首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Octaprenyl diphosphate synthase (OPPs) and undecaprenyl diphosphate synthases (UPPs) catalyze consecutive condensation reactions of farnesyl diphosphate (FPP) with 5 and 8 isopentenyl diphosphate (IPP) to generate C40 and C55 products with trans- and cis-double bonds, respectively. In this study, we used IPP analogue, 3-bromo-3-butenyl diphosphate (Br-IPP), in conjunction with radiolabeled FPP, to probe the reaction mechanisms of the two prenyltransferases. Using this alternative substrate with electron-withdrawing bromo group at the C3 position to slow down the condensation step, trapping of farnesol in the OPPs reaction from radiolabeled FPP under basic condition was observed, consistent with a sequential mechanism. In contrast, UPPs reaction yielded no farnesyl carbocation intermediate under the same condition with radiolabeled FPP and Br-IPP, indicating a concerted mechanism. Our data demonstrate the different reaction mechanisms for cis- and tran-prenyltransferases although they share the same substrates.  相似文献   

2.
Farnesyl pyrophosphate (FPP) is a common substrate for a variety of prenyltransferases for synthesizing isoprenoid compounds. In this study, (2E,6E)-8-O-(N-methyl-2-aminobenzoyl)-3,7-dimethyl-2,6-octandien-1-pyrophosphate (MANT-O-GPP), a fluorescent analog of FPP, was synthesized and demonstrated as a satisfactory substrate for Escherichia coli undecaprenyl pyrophosphate synthase (UPPS) with a Km of 1.5 μM and a kcat of 1.2 s−1 based on [14C]IPP consumption. Interesting, we found that its emission fluorescence intensity at 420 nm increased remarkably during chain elongation, thereby useful for real-time monitoring kinetics of UPPS to yield a Km of 1.1 μM and a kcat of 1.0 s−1, consistent with those measured using radiolabeled substrate. Using this assay, the IC50 of a known UPPS inhibitor farnesyl thiopyrophosphate (FsPP) was confirmed. Our studies provide a convenient and environmentally friendly alternative for kinetics and inhibition studies on UPPS drug target.  相似文献   

3.
1H NMR spectroscopy was used to follow the cleavage of sucrose by invertase. The parameters of the enzyme's kinetics, Km and Vmax, were directly determined from progress curves at only one concentration of the substrate. For comparison with the classical Michaelis-Menten analysis, the reaction progress was also monitored at various initial concentrations of 3.5 to 41.8 mM. Using the Lambert W function the parameters Km and Vmax were fitted to obtain the experimental progress curve and resulted in Km = 28 mM and Vmax = 13 μM/s. The result is almost identical to an initial rate analysis that, however, costs much more time and experimental effort. The effect of product inhibition was also investigated. Furthermore, we analyzed a much more complex reaction, the conversion of farnesyl diphosphate into (+)-germacrene D by the enzyme germacrene D synthase, yielding Km = 379 μM and kcat = 0.04 s− 1. The reaction involves an amphiphilic substrate forming micelles and a water insoluble product; using proper controls, the conversion can well be analyzed by the progress curve approach using the Lambert W function.  相似文献   

4.
Undecaprenyl pyrophosphate synthase (UPPs) is an essential enzyme in a key bacterial cell wall synthesis pathway. It catalyzes the consecutive condensations of isopentenyl pyrophosphate (IPP) groups on to a trans-farnesyl pyrophosphate (FPP) to produce a C55 isoprenoid, undecaprenyl pyrophosphate (UPP). Here we report the discovery and co-crystal structures of a drug-like UPPs inhibitor in complex with Streptococcus pneumoniae UPPs, with and without substrate FPP, at resolutions of 2.2 and 2.1 Å, respectively. The UPPs inhibitor has a low molecular weight (355 Da), but displays potent inhibition of UPP synthesis in vitro (IC50 50 nM) that translates into excellent whole cell antimicrobial activity against pathogenic strains of Streptococcal species (MIC90 0.4 µg mL−1). Interestingly, the inhibitor does not compete with the substrates but rather binds at a site adjacent to the FPP binding site and interacts with the tail of the substrate. Based on the structures, an allosteric inhibition mechanism of UPPs is proposed for this inhibitor. This inhibition mechanism is supported by biochemical and biophysical experiments, and provides a basis for the development of novel antibiotics targeting Streptococcus pneumoniae.  相似文献   

5.
The chain elongation reaction catalyzed by polyprenyl diphosphate synthases is the fundamental building reaction in the isoprenoid pathway. During chain elongation, the hydrocarbon moiety in an allylic isoprenoid diphosphate is added to the carbon–carbon double bond of isopentenyl diphosphate (IPP). The chain elongation enzymes can be divided into two genetically different families depending on whether the stereochemistry of the newly formed double bond during each cycle of chain elongation is E or Z. Farnesyl diphosphate (FPP) synthase, a member of the E-double bond family, is the best studied of the chain elongation enzymes and serves as a paradigm for understanding the reactions catalyzed by E-polyprenyl diphosphate synthases. The mechanism for chain elongation is a stereoselective electrophilic alkylation of the carbon–carbon double bond in IPP by the allylic substrate. X-ray structures of avian and E. coli FPP synthases have provided important insights about the mechanism for chain elongation and a structural basis for understanding the stereochemistry of the reaction.This review is dedicated to Professor Rodney Croteau on the occasion of his 60th birthday.  相似文献   

6.
Santalum album L. commonly known as East-Indian sandal or chandan is a hemiparasitic tree of family santalaceae. Santalol is a bioprospecting molecule present in sandalwood and any effort towards metabolic engineering of this important moiety would require knowledge on gene regulation. Santalol is a sesquiterpene synthesized through mevalonate or non-mevalonate pathways. First step of santalol biosynthesis involves head to tail condensation of isopentenyl pyrophosphate (IPP) with its allylic co-substrate dimethyl allyl pyrophosphate (DMAPP) to produce geranyl pyrophosphate (GPP; C10 — a monoterpene). GPP upon one additional condensation with IPP produces farnesyl pyrophosphate (FPP; C15 — an open chain sesquiterpene). Both the reactions are catalyzed by farnesyl diphosphate synthase (FDS). Santalene synthase (SS), a terpene cyclase catalyzes cyclization of open ring FPP into a mixture of cyclic sesquiterpenes such as α-santalene, epi-β-santalene, β-santalene and exo bergamotene, the main constituents of sandal oil. The objective of the present work was to generate a comprehensive knowledge on the genes involved in santalol production and study their molecular regulation. To achieve this, sequences encoding farnesyl diphosphate synthase and santalene synthase were isolated from sandalwood using suppression subtraction hybridization and 2D gel electrophoresis technology. Functional characterization of both the genes was done through enzyme assays and tissue-specific expression of both the genes was studied. To our knowledge, this is the first report on studies on molecular regulation, and tissue-specific expression of the genes involved in santalol biosynthesis.  相似文献   

7.
A cDNA clone (GenBank Accession No. AY835398) encoding a sesquiterpene synthase, (E)-β-farnesene synthase, has been isolated from Artemisia annua L. It contains a 1746-bp open reading frame coding for 574 amino acids (66.9 kDa) with a calculated pI = 5.03. The deduced amino acid sequence is 30-50% identical with sequences of other sesquiterpene synthases from angiosperms. The recombinant enzyme, produced in Escherichia coli, catalyzed the formation of a single product, β-farnesene, from farnesyl diphosphate. The pH optimum for the recombinant enzyme is around 6.5 and the Km- and kcat-values for farnesyl diphosphate, is 2.1 μM and 9.5 × 10−3 s−1, respectively resulting in the efficiency 4.5 × 10−3 M−1 s−1. The enzyme exhibits substantial activity in the presence of Mg2+, Mn2+ or Co2+ but essentially no activity when Zn2+, Ni2+ or Cu2+ is used as cofactor. The concentration required for maximum activity are estimated to 5 mM, 0.5 mM and <10 μM for Mg2+, Co2+ or Mn2+, respectively. Geranyl diphosphate is not a substrate for the recombinant enzyme.  相似文献   

8.
Octaprenyl pyrophosphate synthase (OPPs), an enzyme belonging to the trans-prenyltransferases family, is involved in the synthesis of C40 octaprenyl pyrophosphate (OPP) by reacting farnesyl pyrophosphate (FPP) with five isopentenyl pyrophosphates (IPP). It has been reported that OPPs is essential for bacteria's normal growth and is a potential target for novel antibacterial drug design. Here we report the crystal structure of OPPs from Helicobacter pylori, determined by MAD method at 2.8 Å resolution and refined to 2.0 Å resolution. The substrate IPP was docked into HpOPPs structure and residues involved in IPP recognition were identified. The other substrate FPP, the intermediate GGPP and a nitrogen-containing bisphosphonate drug were also modeled into the structure. The resulting model shed some lights on the enzymatic mechanism, including (1) residues Arg87, Lys36 and Arg39 are essential for IPP binding; (2) residues Lys162, Lys224 and Gln197 are involved in FPP binding; (3) the second DDXXD motif may involve in FPP binding by Mg2+ mediated interactions; (4) Leu127 is probably involved in product chain length determination in HpOPPs and (5) the intermediate products such as GGPP need a rearrange to occupy the binding site of FPP and then IPP is reloaded. Our results also indicate that the nitrogen-containing bisphosphonate drugs are potential inhibitors of FPPs and other trans-prenyltransferases aiming at blocking the binding of FPP.  相似文献   

9.
Farnesyl diphosphate synthase (FPPS) is a key enzyme in isoprenoid biosynthesis, it catalyzes the head-to-tail condensation of dimethylallyl diphosphate (DMAPP) with two molecules of isopentenyl diphosphate (IPP) to generate farnesyl diphosphate (FPP), a precursor of juvenile hormone (JH). In this study, we functionally characterized an Aedes aegypti FPPS (AaFPPS) expressed in the corpora allata. AaFPPS is the only FPPS gene present in the genome of the yellow fever mosquito, it encodes a 49.6 kDa protein exhibiting all the characteristic conserved sequence domains on prenyltransferases. AaFPPS displays its activity in the presence of metal cofactors; and the product condensation is dependent of the divalent cation. Mg2+ ions lead to the production of FPP, while the presence of Co2+ ions lead to geranyl diphosphate (GPP) production. In the presence of Mg2+ the AaFPPS affinity for allylic substrates is GPP > DMAPP > IPP. These results suggest that AaFPPS displays “catalytic promiscuity”, changing the type and ratio of products released (GPP or FPP) depending on allylic substrate concentrations and the presence of different metal cofactors. This metal ion-dependent regulatory mechanism allows a single enzyme to selectively control the metabolites it produces, thus potentially altering the flow of carbon into separate metabolic pathways.  相似文献   

10.
Farnesyl pyrophosphate synthase (FPPS EC 2.5.1.10) catalyzes the production of farnesyl pyrophosphate (FPP), which is a key precursor for many sesquiterpenoids such as floral scent and defense volatiles against herbivore attack. Here we report a new full-length cDNA encoding farnesyl diphosphate synthase from Hedychium coronarium. The open reading frame for full-length HcFPPS encodes a protein of 356 amino acids, which is 1068 nucleotides long with calculated molecular mass of 40.7 kDa. Phylogenetic tree analysis indicates that HcFPPS belongs to the plant FPPS super-family and has strong relationship with FPPS from Musa acuminata. Expression of the HcFPPS gene in Escherichia coli yielded FPPS activity. Tissue-specific and developmental analyses of the HcFPPS mRNA and corresponding volatile sesquiterpenoid levels in H. coronarium flowers revealed that the HcFPPS might play a regulatory role in floral volatile sesquiterpenoid biosynthesis. The emission of the FPP-derived volatile terpenoid correlates with strong expression of HcFPPS induced by mechanical wounding and Udaspes folus-damage in leaves, which suggests that HcFPPS may have an important ecological function in H. coronarium vegetative organ.  相似文献   

11.
Leucoplasts of immature calamondin and satsuma fruits were incubated with [1-14C] isopentenyl pyrophosphate under various conditions. Optimal incorporation of the tracer into geranyl pyrophosphate and monoterpene hydrocarbons occurred in the presence of exogenous dimethylallyl pyrophosphate and Mn2+ which was more effective than Mg2+. The dependence of dimethylallyl pyrophosphate showed that about 10 moles were required for 1 mole of isopentenyl pyrophosphate for the best recovery in monoterpene hydrocarbon biosynthesis. A time-course incorporation of isopentenyl pyrophosphate revealed that the C10 hydrocarbon elaboration was dependent on the geranyl pyrophosphate production and at no time neryl pyrophosphate was synthesized by leucoplasts. The amount of labelled farnesyl pyrophosphate was rather low whatever the conditions used in the experiments and sesquiterpene hydrocarbon biosynthesis was never observed.Abbreviations DMAPP dimethylallyl pyrophosphate - FPP farnesyl pyrophosphate - GPP geranyl pyrophosphate - IPP isopentenyl pyrophosphate - LPP linalyl pyrophosphate - NPP neryl pyrophosphate  相似文献   

12.
13.
Undecaprenyl pyrophosphate synthase (UPPS) catalyzes the consecutive condensation reactions of eight isopentenyl pyrophosphate (IPP) with farnesyl pyrophosphate (FPP) to generate C(55) undecaprenyl pyrophosphate (UPP). In the present study, site-directed mutagenesis, fluorescence quenching, and stopped-flow methods were utilized to examine the substrate binding and the protein conformational change. (S)-Farnesyl thiopyrophosphate (FsPP), a FPP analogue, was synthesized to probe the enzyme inhibition and events associated with the protein fluorescence change. This compound with a much less labile thiopyrophosphate shows K(i) value of 0.2 microm in the inhibition of Escherichia coli UPPS and serves as a poor substrate, with the k(cat) value (3.1 x 10(-7) s(-1)) 10(7) times smaller than using FPP as the substrate. Reduction of protein intrinsic fluorescence was observed upon addition of FPP (or FsPP) to the UPPS solution. Moreover, fluorescence studies carried out using W91F and other mutant UPPS with Trp replaced by Phe indicate that FPP binding mainly quenches the fluorescence of Trp-91, a residue in the alpha3 helix that moves toward the active site during substrate binding. Using stopped-flow apparatus, a three-phase protein fluorescence change with time was observed by mixing the E.FPP complex with IPP in the presence of Mg(2+). However, during the binding of E.FsPP with IPP, only the fastest phase was observed. These results suggest that the first phase is due to the IPP binding to E.FPP complex, and the other two slow phases are originated from the protein conformational change. The two slow phases coincide with the time course of FPP chain elongation from C(15) to C(55) and product release.  相似文献   

14.
Farnesol (FOH) production has been carried out in metabolically engineered Escherichia coli. FOH is formed through the depyrophosphorylation of farnesyl pyrophosphate (FPP), which is synthesized from isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) by FPP synthase. In order to increase FPP synthesis, E. coli was metabolically engineered to overexpress ispA and to utilize the foreign mevalonate (MVA) pathway for the efficient synthesis of IPP and DMAPP. Two‐phase culture using a decane overlay of the culture broth was applied to reduce volatile loss of FOH produced during culture and to extract FOH from the culture broth. A FOH production of 135.5 mg/L was obtained from the recombinant E. coli harboring the pTispA and pSNA plasmids for ispA overexpression and MVA pathway utilization, respectively. It is interesting to observe that a large amount of FOH could be produced from E. coli without FOH synthase by the augmentation of FPP synthesis. Introduction of the exogenous MVA pathway enabled the dramatic production of FOH by E. coli while no detectable FOH production was observed in the endogenous MEP pathway‐only control. Biotechnol. Bioeng. 2010;107: 421–429. © 2010 Wiley Periodicals, Inc.  相似文献   

15.
To determine the substrate specificities of wild and mutated types of farnesyl diphosphate (FPP) synthases from Bacillus stearothermophilus, we examined the reactivities of 8-hydroxygeranyl diphosphate (HOGPP) and 8-methoxygeranyl diphosphate (CH3OGPP) as allylic substrate homologs.

The wild-type FPP synthase reaction of HOGPP (and CH3OGPP) with isopentenyl diphosphate (IPP) gave hydroxyfarnesyl- (and methoxyfarnesyl-) diphosphates that stopped at the first stage of condensation.

On the other hand, with mutated type FPP synthase (Y81S), the former gave hydroxygeranylgeranyl diphosphate as the main double-condensation product together with hydroxyfarnesyl diphosphate as a single-condensation product and a small amount of hydroxygeranylfarnesyl diphosphate as a triple-condensation product. Moreover, the latter gave a double-condensation product, methoxygeranylgeranyl diphosphate, as the main product and only a trace of methoxyfarnesyl diphosphate was obtained.  相似文献   

16.
Abstract

A group of prenyltransferases produce linear lipids by catalyzing consecutive condensation reactions of farnesyl diphosphate (FPP) with specific numbers of isopentenyl diphosphate (IPP), a common building block of isoprenoid compounds. Depending on the stereochemistry of the double bonds formed during IPP condensation, these prenyltransferases are categorized as cis- and trans-types. Undecaprenyl diphosphate synthase (UPPS) that catalyzes chain elongation of FPP by consecutive condensation reactions with eight IPP, to form C55 lipid carrier for bacterial cell wall biosynthesis, serves as a model for understanding cis-prenyltransferases. In this review, the current knowledge in UPPS kinetics, mechanisms, structures, and inhibitors is summarized.  相似文献   

17.
Artemisinin is a well-known antimalarial drug isolated from the Artemisia annua plant. The biosynthesis of this well-known molecule has been reinvestigated by using [1-13C]acetate, [2-13C]acetate, and [1,6-13C2]glucose. The 13C peak enrichment in artemisinin was observed in six and nine carbon atoms from [1-13C]acetate and [2-13C]acetate, respectively. The 13C NMR spectra of 13C-enriched artemisinin suggested that the mevalonic acid (MVA) pathway is the predominant route to biosynthesis of this sesquiterpene. On the other hand, the peak enrichment of five carbons of 13C-artemisinin including carbon atoms originating from methyls of dimethylallyl group of geranyl pyrophosphate (GPP) and farnesyl pyrophosphate (FPP) was observed from [1,6-13C2]glucose. This suggested that GPP which is supposed to be biosynthesized in plastids travels from plastids to cytosol through the plastidial wall and combines with isopentenyl pyrophosphate (IPP) to form the (E,E)-FPP which finally cyclizes and oxidizes to artemisinin. In this way the DXP pathway also contributes to the biosynthesis of this sesquiterpene.  相似文献   

18.
Undecaprenyl pyrophosphate synthase (UPPs) catalyzes eight consecutive condensation reactions of farnesyl pyrophosphate (FPP) with isopentenyl pyrophosphate (IPP) to form a 55-carbon long-chain product. We previously reported the crystal structure of the apo-enzyme from Escherichia coli and the structure of UPPs in complex with sulfate ions (resembling pyrophosphate of substrate), Mg(2+), and two Triton molecules (product-like). In the present study, FPP substrate was soaked into the UPPs crystals, and the complex structure was solved. Based on the crystal structure, the pyrophosphate head group of FPP is bound to the backbone NHs of Gly29 and Arg30 as well as the side chains of Asn28, Arg30, and Arg39 through hydrogen bonds. His43 is close to the C2 carbon of FPP and may stabilize the farnesyl cation intermediate during catalysis. The hydrocarbon moiety of FPP is bound with hydrophobic amino acids including Leu85, Leu88, and Phe89, located on the alpha3 helix. The binding mode of FPP in cis-type UPPs is apparently different from that of trans-type and many other prenyltransferases which utilize Asprich motifs for substrate binding via Mg(2+). The new structure provides a plausible mechanism for the catalysis of UPPs.  相似文献   

19.
Cyclopropanation of unsaturated lipids is an intriguing enzymatic reaction and a potential therapeutic target in Mycobacterium tuberculosis. Cyclopropane fatty acid synthase from Escherichia coli is the only in vitro model available to date for mechanistic and inhibition studies. While the overall reaction mechanism of this enzymatic process is now well accepted, some mechanistic issues are still debated. Using homogeneous E. coli enzyme we have shown that, contrary to previous report based on in vivo experiments, there is no exchange of the cylopropane methylene protons with the solvent during catalysis, as probed by ultra high resolution mass spectrometry. Using [methyl-14C]-labeled and [methyl-3H3]-S-adenosyl-l-methionine we have measured a significant intermolecular primary tritium kinetic isotope effect (TV/Kapp = 1.8 ± 0.1) consistent with a partially rate determining deprotonation step. We conclude that both chemical steps of this enzymatic cyclopropanation, the methyl addition onto the double bond and the deprotonation step, are rate determining, a common situation in efficient enzymes.  相似文献   

20.
A farnesyl diphosphate synthase gene (FPPS2), which contains 11 introns and 12 exons, was isolated from the apple cultivar “White Winter Pearmain”. When it was compared to our previously reported FPPS1, its each intron size was different, its each exon size was the same as that of FPPS1 gene, 30 nucleotide differences were found in its coding sequence. Based on these nucleotide differences, specific primers were designed to perform expression analysis; the results showed that it expressed in both fruit and leaf, its expression level was obviously lower than that of FPPS1 gene in fruit which was stored at 4 °C for 5 weeks. This is the first report concerning two FPPS genes and their expression comparison in apples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号