首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The protein AP180 is known to have clathrin-assembly activity in vitro. AP180 has now been found to be crucial for synaptic vesicle endocytosis and the maintenance of a uniform-size vesicle population in vivo. These results significantly advance our understanding of clathrin-mediated endocytosis in the synapse and elsewhere.  相似文献   

2.
How clathrin‐mediated endocytosis (CME) retrieves vesicle proteins into newly formed synaptic vesicles (SVs) remains a major puzzle. Besides its roles in stimulating clathrin‐coated vesicle formation and regulating SV size, the clathrin assembly protein AP180 has been identified as a key player in retrieving SV proteins. The mechanisms by which AP180 recruits SV proteins are not fully understood. Here, we show that following acute inactivation of AP180 in Drosophila, SV recycling is severely impaired at the larval neuromuscular synapse based on analyses of FM 1‐43 uptake and synaptic ultrastructure. More dramatically, AP180 activity is important to maintain the integrity of SV protein complexes at the plasma membrane during endocytosis. These observations suggest that AP180 normally clusters SV proteins together during recycling. Consistent with this notion, SV protein composition and distribution are altered in AP180 mutant flies. Finally, AP180 co‐immunoprecipitates with SV proteins, including the vesicular glutamate transporter and neuronal synaptobrevin. These results reveal a new mode by which AP180 couples protein retrieval to CME of SVs. AP180 is also genetically linked to Alzheimer's disease. Hence, the findings of this study may provide new mechanistic insight into the role of AP180 dysfunction in Alzheimer's disease.   相似文献   

3.
The role of phospholipase Cgamma1 (PLCgamma1) in signal transduction was investigated by characterizing its SH domain-binding proteins that may represent components of a novel signaling pathway. A 180-kDa protein that binds to the SH2 domain of PLCgamma1 was purified from rat brain. The amino acid sequence of peptide derived from the purified protein is now identified as AP180, a clathrin assembly protein that has been implicated in clathrin-mediated synaptic vesicle recycling in synapses. In this report, we demonstrate the stable association of PLCgamma1 with AP180 in a clathrin-coated vesicle complex, which not only binds to the carboxyl-terminal SH2 domain of PLCgamma1, but also inhibits its enzymatic activity in a dose-dependent manner.  相似文献   

4.
Binding of AP180 to clathrin triskelia induces their assembly into 60-70 nm coats. The largest rat brain cDNA clone isolated predicts a molecular weight of 91,430 for AP180. Two cDNA clones have an additional small 57 bp insert. The deduced molecular weight agrees with gel filtration results provided the more chaotropic denaturant 6 M guanidinium thiocyanate is substituted for the weaker guanidinium chloride. The sequence and the proteolytic cleavage pattern suggest a three domain structure. The N-terminal 300 residues (pI 8.7) harbour a clathrin binding site. An acidic middle domain (pI 3.6, 450 residues), interrupted by an uncharged alanine rich segment of 59 residues, appears to be responsible for the anomalous physical properties of AP180. The C-terminal domain (166 residues) has a pI of 10.4. AP180 mRNA is restricted to neuronal sources. AP180 shows no significant homology to known clathrin binding proteins, but is nearly identical to a mouse phosphoprotein (F1-20). This protein, localized to synaptic termini, has so far been of unknown function.  相似文献   

5.
Sutton MA  Ito HT  Cressy P  Kempf C  Woo JC  Schuman EM 《Cell》2006,125(4):785-799
Activity deprivation in neurons induces a slow compensatory scaling up of synaptic strength, reflecting a homeostatic mechanism for stabilizing neuronal activity. Prior studies have focused on the loss of action potential (AP) driven neurotransmission in synaptic homeostasis. Here, we show that the miniature synaptic transmission that persists during AP blockade profoundly shapes the time course and mechanism of homeostatic scaling. A brief blockade of NMDA receptor (NMDAR) mediated miniature synaptic events ("minis") rapidly scales up synaptic strength, over an order of magnitude faster than with AP blockade alone. The rapid scaling induced by NMDAR mini blockade is mediated by increased synaptic expression of surface GluR1 and the transient incorporation of Ca2+-permeable AMPA receptors at synapses; both of these changes are implemented locally within dendrites and require dendritic protein synthesis. These results indicate that NMDAR signaling during miniature synaptic transmission serves to stabilize synaptic function through active suppression of dendritic protein synthesis.  相似文献   

6.
In the developing hippocampus, functional excitatory synaptic connections seem to be recruited from a preformed, initially silent synaptic network. This functional synapse induction requires presynaptic action potentials paired with postsynaptic depolarization, thus obeying Hebb's rule of association. During early postnatal development the hippocampus exhibits an endogenous form of patterned neuronal activity that is driven by GABAergic depolarization. We propose that this recurrent activity promotes the input-specific induction of functional synapses in the CA1 region. Thus, activity-dependent synaptic reorganization in the developing hippocampus appears to be dominated by an active recruitment of new synapses rather than an active elimination of redundant connections.  相似文献   

7.
Although recent reports have suggested that synchronous neuronal UP states are mediated by astrocytic activity, the mechanism responsible for this remains unknown. Astrocytic glutamate release synchronously depolarizes adjacent neurons, while synaptic transmissions are blocked. The purpose of this study was to confirm that astrocytic depolarization, propagated through synaptic connections, can lead to synchronous neuronal UP states. We applied astrocytic currents to local neurons in a neural network consisting of model cortical neurons. Our results show that astrocytic depolarization may generate synchronous UP states for hundreds of milliseconds in neurons even if they do not directly receive glutamate release from the activated astrocyte.  相似文献   

8.
Membrane potential (MP) oscillations produced by excitatory amino acids (EAA) have been studied in branching neurons isolated by an enzymatic-mechanical method from the lamprey spinal cord. It was shown that (1) all studied EAA (glutamate, kainate, NMDA, aspartate, and quisqualate) evoke an ion current and a short-term reversible depolarization in studied cells; (2) EAA added to perfusion solution may produce MP oscillations, with kinetic parameters and duration of the oscillation depending on the amino acid used (the most effective are kainate and NMDA, the least effective, quisqualate); (3) oscillations can be irregular (of the type of a synaptic noise or of a long-term plateau of depolarization with action potentials—AP) or regular, with frequency of 0.5–1.5 Hz. Amplitude of both oscillation types depends on MP level, frequency is more steady for each cell and less depends on MP. In 68 out of 128 studied cells, oscillations could be evoked, which indicates that a significant part of lamprey spinal neurons have intrinsic capability for MP oscillations and probably pacemaker properties. The functional role of oscillations can be different. They can take cells out from the profound inhibition state, synchronize activity of rhythm generation neurons and/or be the base for trigger signals (AP firing) sent by locomotor neuronal circuits to trunk muscles.  相似文献   

9.
AMPA receptor trafficking at excitatory synapses   总被引:46,自引:0,他引:46  
Bredt DS  Nicoll RA 《Neuron》2003,40(2):361-379
Excitatory synapses in the CNS release glutamate, which acts primarily on two sides of ionotropic receptors: AMPA receptors and NMDA receptors. AMPA receptors mediate the postsynaptic depolarization that initiates neuronal firing, whereas NMDA receptors initiate synaptic plasticity. Recent studies have emphasized that distinct mechanisms control synaptic expression of these two receptor classes. Whereas NMDA receptor proteins are relatively fixed, AMPA receptors cycle synaptic membranes on and off. A large family of interacting proteins regulates AMPA receptor turnover at synapses and thereby influences synaptic strength. Furthermore, neuronal activity controls synaptic AMPA receptor trafficking, and this dynamic process plays a key role in the synaptic plasticity that is thought to underlie aspects of learning and memory.  相似文献   

10.
Intracellular recording techniques were used to record electrical response from neurons of the rabbit (isolated) superior cervical ganglion to single stimuli applied to bundles of preganglionic fibers as well as tonic electrical neuronal activity in this ganglion during acute experiments in situ. A review of the findings obtained confirms that neurons of the ganglion receive preganglionic synaptic inputs of two types, the first of a single pattern, formed by a preganglionic fiber; excitatory action of the latter on ganglion units suffices to induce postsynaptic action potentials (AP I) and the second of a multiple pattern, formed by several preganglionic fibers with relatively faint excitatory action, capable of evoking postsynaptic action potentials (AP II) only when excited in unison. Interspike intervals for AP I and AP II in tonic neuronal activity conformed to a normal distribution and a random distribution pattern respectively.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 2, pp. 252–261, March–April, 1989.  相似文献   

11.
Regulation of striatal medium spiny neuron synapses underlies forms of motivated behavior and pathological drug seeking. A primary mechanism for increasing synaptic strength is the trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) into the postsynapse, a process mediated by GluA1 AMPAR subunit phosphorylation. We have examined the role of converging glutamate and dopamine inputs in regulating biochemical cascades upstream of GluA1 phosphorylation. We focused on the role of Ca2+-permeable AMPARs (CPARs), which lack the GluA2 AMPAR subunit. Under conditions that prevented depolarization, stimulation of CPARs activated neuronal nitric oxide synthase and production of cGMP. CPAR-dependent cGMP production was sufficient to induce synaptic insertion of GluA1, detected by confocal microscopy, through a mechanism dependent on GluA1 Ser-845 phosphorylation. Dopamine D1 receptors, in contrast, stimulate GluA1 extra synaptic insertion. Simultaneous activation of dopamine D1 receptors and CPARs induced additive increases in GluA1 membrane insertion, but only CPAR stimulation augmented CPAR-dependent GluA1 synaptic insertion. This incorporation into the synapse proceeded through a sequential two-step mechanism; that is, cGMP-dependent protein kinase II facilitated membrane insertion and/or retention, and protein kinase C activity was necessary for synaptic insertion. These data suggest a feed-forward mechanism for synaptic priming whereby an initial stimulus acting independently of voltage-gated conductance increases striatal neuron excitability, facilitating greater neuronal excitation by a subsequent stimulus.  相似文献   

12.
Mao Y  Chen J  Maynard JA  Zhang B  Quiocho FA 《Cell》2001,104(3):433-440
Clathrin-mediated endocytosis plays a major role in retrieving synaptic vesicles from the plasma membrane following exocytosis. This endocytic process requires AP180 (or a homolog), which promotes the assembly and restricts the size of clathrin-coated vesicles. The highly conserved 33 kDa amino-terminal domain of AP180 plays a critical role in binding to phosphoinositides and in regulating the clathrin assembly activity of AP180. The crystal structure of the amino-terminal domain reported herein reveals a novel fold consisting of a large double layer of sheets of ten alpha helices and a unique site for binding phosphoinositides. The finding that the clathrin-box motif is mostly buried and lies in a helix indicates a different site and mechanism for binding of the domain to clathrins than previously assumed.  相似文献   

13.
Presynaptic cannabinoid (CB1R) and metabotropic glutamate receptors (mGluR2/3) regulate synaptic strength by inhibiting secretion. Here, we reveal a presynaptic inhibitory pathway activated by extracellular signal‐regulated kinase (ERK) that mediates CB1R‐ and mGluR2/3‐induced secretion inhibition. This pathway is triggered by a variety of events, from foot shock‐induced stress to intense neuronal activity, and induces phosphorylation of the presynaptic protein Munc18‐1. Mimicking constitutive phosphorylation of Munc18‐1 results in a drastic decrease in synaptic transmission. ERK‐mediated phosphorylation of Munc18‐1 ultimately leads to degradation by the ubiquitin–proteasome system. Conversely, preventing ERK‐dependent Munc18‐1 phosphorylation increases synaptic strength. CB1R‐ and mGluR2/3‐induced synaptic inhibition and depolarization‐induced suppression of excitation (DSE) are reduced upon ERK/MEK pathway inhibition and further reduced when ERK‐dependent Munc18‐1 phosphorylation is blocked. Thus, ERK‐dependent Munc18‐1 phosphorylation provides a major negative feedback loop to control synaptic strength upon activation of presynaptic receptors and during intense neuronal activity.  相似文献   

14.
The overproduction and extracellular buildup of amyloid-β peptide (Aβ) is a critical step in the etiology of Alzheimer’s disease. Recent data suggest that intracellular trafficking is of central importance in the production of Aβ. Here we use a neuronal cell line to examine two structurally similar clathrin assembly proteins, AP180 and CALM. We show that RNA interference-mediated knockdown of AP180 reduces the generation of Aβ1-40 and Aβ1-42, whereas CALM knockdown has no effect on Aβ generation. Thus AP180 is among the traffic controllers that oversee and regulate amyloid precursor protein processing pathways. Our results also suggest that AP180 and CALM, while similar in their domain structures and biochemical properties, are in fact dedicated to separate trafficking pathways in neurons.  相似文献   

15.
Altered synaptic development and active zone spacing in endocytosis mutants   总被引:3,自引:0,他引:3  
Many types of synapses have highly characteristic shapes and tightly regulated distributions of active zones, parameters that are important to the function of neuronal circuits. The development of terminal arborizations must therefore include mechanisms to regulate the spacing of terminals, the frequency of branching, and the distribution and density of release sites. At present, however, the mechanisms that control these features remain obscure. Here, we report the development of supernumerary or "satellite" boutons in a variety of endocytic mutants at the Drosophila neuromuscular junction. Mutants in endophilin, synaptojanin, dynamin, AP180, and synaptotagmin all show increases in supernumerary bouton structures. These satellite boutons contain releasable vesicles and normal complements of synaptic proteins that are correctly localized within terminals. Interestingly, however, synaptojanin terminals have more active zones per unit of surface area and more dense bodies (T-bars) within these active zones, which may in part compensate for reduced transmission per active zone. The altered structural development of the synapse is selectively encountered in endocytosis mutants and is not observed when synaptic transmission is reduced by mutations in glutamate receptors or when synaptic transmission is blocked by tetanus toxin. We propose that endocytosis plays a critical role in sculpting the structure of synapses, perhaps through the endocytosis of unknown regulatory signals that organize morphogenesis at synaptic terminals.  相似文献   

16.
Presynaptic nerve terminals must maintain stable neurotransmission via synaptic vesicle membrane recycling despite encountering wide fluctuations in the number and frequency of incoming action potentials (APs). However, the molecular mechanism linking variation in neuronal activity to vesicle trafficking is unknown. Here, we combined genetic knockdown and direct physiological measurements of synaptic transmission from paired neurons to show that three isoforms of dynamin, an essential endocytic protein, work individually to match vesicle reuse pathways, having distinct rate and time constants with physiological AP frequencies. Dynamin 3 resupplied the readily releasable pool with slow kinetics independently of the AP frequency but acted quickly, within 20 ms of the incoming AP. Under high-frequency firing, dynamin 1 regulated recycling to the readily releasable pool with fast kinetics in a slower time window of greater than 50 ms. Dynamin 2 displayed a hybrid response between the other isoforms. Collectively, our findings show how dynamin isoforms select appropriate vesicle reuse pathways associated with specific neuronal firing patterns.  相似文献   

17.
NMDA receptors are calcium-permeable ionotropic receptors that detect coincident glutamate binding and membrane depolarization and are essential for many forms of synaptic plasticity in the mammalian brain. The obligatory GluN1 subunit of NMDA receptors is alternatively spliced at multiple sites, generating forms that vary in N-terminal N1 and C-terminal C1, C2, and C2' cassettes. Based on expression of GluN1 constructs in heterologous cells and in wild type neurons, the prevalent view is that the C-terminal cassettes regulate synaptic accumulation and its modulation by homeostatic activity blockade and by protein kinase C (PKC). Here, we tested the role of GluN1 splicing in regulated synaptic accumulation of NMDA receptors by lentiviral expression of individual GluN1 splice variants in hippocampal neurons cultured from GluN1 (-/-) mice. High efficiency transduction of GluN1 at levels similar to endogenous was achieved. Under control conditions, the C2' cassette mediated enhanced synaptic accumulation relative to the alternate C2 cassette, whereas the presence or absence of N1 or C1 had no effect. Surprisingly all GluN1 splice variants showed >2-fold increased synaptic accumulation with chronic blockade of NMDA receptor activity. Furthermore, in this neuronal rescue system, all GluN1 splice variants were equally rapidly dispersed upon activation of PKC. These results indicate that the major mechanisms mediating homeostatic synaptic accumulation and PKC dispersal of NMDA receptors occur independently of GluN1 splice isoform.  相似文献   

18.
The neuronal Na(+)-dependent glutamate transporter, excitatory amino acid carrier 1 (EAAC1, also called EAAT3), has been implicated in the control of synaptic spillover of glutamate, synaptic plasticity, and the import of cysteine for neuronal synthesis of glutathione. EAAC1 protein is observed in both perisynaptic regions of the synapse and in neuronal cell bodies. Although amino acid residues in the carboxyl terminal tail have been implicated in the dendritic targeting of EAAC1 protein, it is not known if mRNA for EAAC1 may also be targeted to dendrites. Sorting of mRNA to specific cellular domains provides a mechanism by which signals can rapidly increase translation in a local environment; this form of regulated translation has been linked to diverse biological phenomena ranging from establishment of polarity during embryogenesis to synapse development and synaptic plasticity. In the present study, EAAC1 mRNA sequences were amplified from dendritic samples that were mechanically harvested from low-density hippocampal neuronal cultures. In parallel analyses, mRNA for histone deacetylase 2 (HDAC-2) and glial fibrillary acidic protein (GFAP) was not detected, suggesting that these samples are not contaminated with cell body or glial mRNAs. EAAC1 mRNA also co-localized with Map2a (a marker of dendrites) but not Tau1 (a marker of axons) in hippocampal neuronal cultures by in situ hybridization. In control rats, EAAC1 mRNA was observed in soma and proximal dendrites of hippocampal pyramidal neurons. Following pilocarpine- or kainate-induced seizures, EAAC1 mRNA was present in CA1 pyramidal cell dendrites up to 200μm from the soma. These studies provide the first evidence that EAAC1 mRNA localizes to dendrites and suggest that dendritic targeting of EAAC1 mRNA is increased by seizure activity and may be regulated by neuronal activity/depolarization.  相似文献   

19.
Oriens-lacunosum moleculare (O-LM) interneurons in the CA1 region of the hippocampus play a key role in feedback inhibition and in the control of network activity. However, how these cells are efficiently activated in the network remains unclear. To address this question, I performed recordings from CA1 pyramidal neuron axons, the presynaptic fibers that provide feedback innervation of these interneurons. Two forms of axonal action potential (AP) modulation were identified. First, repetitive stimulation resulted in activity-dependent AP broadening. Broadening showed fast onset, with marked changes in AP shape following a single AP. Second, tonic depolarization in CA1 pyramidal neuron somata induced AP broadening in the axon, and depolarization-induced broadening summated with activity-dependent broadening. Outside-out patch recordings from CA1 pyramidal neuron axons revealed a high density of α-dendrotoxin (α-DTX)-sensitive, inactivating K+ channels, suggesting that K+ channel inactivation mechanistically contributes to AP broadening. To examine the functional consequences of axonal AP modulation for synaptic transmission, I performed paired recordings between synaptically connected CA1 pyramidal neurons and O-LM interneurons. CA1 pyramidal neuron–O-LM interneuron excitatory postsynaptic currents (EPSCs) showed facilitation during both repetitive stimulation and tonic depolarization of the presynaptic neuron. Both effects were mimicked and occluded by α-DTX, suggesting that they were mediated by K+ channel inactivation. Therefore, axonal AP modulation can greatly facilitate the activation of O-LM interneurons. In conclusion, modulation of AP shape in CA1 pyramidal neuron axons substantially enhances the efficacy of principal neuron–interneuron synapses, promoting the activation of O-LM interneurons in recurrent inhibitory microcircuits.  相似文献   

20.
The effect of a variable initial value is examined in Stein's stochastic neuronal model with synaptic reversal potentials under the conditions of a constant threshold and a constant input. The moments of the interspike interval distribution are presented as the functions of the initial depolarization which ranges from inhibitory reversal potential to the threshold potential. Normal, exponential and transformed Gamma distributions are tested for the initial value of depolarization. The coefficient of variation is shown to be greater than one when the initial depolarization is sufficiently above the resting level. An interpretation of this result in the terms of spatial facilitation is offered. The effect of a random initial value is found to be most pronounced for the neurons depolarized to a near threshold level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号