失败卵母细胞更适合作为人核移植受体细胞。 相似文献
7.
Cloned ferrets produced by somatic cell nuclear transfer 总被引:10,自引:0,他引:10
Li Z Sun X Chen J Liu X Wisely SM Zhou Q Renard JP Leno GH Engelhardt JF 《Developmental biology》2006,293(2):439-448
Somatic cell nuclear transfer (SCNT) offers great potential for developing better animal models of human disease. The domestic ferret (Mustela putorius furo) is an ideal animal model for influenza infections and potentially other human respiratory diseases such as cystic fibrosis, where mouse models have failed to reproduce the human disease phenotype. Here, we report the successful production of live cloned, reproductively competent, ferrets using species-specific SCNT methodologies. Critical to developing a successful SCNT protocol for the ferret was the finding that hormonal treatment, normally used for superovulation, adversely affected the developmental potential of recipient oocytes. The onset of Oct4 expression was delayed and incomplete in parthenogenetically activated oocytes collected from hormone-treated females relative to oocytes collected from females naturally mated with vasectomized males. Stimulation induced by mating and in vitro oocyte maturation produced the optimal oocyte recipient for SCNT. Although nuclear injection and cell fusion produced mid-term fetuses at equivalent rates (approximately 3-4%), only cell fusion gave rise to healthy surviving clones. Single cell fusion rates and the efficiency of SCNT were also enhanced by placing two somatic cells into the perivitelline space. These species-specific modifications facilitated the birth of live, healthy, and fertile cloned ferrets. The development of microsatellite genotyping for domestic ferrets confirmed that ferret clones were genetically derived from their respective somatic cells and unrelated to their surrogate mother. With this technology, it is now feasible to begin generating genetically defined ferrets for studying transmissible and inherited human lung diseases. Cloning of the domestic ferret may also aid in recovery and conservation of the endangered black-footed ferret and European mink. 相似文献
8.
Vahid Mansouri Mohammad Salehi Mohsen Nourozian Fatemeh Fadaei Reza Mastery Farahani Abbas Piryaei Ali Delbari 《Genetics and molecular biology》2015,38(2):220-226
Nuclear transfer embryonic stem cells (ntESCs) show stem cell characteristics such as pluripotency but cause no immunological disorders. Although ntESCs are able to differentiate into somatic cells, the ability of ntESCs to differentiate into primordial germ cells (PGCs) has not been examined. In this work, we examined the capacity of mouse ntESCs to differentiate into PGCs in vitro. ntESCs aggregated to form embryoid bodies (EB) in EB culture medium supplemented with bone morphogenetic protein 4(BMP4) as the differentiation factor. The expression level of specific PGC genes was compared at days 4 and 8 using real time PCR. Flow cytometry and immunocytochemical staining were used to detect Mvh as a specific PGC marker. ntESCs expressed particular genes related to different stages of PGC development. Flow cytometry and immunocytochemical staining confirmed the presence of Mvh protein in a small number of cells. There were significant differences between cells that differentiated into PGCs in the group treated with Bmp4 compared to non-treated cells. These findings indicate that ntESCs can differentiate into putative PGCs. Improvement of ntESC differentiation into PGCs may be a reliable means of producing mature germ cells. 相似文献
9.
10.
Mizutani E Ono T Li C Maki-Suetsugu R Wakayama T 《Genesis (New York, N.Y. : 2000)》2008,46(9):478-483
Senescent mice are often infertile, and the cloning success rate decreases with age, making it almost impossible to produce cloned progeny directly from such animals. In this study, we tried to produce offspring from such "unclonable" senescent mice using nuclear transfer techniques. Donor fibroblasts were obtained from the tail tips of mice aged up to 2 years and 9 months. Although most attempts failed to produce cloned mice by direct somatic cell nuclear transfer, we managed to establish nuclear transfer embryonic stem (ntES) cell lines from all aged mice with an establishment rate of 10-25%, irrespective of sex or strain. Finally, cloned mice were obtained from these ntES cells by a second round of nuclear transfer. In addition, healthy offspring was obtained from all aged donors via germline transmission of ntES cells in chimeric mice. This technique is thus applicable to the propagation of a variety of animals, irrespective of age or fertile potential. 相似文献
11.
Lee E Lee SH Kim S Jeong YW Kim JH Koo OJ Park SM Hashem MA Hossein MS Son HY Lee CK Hwang WS Kang SK Lee BC 《Biochemical and biophysical research communications》2006,348(4):1419-1428
Xenotransplantation is a rapidly expanding field of research and cloned miniature pigs have been considered as a model animal for it. However, the efficiency of somatic cell nuclear transfer (SCNT) is extremely low, with most clones resulting in early lethality and several kinds of aberrant development. A possible explanation for the developmental failure of SCNT embryos is insufficient reprogramming of the somatic cell nucleus by the oocyte. In order to test this, we analyzed the reprogramming capacity of differentiated fibroblast cell nuclei and embryonic germ cell nuclei with Oct-4 and Oct-4 related genes (Ndp5211, Dppa2, Dppa3, and Dppa5), which are important for embryonic development, Hand1 and GATA-4, which are important for placental development, as molecular markers using RT-PCR. The Oct-4 expression level was significantly lower (P<0.05) in cloned hatched blastocysts derived from fibroblasts and many of fibroblast-derived clones failed to reactivate at least one of the tested genes, while most of the germ cell clones and control embryos correctly expressed these genes. In conclusion, our results suggest that the reprogramming of fibroblast-derived cloned embryos is highly aberrant and this improper reprogramming could be one reason of the early lethality and post-implantation anomalies of somatic cell-derived clones. 相似文献
12.
13.
Use of germ cells as vectors for transgenesis in mammals has been well developed and offers exciting prospects for experimental and applied biology, agricultural and medical sciences.Such approach is referred to as either male germ cell mediated gene transfer (MGCMGT)or female germ cell mediated gene transfer(FGCMGT)technique.Sperm-mediated gene transfer (SMGT),including its alternative method,testis-mediated gene transfer(TMGT),becomes an established and reliable method for transgenesis.They have been extensively used for producing transgenic animals.The newly developed approach of FGCMGT,ovary-mediated gene transfer(OMGT) is also a novel and useful tool for efficient transgenesis.This review highlights an overview of the recent progress in germ cell mediated gene transfer techniques,methods developed and mechanisms of nucleic acid uptake by germ cells. 相似文献
14.
Pluripotent stem cells, termed embryonic germ (EG) cells, have been generated from both human and mouse primordial germ cells (PGCs). Like embryonic stem (ES) cells, EG cells have the potential to differentiate into all germ layer derivatives and may also be important for any future clinical applications. The development of PGCs in vivo is accompanied by major epigenetic changes including DNA demethylation and imprint erasure. We have investigated the DNA methylation pattern of several imprinted genes and repetitive elements in mouse EG cell lines before and after differentiation. Analysed cell lines were derived soon after PGC specification, “early”, in comparison with EG cells derived after PGC colonisation of the genital ridge, “late” and embryonic stem (ES) cell lines, derived from the inner cell mass (ICM). Early EG cell lines showed strikingly heterogeneous DNA methylation patterns, in contrast to the uniformity of methylation pattern seen in somatic cells (control), late EG cell and ES cell lines. We also observed that all analysed XX cell lines exhibited less methylation than XY. We suggest that this heterogeneity may reflect the changes in DNA methylation taking place in the germ cell lineage soon after specification. 相似文献
15.
Neurogenic effect of vascular endothelial growth factor during germ layer formation of human embryonic stem cells 总被引:9,自引:0,他引:9
Vascular endothelial growth factor (VEGF), a potent mitogen for vascular endothelial cells, has been suggested as a modulator that is involved in neurogenesis as well as angiogenesis. Here, we directly examined the effect of VEGF on neuroectodermal differentiation using human embryonic stem cells (hESCs). VEGF treatment upregulated the expression of neuroectodermal genes (Sox1 and Nestin) during germ layer formation in embryoid bodies (EBs) and efficiently increased the number of neural rosettes expressing both Pax6 and Nestin. The neural progenitors generated from VEGF-treated EBs further differentiated into cells that showed a similar pattern of gene expression observed in the development of dopaminergic neurons upon terminal differentiation. These results support the neurogenic effect of VEGF on hESC differentiation. 相似文献
16.
17.
Yidong Niu a Shulong Liang b a Laboratory Animal Center Peking University People’s Hospital Beijing China b School of Basic Medical Sciences Peking University Beijing China 《Acta Genetica Sinica》2008,(12)
Use of germ cells as vectors for transgenesis in mammals has been well developed and offers exciting prospects for experimental and applied biology,agricultural and medical sciences.Such approach is referred to as either male germ cell mediated gene transfer(MGCMGT) or female germ cell mediated gene transfer(FGCMGT) technique.Sperm-mediated gene transfer(SMGT),including its alternative method,testis-mediated gene transfer(TMGT),becomes an established and reliable method for transgenesis.They have been exten... 相似文献
18.
Northrup E Eisenblätter R Glage S Rudolph C Dorsch M Schlegelberger B Hedrich HJ Zschemisch NH 《Experimental cell research》2011,(13):1885-1894
Pluripotent cells referred to as embryonic germ cells (EGCs) can be derived from the embryonic precursors of the mature gametes: the primordial germ cells (PGCs). A homozygous mutation (ter) of the dead-end homolog 1 gene (Dnd1) in the rat causes gonadal teratocarcinogenesis and sterility due to neoplastic transformation and loss of germ cells. We mated heterozygous ter/+ WKY-Dnd1ter/Ztm rats and were able to cultivate the first genital ridge-derived EGCs of the rat embryo at day 14.5 post coitum (pc). Genotyping revealed that ten EGC lines were Dnd1 deficient, while only one wild type cell line had survived in culture. This suggests that the inactivation of the putative tumor suppressor gene Dnd1 facilitates the immortalization of late EGCs in vitro. Injection of the wild type EGCs into blastocysts resulted in the first germ-line competent chimeras. These new pluripotent rat EGCs offer an innovative approach for studies on germ cell tumor development as well as a new tool for genetic manipulations in rats. 相似文献
19.
Pan Y Chen X Wang S Yang S Bai X Chi X Li K Liu B Li L 《Biochemical and biophysical research communications》2005,327(2):548-556
Human embryonic germ (hEG) cells, which have been advanced as one of the most important sources of pluripotent stem cells [the other one being human embryonic stem cells], can be propagated in vitro indefinitely in the primitive undifferentiated state while being capable of developing into all three germ layer derivatives, hence have become anticipated developing novel strategies of tissue regeneration and transplantation in the treatment of degenerative diseases. In the experiments here, we derived hEG cells from cultured human primordial germ cells (PGCs) of 6- to 9-week-post-fertilization embryos. They satisfied the criteria previously used to define hEG cells, including the expression of markers characteristic of pluripotent cells-abundant alkaline phosphatase (AP) activity, stage specific embryonic antigen (SSEA)-1(+), SSEA-3(-), SSEA-4(+), TRA-1-60(+), TRA-1-81(+), Oct-4(+), and hTERT(+), the retention of normal karyotypes, and possessing pluripotency by forming embryoid bodies (EBs) in vitro. Furthermore, these derived cells tended to neurally differentiate in vitro, especially under high-density culture conditions. We successfully isolated neural progenitor cells from differentiating hEG cultures and about 10% cells induced by 2microM all-trans-retinoic acid (RA) or 0.1mM dibutyryl cyclic AMP (dbcAMP)/1mM forskolin to mature neurons expressing microtubule-associated protein 2ab (MAP2ab), synaptophysin, beta-tubulin III, neuron-specific enolase (NSE), tyrosine hydroxylase (TH), but no glial fibrillary acid protein (GFAP) and choline acetyl transferase (ChAT). The data suggested that hEG cells may provide a potential source of cells for use in transplantation therapy for neurological degenerative diseases. 相似文献
20.
Protection of xenogeneic cells from human complement-mediated lysis by the expression of human DAF, CD59 and MCP 总被引:7,自引:0,他引:7
Jian Huang Deming Gou Congyi Zhen Dahe Jiang Xin Mao Wenxin Li Shi Chen Changchun Cai 《FEMS immunology and medical microbiology》2001,31(3):203-209
CD59 and membrane cofactor protein (MCP, CD46) are widely expressed cell surface glycoproteins that protect host cells from the effect of homologous complement attack. cDNAs encoding human CD59 and MCP cloned from Chinese human embryo were separately transfected into NIH/3T3 cells resulting in the expression of human CD59 and MCP protein on the cell surface. The functional properties of expressed proteins were studied. When the transfected cells were exposed to human serum as a source of complement and naturally occurring anti-mouse antibody, they were resistant to human complement-mediated cell killing. However, the cells remained sensitive to rabbit and guinea pig complement. Human CD59 and MCP can only protect NIH/3T3 cells from human complement-mediated lysis. These results demonstrated that complement inhibitory activity of these proteins is species-selective. The cDNAs of CD59 and MCP were also separately transfected into the endothelial cells (ECs) of the pigs transgenic for the human DAF gene to investigate a putative synergistic action. The ECs expressing both DAF and MCP proteins or both DAF and CD59 proteins exhibited more protection against cytolysis by human serum compared to the cells with only DAF expressed alone. 相似文献