首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Primary culture rat astrocytes exposed to the long acting nitric oxide donor (Z)-1-[2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NO) for 24 h approximately double their concentration of glutathione (GSH) and show no sign of cell death. In contrast, GSH was depleted by 48%, and significant loss of mitochondrial respiratory chain complex activity and cell death were observed in primary culture rat neurones subjected to DETA-NO for 18 h. Northern blot analysis suggested that mRNA amounts of both subunits of glutamate-cysteine ligase (GCL), the rate-limiting enzyme in GSH synthesis, were elevated in astrocytes following nitric oxide (NO) exposure. This correlated with an increase in astrocytic GCL activity. Neurones on the other hand did not exhibit increased GCL activity when exposed to NO. In addition, the rate of GSH efflux was doubled and gamma-glutamyltranspeptidase (gamma-GT) activity was increased by 42% in astrocytes treated with NO for 24 h. These results suggest that astrocytes, but not neurones, up-regulate GSH synthesis as a defence mechanism against excess NO. It is possible that the increased rate of GSH release and activity of gamma-GT in astrocytes may have important implications for neuroprotection in vivo by optimizing the supply of GSH precursors to neurones in close proximity.  相似文献   

2.
AMP-activated protein kinase (AMPK) is currently known to act as a key regulator of metabolic homeostasis. Several biosynthetic enzymes for fatty acid or glycogen are recognized as the targets of AMPK. In the present study, we investigated the role of AMPK in the interleukin-1 (IL-1)-stimulated IL-6 synthesis in osteoblast-like MC3T3-E1 cells. IL-1 induced phosphorylation of AMPK-α (Thr-172), which regulates AMPK activities, and acetyl-CoA carboxylase, a direct substrate of AMPK. Compound C, an inhibitor of AMPK, which suppressed the IL-1-induced phosphorylation of acetyl-CoA carboxylase, increased the release and the mRNA level of IL-6 stimulated by IL-1. Transfection of AMPK siRNA-α also amplified the IL-1-stimulated IL-6 release compared to the control cells. On the other hand, IL-1 elicited the phosphorylation of IκB, which caused subsequent decrease of total level of IκB. Wedelolactone, an inhibitor of IκB kinase, which reduced the phosphorylation both of IκB and NF-κB, significantly enhanced the IL-1-stimulated IL-6 synthesis. Compound C remarkably suppressed the IL-1-induced phosphorylation of IκB. These results strongly suggest that AMPK negatively regulates IL-1-stimulated IL-6 synthesis through the IκB/NF-κB pathway in osteoblasts.  相似文献   

3.
4.
The carbohydrate polymer, hyaluronan, is a major component of the extracellular matrix in animal tissues. Exogenous hyaluronan has been used to treat osteoarthritis (OA), a degenerative joint disease involving inflammatory changes. The underlying mechanisms of hyaluronan in OA are not fully understood. Pro-inflammatory interleukin (IL)-1β downregulates peroxisome proliferator-activated receptor gamma (PPARγ), and increases expression of matrix metalloproteinases (MMPs) which are responsible for the degeneration of articular cartilage. The effects of low- and high-molecular-weight hyaluronan (oligo-HA and HMW-HA) on the inflammatory genes were determined in human SW-1353 chondrosarcoma cells. HMW-HA antagonized the effects of IL-1β by increasing PPARγ and decreasing cyclooxygenase (COX)-2, MMP-1, and MMP-13 levels. It promoted Akt, but suppressed mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NFκB) signaling, indicating anti-inflammatory effects. In contrast, the cells had overall opposite responses to oligo-HA. In conclusion, HMW-HA and oligo-HA exerted differential inflammatory responses via PPARγ in IL-1β-treated chondrosarcoma cells.  相似文献   

5.
6.
Chondrocyte apoptosis is closely related to the development and progression of osteoarthritis. Ginsenoside Rg1 protects cells by antagonizing apoptosis. This study aimed to investigate the protective effect of Rg1 on interleukin 1β (IL-1β)-induced chondrocyte apoptosis and the underlying molecular mechanisms. Chondrocytes were harvested from the joints of 1-week-old Sprague–Dawley rats. After treated with 10 μg/mL Rg1 for 2 h, the chondrocytes were cultured with 10 ng/mL IL-1β to induce cytotoxicity. Cell viability was assessed with MTT assays. Annexin V/propidium iodide staining and terminal deoxynucleotidyl transferase dUTP nick-end labeling were used to detect chondrocyte apoptosis. The contents of total Akt, phosphorylated Akt (p-Akt), Bcl-2, Bax, and cytochrome C (Cyt c) were determined by Western blotting assay. A quantitative colorimetric assay was used to determine caspase-3 activity. Our present findings have shown that pre-treatment of chondrocytes with Rg1 reduces IL-1β induced cytotoxicity/apoptosis. Rg1 pretreatment also decreases the activity of IL-1β that reduces expression of Bcl-2 and level of p-Akt, and increases Bax activity, Cyt c release, and caspase-3 activation. It also reverses the activity of IL-1β that reduces the expression of tissue inhibitor of metalloproteinase-1 expression and increased the synthesis of matrix metalloproteinase-13, with the net effect of inhibiting extracellular matrix degradation. These results indicate that Rg1 may protect chondrocytes from IL-1β-induced apoptosis via the phosphatidylinositol 3-kinase/protein kinase B signaling pathway, through preventing caspase-3 release.  相似文献   

7.
8.
9.
Genes of the Sprouty family (Spry1–4) are feedback inhibitors of receptor tyrosine kinase (RTK) signaling. As such, they restrain proliferation of many cell types and have been proposed as tumor-suppressor genes. Although their most widely accepted target is the Extracellular-regulated kinases (ERK) pathway, the mechanisms by which Spry proteins inhibit RTK signaling are poorly understood. In the present work, we describe a novel mechanism by which Spry1 restricts proliferation, independently of the ERK pathway. In vivo analysis of thyroid glands from Spry1 knockout mice reveals that Spry1 induces a senescence-associated secretory phenotype via activation of the NFκB pathway. Consistently, thyroids from Spry1 knockout mice are bigger and exhibit decreased markers of senescence including Ki67 labeling and senescence-associated β-galactosidase. Although such ‘escape'' from senescence is not sufficient to promote thyroid tumorigenesis in adult mice up to 5 months, the onset of Phosphatase and tensin homolog (Pten)-induced tumor formation is accelerated when Spry1 is concomitantly eliminated. Accordingly, we observe a reduction of SPRY1 levels in human thyroid malignancies when compared with non-tumoral tissue. We propose that Spry1 acts as a sensor of mitogenic activity that not only attenuates RTK signaling but also induces a cellular senescence response to avoid uncontrolled proliferation.  相似文献   

10.
11.
12.
Interleukin-1β (IL-1β) induces the expression of matrix metalloproteinases (MMPs) implicated in cartilage and joint degradation in osteoarthritis (OA) and rheumatoid arthritis (RA). Polyoxypregnane glycoside (PPG), active compound was identified from Dregea volubilis extract by chemical analysis, shown to exert chondroprotective effects in cartilage explant models. However, no studies have been undertaken for the molecular investigation of whether PPG constituents protect the human articular chondrocyte (HAC). In the present studies, HAC was co-treated with IL-1β and PPG. The expression of MMPs, type II collagen, phosphorylation of mitogen-activated protein kinases (MAPKs) and NF-κB signaling pathway were determined by Western immunoblotting. PPG (6.25–25 μM) decreased the IL-1β-induced HA release from chondrocyte to culture medium. The mode of action of PPG was likely mediated through inhibiting expression of MMP-1, -3 and -13 in the medium, which was associated with the inhibition of mRNA expression. PPG had no effect on IL-1β-induced phosphorylation of MAPK pathway. Conversely, PPG decreased phosphorylation of IκB kinase and IκBα degradation. Taken together, these results indicate that PPG may inhibit cartilage degradation in OA and may also be used as nutritional supplement for maintaining joint integrity and function.  相似文献   

13.
Attenuated and heat-killed mycobacteria display demonstrable activity against cancer in the clinic; however, the induced immune response is poorly characterised and potential biomarkers of response ill-defined. We investigated whether three mycobacterial preparations currently used in the clinic (BCG and heat-killed Mycobacterium vaccae and Mycobacterium obuense) can stimulate anti-tumour effector responses in human γδ T-cells. γδ T-cell responses were characterised by measuring cytokine production, expression of granzyme B and cytotoxicity against tumour target cells. Results show that γδ T-cells are activated by these mycobacterial preparations, as indicated by upregulation of activation marker expression and proliferation. Activated γδ T-cells display enhanced effector responses, as shown by upregulated granzyme B expression, production of the TH1 cytokines IFN-γ and TNF-α, and enhanced degranulation in response to susceptible and zoledronic acid-treated resistant tumour cells. Moreover, γδ T-cell activation is induced by IL-12, IL-1β and TNF-α from circulating type 1 myeloid dendritic cells (DCs), but not from type 2 myeloid DCs or plasmacytoid DCs. Taken together, we show that BCG, M. vaccae and M. obuense induce γδ T-cell anti-tumour effector responses indirectly via a specific subset of circulating DCs and suggest a mechanism for the potential immunotherapeutic effects of BCG, M. vaccae and M. obuense in cancer.  相似文献   

14.
Lys63-linked TAK1 polyubiquitination plays an essential role in the regulation of TAK1 activation. TRAF6-mediated Lys63-linked polyubiquitylation of TAK1 has been shown to be required for TGF-β-induced TAK1 activation. However, it remains unclear which lysine residue on TAK1 is TRAF6-mediated TAK1 polyubiquitination acceptor site in TGF-β signaling pathway. Here we report that lysine 158 on TAK1 is required for TGF-β-induced TRAF6-mediated TAK1 polyubiquitination and TAK1-mediated IKK, JNK and p38 activation. Notably, in contrast to TAK1 wild-type and K34R mutant, TAK1 K158R mutant co-overexpression with TAB1 failed to induce Lys63-linked TAK1 polyubiquitination. TRAF6-induced K63-linked TAK1 polyubiquitination was blocked by TAK1 K158R mutation, but not by K34R mutation. Furthermore, TGF-β-induced TAK1 polyubiquitination was inhibited by TAK1 K158R mutation, but not by K34R mutation in HeLa cells. Reconstitution of TAK1-deficient mouse embryo fibroblast cells with TAK1 wild-type, K158R mutant, or K34R mutant reveals that TAK1 lysine 158 residue is required for TGF-β-induced IKK, p38 and JNK activation.  相似文献   

15.
16.
17.
Human pancreatic cancer invasion and metastasis have been found to correlate with increased levels of active matrix metalloproteinase 2 (MMP-2). The multifunctional cytokine transforming growth factor beta 1 (TGF-β1) has been shown to increase both secretion of MMP-2 and invasion by several pancreatic cancer cell types. In the present study, we investigated the signaling pathway involved in TGF-β1-promoted MMP-2 secretion and invasion by human pancreatic cancer cells SW1990. Using specific inhibitors, we found that stimulation of these tumor cells with TGF-β1 induced secretion and activation of the collagenase MMP-2, which was required for TGF-β1-stimulated invasion. Our results also indicate that signaling events involved in TGF-β1-enhanced SW1990 invasiveness comprehend activation of Rac1 followed by generation of reactive oxygen species through nicotinamide adenine dinucleotide phosphate-oxidase, activation of nuclear factor-kappa beta, release of interleukin-6, and secretion and activation of MMP-2.  相似文献   

18.
Post-translational acetylation is an important molecular regulatory mechanism affecting the biological activity of proteins. Polypeptide GalNAc transferases (ppGalNAc-Ts) are a family of enzymes that catalyze initiation of mucin-type O-glycosylation. All ppGalNAc-Ts in mammals are type II transmembrane proteins having a Golgi lumenal region that contains a catalytic domain with glycosyltransferase activity, and a C-terminal R-type (“ricin-like”) lectin domain. We investigated the effect of acetylation on catalytic activity of glycosyltransferase, and on fine carbohydrate-binding specificity of the R-type lectin domain of ppGalNAc-T2. Acetylation effect on ppGalNAc-T2 biological activity in vitro was studied using a purified human recombinant ppGalNAc-T2. Mass spectrometric analysis of acetylated ppGalNAc-T2 revealed seven acetylated amino acids (K103, S109, K111, K363, S373, K521, and S529); the first five are located in the catalytic domain. Specific glycosyltransferase activity of ppGalNAc-T2 was reduced 95% by acetylation. The last two amino acids, K521 and S529, are located in the lectin domain, and their acetylation results in alteration of the carbohydrate-binding ability of ppGalNAc-T2. Direct binding assays showed that acetylation of ppGalNAc-T2 enhances the recognition to αGalNAc residue of MUC1αGalNAc, while competitive assays showed that acetylation modifies the fine GalNAc-binding form of the lectin domain. Taken together, these findings clearly indicate that biological activity (catalytic capacity and glycan-binding ability) of ppGalNAc-T2 is regulated by acetylation.  相似文献   

19.

Background

Human mast cells are multifunctional cells capable of a wide variety of inflammatory responses. Baicalein (BAI), isolated from the traditional Chinese herbal medicine Huangqin (Scutellaria baicalensis Georgi), has been shown to have anti-inflammatory effects. We examined its effects and mechanisms on the expression of inflammatory cytokines in an IL-1β- and TNF-α-activated human mast cell line, HMC-1.

Methods

HMC-1 cells were stimulated either with IL-1β (10 ng/ml) or TNF-α (100 U/ml) in the presence or absence of BAI. We assessed the expression of IL-6, IL-8, and MCP-1 by ELISA and RT-PCR, NF-κB activation by electrophoretic mobility shift assay (EMSA), and IκBα activation by Western blot.

Results

BAI (1.8 to 30 μM) significantly inhibited production of IL-6, IL-8, and MCP-1 in a dose-dependent manner in IL-1β-activated HMC-1. BAI (30 μM) also significantly inhibited production of IL-6, IL-8, and MCP-1 in TNF-α-activated HMC-1. Inhibitory effects appear to involve the NF-κB pathway. BAI inhibited NF-κB activation in IL-1β- and TNF-α-activated HMC-1. Furthermore, BAI increased cytoplasmic IκBα proteins in IL-1β- and TNF-α-activated HMC-1.

Conclusion

Our results showed that BAI inhibited the production of inflammatory cytokines through inhibition of NF-κB activation and IκBα phosphorylation and degradation in human mast cells. This inhibitory effect of BAI on the expression of inflammatory cytokines suggests its usefulness in the development of novel anti-inflammatory therapies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号