共查询到20条相似文献,搜索用时 15 毫秒
1.
The huge polymorphic data have been prioritized towards a specific disease based on sequence and structure homology tools to a large extent. In this study, we have explored the potential non-synonymous Single Nucleotide Polymorphism (nsSNP) in serotonin (5-HT) receptors involved in psychotic syndromes and their response pathway. The most damaging point mutations were screened from 12 classes of serotonin receptors comprising 7743 variants. In 5HT(1A) receptor, two alleles were found to be highly deleterious located at ligand binding extracellular-2 and one at intracellular loop-3 domains. Similarly, we found two alleles predicted to be highly damaging in 5HT(2A) residing at N and C-Terminal domains. The above alleles were further confirmed based on their flexibility and stability difference using the molecular dynamic simulation analysis. Integrating these results appeared promising for being able to filter out potential non-synonymous Single Nucleotide Polymorphisms for neuropsychiatric disorders. 相似文献
2.
The mechanisms by which imipramine and dihydroergosine stimulate the 5-HT syndrome in rats and inhibit the head-twitch response in rats and mice were studied. Imipramine- and dihydroergosine-induced stimulation of the 5-HT syndrome was inhibited stereoselectively by propranolol, a high affinity ligand for 5-HT1 receptor sites, but not by ritanserin, a specific 5-HT2 receptor antagonist. (-)-Propranolol potentiated the inhibitory effect of imipramine, but not of dihydroergosine on the head-twitch response, while ritanserin was without effect. Neither imipramine nor dihydroergosine were able to stimulate the 5-HT syndrome in the animals pretreated with p-chlorophenylalanine. As expected, 8-OH-DPAT, a selective 5-HT1A receptor agonist, stimulated, and 5-HT1B agonists CGS 12066B and 1-(trifluoromethylphenyl)piperazine (TFMPP) failed to stimulate the 5-HT syndrome induced in rats by pargyline and 5-HTP administration. A higher dose of ritanserin inhibited the syndrome. While 8-OH-DPAT alone produced all behavioral components of the 5-HT syndrome, dihydroergosine or imipramine alone even at very high doses never produced tremor or a more intensive forepaw padding as seen when these drugs were given in combination with pargyline and 5-HTP. A single administration of (-)-propranolol also inhibited the head-twitch response. This effect lasted in mice longer than after ritanserin administration. In in vitro experiments dihydroergosine expressed approximately twenty-fold higher affinity for 3H-ketanserin binding sites than imipramine. The results suggest that imipramine and dihydroergosine possess two components--one stimulating the 5-HT syndrome in rats by a presynaptic, presumably 5-HT1A-mediated mechanism, and the other inhibiting 5-HT2 binding sites. 相似文献
3.
Sandeep Chaudhary Stevan Pecic Onica LeGendre Hérnan A. Navarro Wayne W. Harding 《Bioorganic & medicinal chemistry letters》2009,19(9):2530-2532
C1 and flexible analogs of (±)-nantenine were synthesized and evaluated for antagonist activity at human 5-HT2A receptors in a calcium mobilization assay. This work has resulted in the identification of the most potent 5-HT2A antagonist known based on an aporphine. Our results also suggest that the C1 position may be a key site for increasing 5-HT2A antagonist activity in this compound series. In addition, the structural rigidity of the aporphine core appears to be required for nantenine to function as a 5-HT2A antagonist. 相似文献
4.
Modulation of Cys-loop receptors by steroids is of physiological and therapeutical relevance. Nonetheless, its molecular mechanism has not been elucidated for serotonin (5-HT) type 3 receptors. We deciphered the mechanism of action of hydrocortisone (HC) at 5-HT type 3A receptors. Single-channel currents from the high-conductance form (∼4.7 pA, −70 mV) appear as a series of long opening events forming bursts, which group into long clusters. Although they are very infrequent, subconductance events (∼2.4 pA) are detected within clusters. HC produces a significant concentration-dependent reduction in open and burst durations, demonstrating open-channel block. In addition, it increases the appearance of subconductance levels in a concentration- and slightly voltage-dependent manner. The amplitude of the subconductance level does not change with HC concentration and its open duration is briefer than that of full amplitude events, indicating lower open-channel stability. Dual effects are distinguished from macroscopic responses: HC reduces amplitude by acting from either open or closed states, and it increases decay rates from the open state. Thus, HC acts as a negative modulator of 5-HT type 3A receptors by different mechanisms: It acts as an open-channel blocker and it favors opening to a preexisting subconductance level. The latter constitutes a novel, to our knowledge, mechanism of channel modulation, which might be applicable to other steroids and channels. 相似文献
5.
Yunguo Gong 《Molecular simulation》2013,39(12):970-979
In this study, by homology modelling and molecular dynamics (MD) simulation, models of l-stepholidine (l-SPD) activating the 5-HT1A and D1 receptors were constructed. In 100-ns MD simulations, the D1 and 5-HT1A receptors were activated by the partial agonist l-SPD, conforming with the global toggle switch activation model and the sequential activation model. The residues Y7.53 and Y5.58 swing significantly between different transmembrane (TM) domains after activation. Similarities between D1 and 5-HT1A included (1) the outward motion of TM-5; (2) the ionic lock was independent of the tilt of TM-6 and (3) there was an apparent bending of TM-6, and the ring of l-SPD formed strong π–π interactions with residue W6.48. Differences between the two included the following: (1) in 5-HT1A, l-SPD formed a hydrogen bond with Ala1725.46 of TM-5, and the intracellular end of TM-5 moved outward slowly; that hydrogen bond did not form with the D1 receptor; (2) l-SPD formed stronger interactions with D3.32 and W6.48 in the D1 receptor than in the 5-HT1A receptor and (3) the hydrogen bonding network was somewhat different in SPD-5-HT1A and SPD-D1 receptors. We propose the interaction between l-SPD and D3.32 or/and W6.48 is the original driving force during the whole activation process. 相似文献
6.
Mélissa Résimont Jean-François Liégeois 《Bioorganic & medicinal chemistry letters》2010,20(17):5199-5202
A series of carboxamide and sulphonamide alkyl(ethyl to hexyl)piperazine analogues were prepared and tested for their affinity to bind to a range of receptors potentially involved in psychiatric disorders. These chemical modifications led us to explore the impact of homology and bioisosteric replacement of the amide group. All of these compounds possessed a high affinity for 5-HT1A receptors, irrespective of the size of the linker, the carboxamide derivative with a pentyl linker had the highest affinity for α2A receptor sites and also a high affinity for 5-HT1A and D3 receptors. The sulphonamide analogue with a hexyl linker possessed a high affinity for 5-HT1A, D4.2 and D3 receptors. 相似文献
7.
Cussac D Rauly-Lestienne I Heusler P Finana F Cathala C Bernois S De Vries L 《Cellular signalling》2012,24(8):1648-1657
μ-opioid receptors have been shown to form heterodimers with several G protein coupled receptors involved in pain regulation such as α(2A)-adrenergic and neurokinin 1 receptors. Because the 5-HT(1A) receptor is also involved in pain control, we investigated whether it can interact with the μ-opioid receptor in cell lines. Using epitope-tagged μ-opioid and 5-HT(1A) receptors, we show that both receptors can co-immunoprecipate when expressed in the same cells. This physical interaction was corroborated by a Bioluminescence Resonance Energy Transfer signal between the μ-opioid receptor fused to Renilla luciferase and the 5-HT(1A) receptor fused to the Green Fluorescent Protein. Consistent with the presence of functional heterodimers, the μ-opioid receptor activated a Gα(o) protein covalently fused to the 5-HT(1A) receptor in membrane preparations as well as a Gα(15) protein fused to the 5-HT(1A) receptor in living cells. We demonstrate that both receptors can coexerce control of the ERK1/2 pathway: for example, μ-opioid receptor-induced ERK1/2 phosphorylation was selectively desensitized by 5-HT(1A) receptor activation. Although 5-HT(1A) and μ-opioid receptors were capable to internalize in response to their own activation, they were ineffective to induce the co-internalization of their partners. Thus, we show a functional heterodimerization of μ-opioid and 5-HT(1A) receptors in cell lines, a complex that might play a role in the control of pain in vivo. These results also support the potential therapeutic action of 5-HT(1A) agonists against nociceptive processes. 相似文献
8.
N. L. Vekshina P. K. Anokhin A. G. Veretinskaya I. Yu. Shamakina 《Biochemistry (Moscow) Supplemental Series B: Biomedical Chemistry》2017,11(2):111-119
The review summarizes current literature data on the structure of heteromeric complexes of dopamine receptors and their possible role in physiological and pathological processes in the brain. It includes analysis of studies on dopamine D1–D2 receptor complexes, their localization in the brain and the functional role. Functionally, these receptor complexes employ a principally different pathway of signal transduction as compared to the parent homomeric receptors. Investigation of dopamine receptor heteromers extends our understanding of the mechanisms of ligand-receptor interaction and opens new opportunities for the development of pharmacological agents for the treatment of psychiatric disorders associated with impaired dopaminergic neurotransmission, particularly, drug dependence. 相似文献
9.
Sofia Cristóvão-Ferreira Gemma Navarro Marc Brugarolas Kamil Pérez-Capote Sandra H. Vaz Giorgia Fattorini Fiorenzo Conti Carmen Lluis Joaquim A. Ribeiro Peter J. McCormick Vicent Casadó Rafael Franco Ana M. Sebastião 《Purinergic signalling》2013,9(3):433-449
Astrocytes play a key role in modulating synaptic transmission by controlling extracellular gamma-aminobutyric acid (GABA) levels via GAT-1 and GAT-3 GABA transporters (GATs). Using primary cultures of rat astrocytes, we show here that a further level of regulation of GABA uptake occurs via modulation of the GATs by the adenosine A1 (A1R) and A2A (A2AR) receptors. This regulation occurs through A1R–A2AR heteromers that signal via two different G proteins, Gs and Gi/0, and either enhances (A2AR) or inhibits (A1R) GABA uptake. These results provide novel mechanistic insight into how GPCR heteromers signal. Furthermore, we uncover a previously unknown mechanism where adenosine, in a concentration-dependent manner, acts via a heterocomplex of adenosine receptors in astrocytes to significantly contribute to neurotransmission at the tripartite (neuron–glia–neuron) synapse. 相似文献
10.
Laura J. Dreshfield David T. Wong Kenneth W. Perry Eric A. Engleman 《Neurochemical research》1996,21(5):557-562
The somatodendritic 5-HT1A autoreceptor is known to regulate activity of 5-HT neurons and consequently 5-HT release. Administration of a selective 5-HT
uptake inhibitor, fluoxetine (10 mg/kg, i.p.) increased extracellular 5-HT levels in rat hypothalamus up to 260 percent of
basal levels. (−)-Pindolol, an antagonist at the somatodendritic 5-HT1A autoreceptor, dose-dependently (1, 3 and 5 mg/kg, s.c.) potentiated the fluoxetine dependent increase up to 458 percent of
basal 5-HT levels for approximately 1.5 hours. Continuous infusion of (±)-pindolol at 30 mg/kg/h s.c. enhanced the fluoxetine
dependent elevation of extracellular 5-HT concentrations in hypothalamus up to 464 percent of basal levels and lasted for
3 hours. Thus, the combination of 5-HT uptake inhibition with antagonism at the somatodendritic 5-HT1A autoreceptor can enhance 5-HT release to levels beyond those achieved with uptake inhibition alone. The present findings
are consistent with the hypothesis that blockade of somatodendritic 5-HT1A autoreceptors removes the inhibitory effect exerted by the elevated 5-HT levels resulting from uptake inhibition. 相似文献
11.
David F. Cummings Diana C. Canseco Pratikkumar Sheth James E. Johnson John A. Schetz 《Bioorganic & medicinal chemistry》2010,18(13):4783-4792
Efforts to develop ligands that distinguish between clinically relevant 5-HT2A and 5-HT2C serotonin receptor subtypes have been challenging, because their sequences have high homology. Previous studies reported that a novel aplysinopsin belonging to a chemical class of natural products isolated from a marine sponge was selective for the 5-HT2C over the 5-HT2A receptor subtype. Our goal was to explore the 5-HT2A/2C receptor structure–affinity relationships of derivatives based on the aplysinopsin natural product pharmacophore. Twenty aplysinopsin derivatives were synthesized, purified and tested for their affinities for cloned human serotonin 5-HT1A, 5-HT2A, and 5-HT2C receptor subtypes. Four compounds in this series had >30-fold selectivity for 5-HT2A or 5-HT2C receptors. The compound (E)-5-((5,6-dichloro-1H-indol-3-yl)methylene)-2-imino-1,3-dimethylimidazolidin-4-one (UNT-TWU-22, 16) had approximately 2100-fold selectivity for the serotonin 5-HT2C receptor subtype: an affinity for 5-HT2C equal to 46 nM and no detectable affinity for the 5-HT1A or 5-HT2A receptor subtypes. The two most important factors controlling 5-HT2A or 5-HT2C receptor subtype selectivity were the combined R1,R3-alkylation of the imidazolidinone ring and the type and number of halogens on the indole ring of the aplysinopsin pharmacophore. 相似文献
12.
Chaudhary S Ponnala S Legendre O Gonzales JA Navarro HA Harding WW 《Bioorganic & medicinal chemistry》2011,19(19):5861-5868
A series of C1, C2, C3 and N6 analogs of nantenine (2) was synthesized and evaluated in 5-HT(2A) and α(1A) receptor functional assays. Alkyl substitution of the C1 and N6 methyl groups of nantenine provided selective 5-HT(2A) and α(1A) antagonists, respectively. The C2 alkyloxy analogs studied were generally selective for α(1A) versus 5-HT(2A). The C3 bromo analog 15 is one of the most potent aporphinoid 5-HT(2A) antagonists known presently. 相似文献
13.
Trincavelli ML Daniele S Orlandini E Navarro G Casadó V Giacomelli C Nencetti S Nuti E Macchia M Huebner H Gmeiner P Rossello A Lluís C Martini C 《Cellular signalling》2012,24(4):951-960
The structural and functional interaction between D2 dopamine receptor (DR) and A2A adenosine receptor (AR) has suggested these two receptors as a pharmacological target in pathologies associated with dopamine dysfunction, such as Parkinson's disease. In transfected cell lines it has been demonstrated the activation of D2DR induces a significant negative regulation of A2AAR-mediated responses, whereas few data are at now available about the regulation of A2AAR by D2DR agonists at receptor recognition site. In this work we confirmed that in A2AAR/D2DR co-transfected cells, these receptors exist as homo- and hetero-dimers. The classical D2DR agonists were able to negatively modulate both A2AAR affinity and functionality. These effects occurred even if any significant changes in A2AAR/D2DR energy transfer interaction could be detected in BRET experiments.Since the development of new molecules able to target A2A/D2 dimers may represent an attractive tool for innovative pharmacological therapy, we also identified a new small molecule, 3-(3,4-dimethylphenyl)-1-(2-piperidin-1-yl)ethyl)piperidine (compound 1), full agonist of D2DR and modulator of A2A-D2 receptor dimer. This compound was able to negatively modulate A2AAR binding properties and functional responsiveness in a manner comparable to classical D2R agonists. In contrast to classical agonists, compound 1 led to conformational changes in the quaternary structure in D2DR homomers and heteromers and induced A2AAR/D2DR co-internalization. These results suggest that compound 1 exerts a high control of the function of heteromers and could represent a starting point for the development of new drugs targeting A2AAR/D2 DR heteromers. 相似文献
14.
对荷叶中的生物碱进行了分离、鉴定和调脂减肥活性研究。本研究结合传统酸提碱沉法与现代高效液相色谱制备技术,从荷叶中分离、纯化到11个生物碱,分别被鉴定为N-氧基原荷叶碱(1)、原荷叶碱(2)、莲碱(3)、降氧化北美黄连次碱(4)、荜茇宁(5)、巴婆碱(6)、O-去甲基荷叶碱(7)、N-去甲基荷叶碱(8)、荷叶碱(9)、衡州乌药碱(10)和亚美罂粟碱(11),其中,化合物1、4和5为首次从荷叶中分得。测试所得化合物对5-HT_(2A)和5-HT_(2C)受体的激动作用,结果表明11个生物碱对5-HT_(2A)受体均具有一定的激动作用,进一步揭示了荷叶调脂减肥的可能药效基础和作用机理。 相似文献
15.
《Journal of receptor and signal transduction research》2013,33(1):99-109
AbstractMammalian D1 and D2 dopamine receptors were stably expressed in Drosophila Schneider‐2 (S2) cells and screened for their pharmacological properties. Saturable, dose‐dependent, high affinity binding of the D1‐selective antagonist [3H]SCH‐23390 was detected only in membranes from S2 cells induced to express rat dopamine D1 receptors, while saturable, dose‐dependent, high affinity binding of the D2‐selective antagonist [3H]methylspiperone was detected only in membranes from S2 cells induced to express rat dopamine D2 receptors. No specific binding of either radioligand could be detected in membranes isolated from uninduced or untransfected S2 cells. Both dopamine D1 and D2 receptor subtypes displayed the appropriate stereoselective binding of enantiomers of the nonselective antagonist butaclamol. Each receptor subtype also displayed the appropriate agonist stereoselectivities. The dopamine D1 receptor bound the (+)‐enantiomer of the D1‐selective agonist SKF38393 with higher affinity than the (?)‐enantiomer, while the dopamine D2 receptor bound the (?)‐enantiomer of the D2‐selective agonist norpropylapomorphine with higher affinity than the (+)‐enantiomer. At both receptor subtypes, dopamine binding was best characterized as occurring to a single low affinity site. In addition, the low affinity dopamine binding was also found to be insensitive to GTPγS and magnesium ions. Overall, the pharmacological profiles of mammalian dopamine D1 and D2 receptors expressed in Drosophila S2 cells is comparable to those observed for these same receptors when they are expressed in mammalian cell lines. A notable distinction is that there is no evidence for the coupling of insect G proteins to mammalian dopamine receptors. These results suggest that the S2 cell insect G system may provide a convenient source of pharmacologically active mammalian D1 and D2 dopamine receptors free of promiscuous G protein contaminants. 相似文献
16.
Meneses A 《Cellular and molecular neurobiology》2002,22(5-6):675-688
1. The 5-HT2 receptors subdivision into the 5-HT2A/2B/2C subtypes along with the advent of the selective antagonists has allowed a more detailed investigation on the role and therapeutic significance of these subtypes in cognitive functions. The present study further analyzed the 5-HT2 receptors role on memory consolidation.2. The SB-200646 (a selective 5-HT2B/2C receptor antagonist) and LY215840 (a nonselective 5-HT2/7 receptor antagonist) posttraining administration had no effect on an autoshaped memory consolidation. However, both drugs significantly and differentially antagonized the memory impairments induced by 1-(3-chlorophenyl)piperazine (mCPP), 1-naphtyl-piperazine (1-NP), mesulergine, or N-(3-trifluoromethylphenyl) piperazine (TFMPP).3. In contrast, SB-200646 failed to modify the facilitatory procognitive effect produced by (±)-2,5-dimethoxy-4-iodoamphetamine (DOI) or ketanserin, which were sensitive to MDL100907 (a selective 5-HT2A receptor antagonist) and to a LY215840 high dose.4. Finally, SB-200646 reversed the learning deficit induced by dizocilpine, but not that by scopolamine; while SB-200646 and MDL100907 coadministration reversed memory deficits induced by both drugs.5. It is suggested that 5-HT2B/2C receptors might be involved on memory formation probably mediating a suppressive or constraining action. Whether the drug-induced memory impairments in this study are explained by simple agonism, antagonism, or inverse agonism at 5-HT2 receptors remains unclear at this time.6. Notably, the 5-HT2 receptor subtypes blockade may provide some benefit to reverse poor memory consolidation conditions associated with decreased cholinergic, glutamatergic, and/or serotonergic neurotransmission. 相似文献
17.
Chunyan Chen Xinyuan Han Fenling Fan Ya Liu Tingzhong Wang Juanjuan Wang Peijing Hu Aiqun Ma Hongyan Tian 《Molecular and cellular biochemistry》2014,397(1-2):267-276
Pulmonary arterial remodeling is characterized by excessive proliferation, migration, and pro-differentiation and fibrotic activation of adventitial fibroblasts in pulmonary arterial hypertension (PAH) process. Several lines of evidence indicate that serotonin (5-HT) plays a central role in the pathogenesis of pulmonary arterial remodeling. In the present study, we investigated whether 5-HT is directly involved in the functional regulation of pulmonary artery adventitial fibroblasts (PAFs). Incubation of cultured rat PAFs with 5-HT caused a dose-dependent stimulation of cell proliferation, migration activity, and a time-dependent increase of α-SMA expression, a marker of fibroblast differentiation into myofibroblasts, and adventitia fibrosis, evaluating connective tissue growth factor (CTGF) and extracellular matrix (ECM) mRNAs and proteins. These effects were attenuated by the 5-HT2A receptor antagonist, ketanserin and mimicked by the 5-HT2A receptor agonist DOI. 5-HT-induced fibroblasts phenotypic alterations and ECM accumulation were dependent on stimulation of transforming growth factor (TGF)-β1 as demonstrated using a neutralizing antibody. 5-HT also caused Smad3 phosphorylation and ketanserin diminished 5-HT-induced Smad3 activation. These results demonstrated that 5-HT can directly activate PAFs through 5-HT2A receptor and promote fibroblasts phenotypic alterations and adventitia fibrosis depending on the signaling of the TGF-β1/Smad3 pathway. 相似文献
18.
José L. Moreno Carolina Muguruza Adrienne Umali Steven Mortillo Terrell Holloway Fuencisla Pilar-Cuéllar Giuseppe Mocci Jeremy Seto Luis F. Callado Rachael L. Neve Graeme Milligan Stuart C. Sealfon Juan F. López-Giménez J. Javier Meana Deanna L. Benson Javier González-Maeso 《The Journal of biological chemistry》2012,287(53):44301-44319
Serotonin and glutamate G protein-coupled receptor (GPCR) neurotransmission affects cognition and perception in humans and rodents. GPCRs are capable of forming heteromeric complexes that differentially alter cell signaling, but the role of this structural arrangement in modulating behavior remains unknown. Here, we identified three residues located at the intracellular end of transmembrane domain four that are necessary for the metabotropic glutamate 2 (mGlu2) receptor to be assembled as a GPCR heteromer with the serotonin 5-hydroxytryptamine 2A (5-HT2A) receptor in the mouse frontal cortex. Substitution of these residues (Ala-6774.40, Ala-6814.44, and Ala-6854.48) leads to absence of 5-HT2A·mGlu2 receptor complex formation, an effect that is associated with a decrease in their heteromeric ligand binding interaction. Disruption of heteromeric expression with mGlu2 attenuates the psychosis-like effects induced in mice by hallucinogenic 5-HT2A agonists. Furthermore, the ligand binding interaction between the components of the 5-HT2A·mGlu2 receptor heterocomplex is up-regulated in the frontal cortex of schizophrenic subjects as compared with controls. Together, these findings provide structural evidence for the unique behavioral function of a GPCR heteromer. 相似文献
19.
Dasiel O. Borroto-Escuela Fidel Corrales Manuel Narvaez Julia Oflijan Luigi F. Agnati Miklós Palkovits Kjell Fuxe 《Biochemical and biophysical research communications》2013
New findings show that neurotrophic and antidepressant effects of 5-HT in brain can, in part, be mediated by activation of the 5-HT1A receptor protomer in the hippocampal and raphe FGFR1–5-HT1A heteroreceptor complexes enhancing the FGFR1 signaling. The dynamic agonist modulation of the FGFR1–5-HT1A heteroreceptor complexes and their recruitment of β-arrestin is now determined in cellular models with focus on its impact on 5-HT1AR and FGFR1 homodimerization in the heteroreceptor complexes based on BRET2 assays. The findings show that coagonist treatment with 8-OH-DPAT and FGF2 but not treatment with the 5-HT1A agonist alone markedly increases the BRETmax values and significantly reduces the BRET50 values of 5HT1A homodimerization. The effects of FGF2 or FGF20 with or without the 5-HT1A agonist were also studied on the FGFR1 homodimerization of the heteroreceptor complexes. FGF2 produced a marked and rapid increase in FGFR1 homodimerization which partially declined over a 10 min period. Cotreatment with FGF2 and 5-HT1A agonist blocked this decline in FGFR1 homodimerization. Furthermore, FGF2 alone produced a small increase in the BRET2 signal from the 5-HT1A-β-arrestin2 receptor–protein complex which was additive to the marked effect of 8-OH-DPAT alone. Taken together, the participation of 5-HT1A and FGFR1 homodimers and recruitment of β-arrestin2 was demonstrated in the FGFR1–5-HT1A heteroreceptor complexes upon agonist treatments. 相似文献
20.
Brown JW Sirlin EA Benoit AM Hoffman JM Darnall RA 《American journal of physiology. Regulatory, integrative and comparative physiology》2008,294(3):R884-R894
Activation of 5-HT1A receptors in the medullary raphé decreases sympathetically mediated brown adipose tissue (BAT) thermogenesis and peripheral vasoconstriction when previously activated with leptin, LPS, prostaglandins, or cooling. It is not known whether shivering is also modulated by medullary raphé 5-HT1A receptors. We previously showed in conscious piglets that activation of 5-HT1A receptors with (+/-)-8-hydroxy-2-(dipropylamino)-tetralin (8-OH-DPAT) in the paragigantocellularis lateralis (PGCL), a medullary region lateral to the raphé that contains substantial numbers of 5-HT neurons, eliminates rapid eye movement (REM) sleep and decreases shivering in a cold environment, but does not attenuate peripheral vasoconstriction. Hoffman JM, Brown JW, Sirlin EA, Benoit AM, Gill WH, Harris MB, Darnall RA. Am J Physiol Regul Integr Comp Physiol 293: R518-R527, 2007. We hypothesized that, during cooling, activation of 5-HT1A receptors in the medullary raphé would also eliminate REM sleep and, in contrast to activation of 5-HT1A receptors in the PGCL, would attenuate both shivering and peripheral vasoconstriction. In a continuously cool environment, dialysis of 8-OH-DPAT into the medullary raphé resulted in alternating brief periods of non-REM sleep and wakefulness and eliminated REM sleep, as observed when 8-OH-DPAT is dialyzed into the PGCL. Moreover, both shivering and peripheral vasoconstriction were significantly attenuated after 8-OH-DPAT dialysis into the medullary raphé. The effects of 8-OH-DPAT were prevented after dialysis of the selective 5-HT1A receptor antagonist WAY-100635. We conclude that, during cooling, exogenous activation of 5-HT1A receptors in the medullary raphé decreases both shivering and peripheral vasoconstriction. Our data are consistent with the hypothesis that neurons expressing 5-HT1A receptors in the medullary raphé facilitate spinal motor circuits involved in shivering, as well as sympathetic stimulation of other thermoregulatory effector mechanisms. 相似文献