首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The transition of oocytes from meiosis I (MI) to meiosis II (MII) requires partial cyclin B degradation to allow MI exit without S phase entry. Rapid reaccumulation of cyclin B allows direct progression into MII, producing a cytostatic factor (CSF)-arrested egg. It has been reported that dampened translation of the anaphase-promoting complex (APC) inhibitor Emi2 at MI allows partial APC activation and MI exit. We have detected active Emi2 translation at MI and show that Emi2 levels in MI are mainly controlled by regulated degradation. Emi2 degradation in MI depends not on Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), but on Cdc2-mediated phosphorylation of multiple sites within Emi2. As in MII, this phosphorylation is antagonized by Mos-mediated recruitment of PP2A to Emi2. Higher Cdc2 kinase activity in MI than MII allows sufficient Emi2 phosphorylation to destabilize Emi2 in MI. At MI anaphase, APC-mediated degradation of cyclin B decreases Cdc2 activity, enabling Cdc2-mediated Emi2 phosphorylation to be successfully antagonized by Mos-mediated PP2A recruitment. These data suggest a model of APC autoinhibition mediated by stabilization of Emi2; Emi2 proteins accumulate at MI exit and inhibit APC activity sufficiently to prevent complete degradation of cyclin B, allowing MI exit while preventing interphase before MII entry.  相似文献   

2.
Vertebrate eggs arrest at metaphase of meiosis II due to an activity known as cytostatic factor (CSF). CSF antagonizes the ubiquitin ligase activity of the anaphase-promoting complex/cyclosome (APC/C), preventing cyclin B destruction and meiotic exit until fertilization occurs. A puzzling feature of CSF arrest is that APC/C inhibition is leaky. Ongoing cyclin B synthesis is counterbalanced by a limited amount of APC/C-mediated cyclin B destruction; thus, cyclin B/Cdc2 activity remains at steady state. How the APC/C can be slightly active toward cyclin B, and yet restrained from ubiquitinating cyclin B altogether, is unknown. Emi2/XErp1 is the critical CSF component directly responsible for APC/C inhibition during CSF arrest. Fertilization triggers the Ca2+-dependent destruction of Emi2, releasing the APC/C to ubiquitinate the full pool of cyclin B and initiate completion of meiosis. Previously, we showed that a phosphatase maintains Emi2’s APC/C-inhibitory activity in CSF-arrested Xenopus egg extracts. Here, we demonstrate that phosphatase inhibition permits Emi2 phosphorylation at thr-545 and -551, which inactivates Emi2. Furthermore, we provide evidence that adding excess cyclin B to CSF extracts stimulates Cdc2 phosphorylation of these same residues, antagonizing Emi2-APC/C association. Our findings suggest a model wherein the pool of Emi2 acts analogously to a rheostat by integrating Cdc2 and phosphatase activities to prevent cyclin B overaccumulation and Cdc2 hyperactivity during the indefinite period of time between arrival at metaphase II and eventual fertilization. Finally, we propose that inactivation of Emi2 by Cdc2 permits mitotic progression during early embryonic cleavage cycles.  相似文献   

3.
In vertebrates, unfertilized eggs are arrested at meiotic metaphase II (meta-II) by cytostatic factor (CSF), with Cdc2 activity maintained at a constant, high level. CSF is thought to suppress cyclin B degradation through the inhibition of the anaphase-promoting complex/cyclosome (APC/C)-Cdc20 while cyclin B synthesis continues in unfertilized eggs. Thus, it is a mystery how Cdc2 activity is kept constant during CSF arrest. Here, we show that the APC/C-Cdc20 can mediate cyclin B degradation in CSF-arrested Xenopus eggs and extracts, in such a way that when Cdc2 activity is elevated beyond a critical level, APC/C-Cdc20-dependent cyclin B degradation is activated and Cdc2 activity consequently declines to the critical level. This feedback control of Cdc2 activity is shown to be required for keeping Cdc2 activity constant during meta-II arrest. We have also shown that Mos/MAPK pathway is essential for preventing the cyclin B degradation from inactivating Cdc2 below the critical level required to sustain meta-II arrest. Our results indicate that under CSF arrest, Mos/MAPK activity suppresses cyclin B degradation, preventing Cdc2 activity from falling below normal meta-II levels, whereas activation of APC/C-Cdc20-mediated cyclin B degradation at elevated levels of Cdc2 activity prevents Cdc2 activity from reaching excessively high levels.  相似文献   

4.
Fertilizable mammalian oocytes are arrested at the second meiotic metaphase (mII) by the cyclinB-Cdc2 heterodimer, maturation promoting factor (MPF). MPF is stabilized via the activity of an unidentified cytostatic factor (CSF), thereby suspending meiotic progression until fertilization. We here present evidence that a conserved 71 kDa mammalian orthologue of Xenopus XErp1/Emi2, which we term endogenous meiotic inhibitor 2 (Emi2) is an essential CSF component. Depletion in situ of Emi2 by RNA interference elicited precocious meiotic exit in maturing mouse oocytes. Reduction of Emi2 released mature mII oocytes from cytostatic arrest, frequently inducing cytodegeneration. Mos levels autonomously declined to undetectable levels in mII oocytes. Recombinant Emi2 reduced the propensity of mII oocytes to exit meiosis in response to activating stimuli. Emi2 and Cdc20 proteins mutually interact and Cdc20 ablation negated the ability of Emi2 removal to induce metaphase release. Consistent with this, Cdc20 removal prevented parthenogenetic or sperm-induced meiotic exit. These studies show in intact oocytes that the interaction of Emi2 with Cdc20 links activating stimuli to meiotic resumption at fertilization and during parthenogenesis in mammals.  相似文献   

5.
Vertebrate eggs arrest at metaphase of the second meiotic division before fertilization under the effect of a cytostatic factor (CSF). This arrest is established during oocyte maturation by the MAPK kinase module, comprised of Mos, MEK, MAPKs and p90Rsk. Maintenance of CSF arrest at metaphase requires inhibitors of the anaphase-promoting complex (APC) like Emi1, which sequesters the APC activator Cdc20. Although it was proposed that the Mos pathway and Emi1 act independently, neither one alone is sufficient to entirely reproduce CSF arrest. Herein we demonstrate that p90Rsk2 associates with and phosphorylates Emi1 upstream of the binding region for Cdc20, thus stabilizing their interaction. Experiments in transfected cells and two-cell embryos indicate that Emi1 and p90Rsk2 cooperate to induce the metaphase arrest. Moreover, oocyte maturation was impaired by interfering with the interaction between p90Rsk2 and Emi1 or by RNA interference of Emi1. Our results indicate that p90Rsk2 and Emi1 functionally interact during oocyte maturation and that the Mos pathway establishes CSF activity through stabilization of an APC-inhibitory complex composed by Emi1 and Cdc20 before fertilization.  相似文献   

6.
Xenopus oocytes are arrested at the G2/prophase boundary of meiosis I and enter meiosis in response to progesterone. A hallmark of meiosis is the absence of DNA replication between the successive cell division phases meiosis I (MI) and meiosis II (MII). After the MI-MII transition, Xenopus eggs are locked in metaphase II by the cytostatic factor (CSF) arrest to prevent parthenogenesis. Early Mitotic Inhibitor 1 (Emi1) maintains CSF arrest by inhibiting the ability of the Anaphase Promoting Complex (APC) to direct the destruction of cyclin B. To investigate whether Emi1 has an earlier role in meiosis, we injected Xenopus oocytes with neutralizing antibodies against Emi1 at G2/prophase and during the MI-MII transition. Progesterone-treated G2/prophase oocytes injected with anti-Emi1 antibody fail to activate Maturation Promoting Factor (MPF), a complex of cdc2/cyclin B, and the MAPK pathway, and do not undergo germinal vesicle breakdown (GVBD). Injection of purified ?90 cyclin B protein or blocking anti-Emi1 antibody with purified Emi1 protein rescues these meiotic processes in Emi1-neutralized oocytes. Acute inhibition of Emi1 in progesterone treated oocytes immediately after GVBD causes rapid loss of cdc2 activity with simultaneous loss of cyclin B levels and inactivation of the MAPK pathway. These oocytes decondense their chromosomes and enter a DNA replication phase instead of progressing to MII. Prior ablation of Cdc20, addition of methyl-ubiquitin, or addition of indestructible ?90 cyclin B rescues the MI-MII transition in Emi1 inhibited oocytes.  相似文献   

7.
In vertebrates, unfertilized eggs are arrested at metaphase of meiosis II by Mos and Emi2, an inhibitor of the APC/C ubiquitin ligase. In Xenopus, Cdk1 phosphorylates Emi2 and both destabilizes and inactivates it, whereas Mos recruits PP2A phosphatase to antagonize the Cdk1 phosphorylation. However, how Cdk1 phosphorylation inhibits Emi2 is largely unknown. Here we show that multiple N-terminal Cdk1 phosphorylation motifs bind cyclin B1-Cdk1 itself, Plk1, and CK1δ/ε to inhibit Emi2. Plk1, after rebinding to other sites by self-priming phosphorylation, partially destabilizes Emi2. Cdk1 and CK1δ/ε sequentially phosphorylate the C-terminal APC/C-docking site, thereby cooperatively inhibiting Emi2 from binding the APC/C. In the presence of Mos, however, PP2A-B56β/ε bind to Emi2 and keep dephosphorylating it, particularly at the APC/C-docking site. Thus, Emi2 stability and activity are dynamically regulated by Emi2-bound multiple kinases and PP2A phosphatase. Our data also suggest a general role for Cdk1 substrate phosphorylation motifs in M phase regulation.  相似文献   

8.
Human chorionic gonadotropin (hCG) mimics the action of luteinizing hormone (LH) and triggers meiotic maturation and ovulation in mammals. The mechanism by which hCG triggers meiotic resumption in mammalian oocytes remains poorly understood. We aimed to find out the impact of hCG surge on morphological changes, adenosine 3′,5′‐cyclic monophosphate (cAMP), guanosine 3′,5′‐cyclic monophosphate (cGMP), cell division cycle 25B (Cdc25B), Wee1, early mitotic inhibitor 2 (Emi2), anaphase‐promoting complex/cyclosome (APC/C), meiotic arrest deficient protein 2 (MAD2), phosphorylation status of cyclin‐dependent kinase 1 (Cdk1), its activity and cyclin B1 expression levels during meiotic resumption from diplotene as well as metaphase‐II (M‐II) arrest in cumulus oocyte complexes (COCs). Our data suggest that hCG surge increased cyclic nucleotides level in encircling granulosa cells but decreased their level in oocyte. The reduced intraoocyte cyclic nucleotides level is associated with the decrease of Cdc25B, Thr161 phosphorylated Cdk1 and Emi2 expression levels. On the other hand, hCG surge increased Wee1, Thr14/Tyr15 phosphorylated Cdk1, APC/C as well as MAD2 expression levels. The elevated APC/C activity reduced cyclin B1 level. The changes in phosphorylation status of Cdk1 and reduced cyclin B1 level might have resulted in maturation promoting factor (MPF) destabilization. The destabilized MPF finally triggered resumption of meiosis from diplotene as well as M‐II arrest in rat oocytes.  相似文献   

9.
Vertebrate oocytes awaiting fertilization are arrested at metaphase of meiosis II by cytostatic factor (CSF). This arrest is due to inhibition of the anaphase-promoting complex/cyclosome, in part by a newly identified protein, Emi2 (xErp1). Emi2 is required for maintenance of CSF arrest in egg extracts, but its function in CSF establishment in oocytes and the normal embryonic cell cycle is unknown. Here we show that during oocyte maturation, Emi2 appears only after metaphase I, and its level peaks at CSF arrest (metaphase II). In M phase, Emi2 undergoes a phosphorylation-dependent electrophoretic shift. Microinjection of antisense oligonucleotides against Emi2 into stage VI oocytes blocks progression through meiosis II and the establishment of CSF arrest. Recombinant Emi2 rescues CSF arrest in these oocytes and also causes CSF arrest in egg extracts and in blastomeres of two-cell embryos. Fertilization triggers rapid, complete degradation of Emi2, but it is resynthesized in the first embryonic cell cycle to reach levels 5-fold lower than during CSF arrest. However, depletion of the protein from cycling egg extracts does not prevent mitotic cell cycle progression. Thus, Emi2 plays an essential role in meiotic but not mitotic cell cycles.  相似文献   

10.
Liu J  Maller JL 《Current biology : CB》2005,15(16):1458-1468
BACKGROUND: Vertebrate oocytes are arrested at second meiotic metaphase by cytostatic factor (CSF) while awaiting fertilization. Accumulating evidence has suggested that inhibition of the anaphase-promoting complex/cyclosome (APC/C) is responsible for this arrest. Xenopus polo-like kinase 1 (Plx1) is required for activation of the APC/C at the metaphase-anaphase transition, and calcium elevation, upon fertilization/activation of eggs, acting through calmodulin-dependent kinase II (CaMKII) is sufficient to activate the APC/C and terminate CSF arrest. However, connections between the Plx1 pathway and the CaMKII pathway have not been identified. RESULTS: Overexpression of Plx1 causes CSF release in the absence of calcium, and depletion of Plx1 from egg extracts blocks induction of CSF release by calcium and CaMKII. Prior phosphorylation of the APC/C inhibitor XErp1/Emi2 by CaMK II renders it a good substrate for Plx1, and phosphorylation by both kinases together promotes its degradation in egg extracts. The pathway is enhanced by the ability of Plx1 to cause calcium-independent activation of CaMKII. The results identify the targets of CaMKII and Plx1 that promote egg activation and define the first known pathway of CSF release in which an APC/C inhibitor is targeted for degradation only when both CaMKII and Plx1 are active after calcium elevation at fertilization. CONCLUSIONS: Plx1 with an intact polo-box domain is necessary for release of CSF arrest and sufficient when overexpressed. It acts at the same level as CaMKII in the pathway of calcium-induced CSF release by cooperating with CaMKII to regulate APC/C regulator(s), such as XErp1/Emi2, rather than by directly activating the APC/C itself.  相似文献   

11.
Cytostatic factor (CSF) arrests unfertilized vertebrate eggs in metaphase of meiosis II by inhibiting the anaphase-promoting complex/cyclosome (APC/C) from mediating cyclin destruction. The APC/C inhibitor Emi2/XErp1 satisfies a number of historical criteria for the molecular identification of CSF, but the mechanism by which CSF is activated selectively in meiosis II is the remaining unexplained criterion. Here we provide an explanation by showing that Emi2 is expressed specifically in meiosis II through translational de-repression or “unmasking” of its mRNA. We find that Emi2 protein is undetectable in immature, G2/prophase-arrested Xenopus oocytes and accumulates ~90 minutes after germinal vesicle breakdown. The 3’ untranslated region of Emi2 mRNA contains cytoplasmic polyadenylation elements that directly bind the CPEB protein and confer temporal regulation of Emi2 polyadenylation and translation. Our results demonstrate that cytoplasmic polyadenylation and translational unmasking of Emi2 directs meiosis II-specific CSF arrest.  相似文献   

12.
In vertebrate unfertilized eggs, metaphase arrest in Meiosis II is mediated by an activity known as cytostatic factor (CSF). CSF arrest is dependent upon Mos-dependent activation of the MAPK/Rsk pathway, and Rsk activates the spindle checkpoint kinase Bub1, leading to inhibition of the anaphase-promoting complex (APC), an E3 ubiquitin ligase required for the metaphase/anaphase transition. However, it is not known whether Bub1 is required for the establishment of CSF arrest or whether other pathways also contribute. Here, we show that immunodepletion of Bub1 from egg extracts blocks the ability of Mos to establish CSF arrest, and arrest can be restored by the addition of wild-type, but not kinase-dead, Bub1. The appearance of CSF arrest at Meiosis II may result from coexpression of cyclin E/Cdk2 with the MAPK/Bub1 pathway. Cyclin E/Cdk2 was able to cause metaphase arrest in egg extracts even in the absence of Mos and could also inhibit cyclin B degradation in oocytes when expressed at anaphase of Meiosis I. Once it has been established, metaphase arrest can be maintained in the absence of MAPK, Bub1, or cyclin E/Cdk2 activity. Both pathways are independent of each other, but each appears to block activation of the APC, which is required for cyclin B degradation and the metaphase/anaphase transition.  相似文献   

13.
Vertebrate eggs arrest at second meiotic metaphase. The fertilizing sperm causes meiotic exit through Ca(2+)-mediated activation of the anaphase-promoting complex/cyclosome (APC/C). Although the loss in activity of the M-phase kinase CDK1 is known to be an essential downstream event of this process, the contribution of phosphatases to arrest and meiotic resumption is less apparent, especially in mammals. Therefore, we explored the role of protein phosphatase 2A (PP2A) in mouse eggs using pharmacological inhibition and activation as well as a functionally dominant-negative catalytic PP2A subunit (dn-PP2Ac-L199P) coupled with live cell imaging. We observed that PP2A inhibition using okadaic acid induced events normally observed at fertilization: degradation of the APC/C substrates cyclin B1 and securin resulting from loss of the APC/C inhibitor Emi2. Although sister chromatids separated, chromatin remained condensed, and polar body extrusion was blocked as a result of a rapid spindle disruption, which could be ameliorated by non-degradable cyclin B1, suggesting that spindle integrity was affected by CDK1 loss. Similar cell cycle effects to okadaic acid were also observed using dominant-negative PP2Ac. Preincubation of eggs with the PP2A activator FTY720 could block many of the actions of okadaic acid, including Emi2, cyclin B1, and securin degradation and sister chromatid separation. Therefore, in conclusion, we used okadaic acid, dn-PP2Ac-L199P, and FTY720 on mouse eggs to demonstrate that PP2A is needed to for both continued metaphase arrest and successful exit from meiosis.  相似文献   

14.
The anaphase-promoting complex/cyclosome (APC/C) inhibitor Emi1 controls progression to S phase and mitosis by stabilizing key APC/C ubiquitination substrates, including cyclin A. Examining Emi1 binding proteins, we identified the Evi5 oncogene as a regulator of Emi1 accumulation. Evi5 antagonizes SCF(betaTrCP)-dependent Emi1 ubiquitination and destruction by binding to a site adjacent to Emi1's DSGxxS degron and blocking both degron phosphorylation by Polo-like kinases and subsequent betaTrCP binding. Thus, Evi5 functions as a stabilizing factor maintaining Emi1 levels in S/G2 phase. Evi5 protein accumulates in early G1 following Plk1 destruction and is degraded in a Plk1- and ubiquitin-dependent manner in early mitosis. Ablation of Evi5 induces precocious degradation of Emi1 by the Plk/SCF(betaTrCP) pathway, causing premature APC/C activation; cyclin destruction; cell-cycle arrest; centrosome overduplication; and, finally, mitotic catastrophe. We propose that the balance of Evi5 and Polo-like kinase activities determines the timely accumulation of Emi1 and cyclin, ensuring mitotic fidelity.  相似文献   

15.
Erp1 (also called Emi2), an inhibitor of the APC/C ubiquitin ligase, is a key component of cytostatic factor (CSF) responsible for Meta-II arrest in vertebrate eggs. Reportedly, however, Erp1 is expressed even during meiosis I in Xenopus oocytes. If so, it is a puzzle why normally maturing oocytes cannot arrest at Meta-I. Here, we show that actually Erp1 synthesis begins only around the end of meiosis I in Xenopus oocytes, and that specific inhibition of Erp1 synthesis by morpholino oligos prevents entry into meiosis II. Furthermore, we demonstrate that premature, ectopic expression of Erp1 at physiological Meta-II levels can arrest maturing oocytes at Meta-I. Thus, our results show the essential role for Erp1 in the meiosis I/meiosis II transition in Xenopus oocytes and can explain why normally maturing oocytes cannot arrest at Meta-I.  相似文献   

16.
The Cdc25C phosphatase is a key activator of Cdc2/cyclin B that controls M-phase entry in eukaryotic cells. Here we discuss the regulation of Cdc25C by phosphorylation during the meiotic maturation of Xenopus oocytes. In G2 arrested oocytes, Cdc25C is phosphorylated on Ser287 and associated with 14-3-3 proteins. Entry of the oocytes into M-phase of meiosis is triggered by progesterone, which activates a signaling pathway leading to the dephosphorylation of Ser287, probably mediated by the PP1 phosphatase. The activation of Cdc25C during oocyte maturation correlates also with its phosphorylation on multiple sites. These phosphorylations involve several signaling pathways, including Polo kinases and MAP kinases, and might require also the inhibition of the PP2A phosphatase. Finally, Cdc25C is further phosphorylated by its substrate Cdc2/cyclin B, as part of an auto-amplification loop that ensures the high Cdc2/cyclin B activity level required to drive the oocyte through the meiotic cell cycle.  相似文献   

17.
Cdc25B is an essential regulator for meiotic resumption in mouse oocytes. However, the role of this phosphatase during the later stage of the meiotic cell cycle is not known. In this study, we investigated the role of Cdc25B during metaphase II (MII) arrest in mouse oocytes. Cdc25B was extensively phosphorylated during MII arrest with an increase in the phosphatase activity toward Cdk1. Downregulation of Cdc25B by antibody injection induced the formation of a pronucleus-like structure. Conversely, overexpression of Cdc25B inhibited Ca2+-mediated release from MII arrest. Moreover, Cdc25B was immediately dephosphorylated and hence inactivated during MII exit, suggesting that Cdk1 phosphorylation is required to exit from MII arrest. Interestingly, this inactivation occurred prior to cyclin B degradation. Taken together, our data demonstrate that MII arrest in mouse oocytes is tightly regulated not only by the proteolytic degradation of cyclin B but also by dynamic phosphorylation of Cdk1.  相似文献   

18.
In fully grown oocytes, meiosis is arrested at first prophase until species-specific initiation signals trigger maturation. Meiotic resumption universally involves early activation of M phase-promoting factor (Cdc2 kinase-Cyclin B complex, MPF) by dephosphorylation of the inhibitory Thr14/Tyr15 sites of Cdc2. However, underlying mechanisms vary. In Xenopus oocytes, deciphering the intervening chain of events has been hampered by a sensitive amplification loop involving Cdc2-Cyclin B, the inhibitory kinase Myt1 and the activating phosphatase Cdc25. In this study we provide evidence that the critical event in meiotic resumption is a change in the balance between inhibitory Myt1 activity and Cyclin B neosynthesis. First, we show that in fully grown oocytes Myt1 is essential for maintaining prophase I arrest. Second, we demonstrate that, upon upregulation of Cyclin B synthesis in response to progesterone, rapid inactivating phosphorylation of Myt1 occurs, mediated by Cdc2 and without any significant contribution of Mos/MAPK or Plx1. We propose a model in which the appearance of active MPF complexes following increased Cyclin B synthesis causes Myt1 inhibition, upstream of the MPF/Cdc25 amplification loop.  相似文献   

19.
Emi2 (also called Erp1) inhibits the anaphase-promoting complex/cyclosome (APC/C) and thereby causes metaphase II arrest in unfertilized vertebrate eggs. Both the D-box and the zinc-binding region (ZBR) of Emi2 have been implicated in APC/C inhibition. However, it is not well known how Emi2 interacts with and hence inhibits the APC/C. Here we show that Emi2 binds the APC/C via the C-terminal tail, termed here the RL tail. When expressed in Xenopus oocytes and egg extracts, Emi2 lacking the RL tail fails to interact with and inhibit the APC/C. The RL tail itself can directly bind to the APC/C, and, when added to egg extracts, either an excess of RL tail peptides or anti-RL tail peptide antibody can dissociate endogenous Emi2 from the APC/C, thus allowing APC/C activation. Furthermore, and importantly, the RL tail–mediated binding apparently promotes the inhibitory interactions of the D-box and the ZBR (of Emi2) with the APC/C. Finally, Emi1, a somatic paralog of Emi2, also has a functionally similar RL tail. We propose that the RL tail of Emi1/Emi2 serves as a docking site for the APC/C, thereby promoting the interaction and inhibition of the APC/C by the D-box and the ZBR.  相似文献   

20.
Reimann JD  Freed E  Hsu JY  Kramer ER  Peters JM  Jackson PK 《Cell》2001,105(5):645-655
We have discovered an early mitotic inhibitor, Emi1, which regulates mitosis by inhibiting the anaphase promoting complex/cyclosome (APC). Emi1 is a conserved F box protein containing a zinc binding region essential for APC inhibition. Emi1 accumulates before mitosis and is ubiquitylated and destroyed in mitosis, independent of the APC. Emi1 immunodepletion from cycling Xenopus extracts strongly delays cyclin B accumulation and mitotic entry, whereas nondestructible Emi1 stabilizes APC substrates and causes a mitotic block. Emi1 binds the APC activator Cdc20, and Cdc20 can rescue an Emi1-induced block to cyclin B destruction. Our results suggest that Emi1 regulates progression through early mitosis by preventing premature APC activation, and may help explain the well-known delay between cyclin B/Cdc2 activation and cyclin B destruction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号