首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis of oestrogens within breast tissues makes an important contribution to the high concentrations of oestradiol which are found in breast tumours. The activities of the enzymes involved in oestrogen synthesis, i.e. the aromatase, oestradiol dehydrogenase (E2DH) and oestrone sulphatase (E1-STS), can be stimulated by several growth factors and cytokines. As it is possible that some of these factors may be derived from cells of the immune system (macrophages and lymphocytes), the effects of basic fibroblast growth factor (bFGF) and interleukin-2 (IL-2), which are produced by these cells, on E2DH activity was examined in MCF-7 cells. Treatment of these cells with bFGF resulted in a dose-dependent increase in E2DH reductive activity whereas IL-2 was inactive at the concentration tested. To obtain further evidence that factors produced by macrophages and lymphocytes can modulate the activities of enzymes involved in oestrogen synthesis, conditioned medium was collected from these cells and found to stimulate both E1-STS and E2DH activities. In addition to understanding the control of oestrogen synthesis in breast tumours an inhibitor to block the synthesis of oestrone via the oestrone sulphatase pathway was developed. Oestrone-3-O-sulphamate (EMATE) is a potent, irreversible, inhibitor of E1-STS. A single dose of EMATE (10 mg/kg) inhibited tissue E1-STS activity in rats by more than 95% for up to 7 days, indicating that this compound may have considerable therapeutic potential for the treatment of breast cancer. Evidence is also reviewed that another steroid sulphatase, dehydroepiandrosterone sulphate sulphatase, may have a crucial role in regulating cytokine production and that this may indirectly control tumour oestrogen synthesis.  相似文献   

2.
Currently there is much interest in the role that growth factors may play in the development of human breast tumours. We have shown previously that growth factors secreted by breast tumours may influence the activity of oestradiol hydroxysteroid dehydrogenase, the enzyme which catalyses the interconversion of oestrone (E1) and oestradiol. As the formation of E1 from its sulphate (E1S) by oestrone sulphatase may be quantitatively more important than production from androstenedione via aromatase, we have studied the effect of insulin-like growth factor-1 (IGF-I) and basic fibroblast growth factor (bFGF) on oestrone sulphatase activity in the hormone-dependent MCF-7 and the hormone-independent MDA-MB-231 breast cancer cell lines. In both these cell types, bFGF (1–200 ng/ml) and IGF-I (25–200 ng/ml) significantly stimulated oestrone sulphatase activity in a dose-dependent manner (by 8–60%) after 48 h. Additionally, cycloheximide significantly inhibited (by 90–120%) this stimulation of oestrone sulphatase activity by the two growth factors in both MCF-7 and MDA-MB-231 cells. Basal oestrone sulphatase activity was higher in the oestrogen receptor, ER - ve MDA-MB-231 cells than in the ER + ve MCF-7 breast cancer cells. We conclude that these growth factors, believed to be secreted by breast tumours, may induce enzymes of oestrogen synthesis and hence increase local production of oestrogens.  相似文献   

3.
The growth dependence of many breast cancers on oestrogen has been exploited therapeutically by oestrogen deprivation, but almost all patients eventually develop resistance largely by unknown mechanisms. Wild-type (WT) MCF-7 cells were cultured in oestrogen-deficient medium for 90 weeks in order to establish a long-term oestrogen-deprived MCF-7 (LTED) which eventually became independent of exogenous oestrogen for growth. After 15 weeks of quiescence (LTED-Q), basal growth rate increased in parallel with increasing oestrogen sensitivity. While 10−9 M oestradiol (E2) maximally stimulated WT growth, the hypersensitive LTED (LTED-H) were maximally growth stimulated by 10−13 M E2. By week 50, hypersensitivity was apparently lost and the cells became oestrogen independent (LTED-I), although the pure antioestrogen ICI182780 still inhibited cell growth and reversed the inhibitory effect of 10−9 M E2 at 10−12 to 10−7 M. Tamoxifen (10−7 to 10−6 M) had a partial agonist effect on WT, but had no stimulatory effect on LTED. Whilst LTED cells have a low progesterone receptor (PgR) expression in all phases, oestrogen receptor (ER) a expression was, on average, elevated five- and seven-fold in LTED-H and LTED-I, respectively, and serine118 was phosphorylated. ERβ expression was up-regulated and the levels of insulin receptor substrate 1 (IRS-1) remained low throughout all phases. The levels of RIP140 mRNA appeared to decrease to approximately 50% of the WT message in LTED-Q and remained constant into the hypersensitive phase. No significant changes were observed in the expression of SUG-1, TIF-1 and SMRT in LTED. The overall changes in nuclear receptor interacting proteins do not appear to be involved in the hypersensitivity. Thus, the resistance of these human breast cancer cells to oestrogen-deprivation appears to be due to acquired hypersensitivity which may be explained in part by increased levels of and phosphorylated ER.  相似文献   

4.
5.
The induction of progesterone receptor mRNA by oestradiol and antioestrogens has been characterised in the MCF-7 breast cancer cell line. Progesterone receptor mRNA was induced more than 100-fold by oestradiol. The induction was half-maximal in the presence of 10(-10) M oestradiol and maximum levels were reached after 24 h treatment. Progesterone receptor mRNA was induced to 10% of the oestrogen-induced level by tamoxifen and its metabolite 4'-hydroxytamoxifen. The increase was half-maximal in the presence of 5 X 10(-8) M tamoxifen or 5 X 10(-10) M 4'-hydroxytamoxifen. In contrast, neither the benzothiophene antioestrogen LY117018 nor the 7 alpha-alkyl steroidal antioestrogen ICI 164,384 had any effect on progesterone receptor mRNA. The progesterone receptor mRNA was also induced by oestrogen in a T47D subline and in two other oestrogen-responsive breast cancer cell lines (ZR-75, EFM-19). Tamoxifen was a partial oestrogen for progesterone receptor mRNA induction in each of these cell lines. The large induction of the progesterone receptor mRNA by oestrogen in all 4 breast cancer cell lines supports the contention that the progesterone receptor may be a good predictive marker of hormonal response in human breast cancer.  相似文献   

6.
7.
There is currently considerable interest in the use of the endogenous oestrogen metabolite, 2-methoxyoestradiol (2-MeOE2) for the treatment and prevention of breast cancer. We have previously shown that sulphamoylation of 2-MeOE2 and related derivatives greatly enhances their ability to inhibit the proliferation of ER+ and ER- breast cancer cells. In this study, we have compared the abilities of 2-methoxyoestradiol-bis-sulphamate (2-MeOE2bisMATE) and 2-ethyloestradiol-bis-sulphamate (2-EtE2bisMATE) with that of 2-MeOE2 to inhibit the proliferation of breast cancer cells when grown on three different substrata: plastic, collagen I and Matrigel. The human breast cell line MCF-7 was utilised for these studies together with its doxorubicin resistant variant, MCF-7 DOX40 and mitoxantrone resistant variant, MCF-7 MR, as a longitudinal model of in vitro drug resistance. On a plastic substratum all three cell lines were sensitive to the effects of 2-MeOE2bisMATE and 2-EtE2bisMATE whereas MCF-7 cells and the MCF-MR variant cells were resistant to the effects of 2-MeOE2 at 1 microM. The sensitivity of the cell lines to those compounds also remained significant when grown on more physiological substrata. All of the drugs tested arrested cells in the G2/M phase of the cell cycle. The finding that breast cancer cells that are resistant to conventional chemotherapeutic agents remain sensitive to 2-substituted oestrogen sulphamates offers considerable potential for the treatment of women with drug-resistant breast cancer.  相似文献   

8.
Previous studies have shown that in the breast there are multiple forms of the enzyme oestradiol dehydrogenase (E2DH), responsible for the interconversion of oestrone (E1) to oestradiol (E2). We have now re-examined oestrogen metabolism in the breast cancer cell lines (T47D and MCF-7) and have shown that steroids previously shown to inhibit the conversion of E1 to E2 in normal breast tissue failed to do so when added to growing monolayers of these malignant cells. In contrast to earlier estimates in normal breast tissues, the apparent Km for this conversion in monolayers of these malignant cells is shown here to be considerably lower, at around 50 nM. Cell free studies on these cell lines have revealed the presence of a high affinity (for E1) form of this enzyme of MW 80 kDa. The ability to detect this enzyme in soluble cell fractions appears to be critically dependent on buffer composition. Normal breast epithelial cells and adipose tissue appear to be devoid of this form of E2DH. As this form of E2DH has the highest affinity for the substrate E1 of all the forms in the breast, it is probable that this 80 kDa enzyme is responsible for the conversion of E1 to E2 in cell monolayers. If the observation holds that the 80 kDa enzyme is absent in the normal tissues, then the possibility arises that this E2DH may be linked with the neoplastic process in some breast tumours containing malignant epithelial cells of a similar type as studied here.  相似文献   

9.
The effects of ICI 164,384 on the expression of six oestrogen-regulated RNAs (pNR-1, pNR-2, pNR-13, pNR-17, pNR-25 and pNR-100) and the 46 kDa secreted protein were measured in MCF-7 cells. In marked contrast to tamoxifen, an antioestrogen commonly used in the treatment of breast cancer, ICI 164,384 administered alone had little or no effect on the RNAs or protein. ICI 164,384 completely inhibited the induction of the RNAs and 46 kDa protein by oestradiol. Although ICI 164,384 has an affinity for the human oestrogen receptor only slightly less than that of oestradiol, half maximal inhibition of oestradiol action was attained with between a 50 and 150-fold molar excess of ICI 164,384. The pNR-1 RNA is induced by tamoxifen but this induction was abolished by ICI 164,384. Thus, ICI 164,384 acts as a potent antioestrogen for the regulation of the expression of specific oestrogen-responsive genes in human breast cancer cells.  相似文献   

10.
11.
12.
Fatty acids are endogenous ligands of peroxisome proliferator-activated receptor-alpha (PPARα), which is linked to the regulation of fatty acid uptake, lipid metabolism and breast cancer cell growth. This study was designed to screen candidate fatty acids from breast cancer tissue and to investigate the effects of these candidate fatty acids on PPARα expression, cell growth and cell cycle progression in breast cancer cell lines. One breast cancer tissue and one reference tissue were each taken from 30 individual breasts to examine for fatty acid composition and PPARα expression. The cancer cell lines MDA-MB-231 (ER–), MCF-7 (ER++++) and BT-474 (ER++) were used to explore the mechanisms regulating cell proliferation. We found that arachidonic acid (AA) and PPARα were highly expressed in the breast cancer tissues. AA stimulated the growth of all three breast cancer cells in a time- and dose-dependent manner. The growth stimulatory effect of AA was associated with PPARα activation, and the most potent effect was found in MCF-7 cells. The stimulation of cell proliferation by AA was accompanied by the increased expression of cyclin E, a reduced population of G1 phase cells, and a faster G1/S phase transition. In contrast, AA had no effects on the levels of CDK2, CDK4, cyclin D1, p27, Bcl-2 and Bax. Our results demonstrate that high levels of AA and PPARα expression in human breast cancer tissues are associated with ER-overexpressed breast cancer cell proliferation, which is involved in activating PPARα, stimulating cyclin E expression, and promoting faster G1/S transition.  相似文献   

13.
Steroid sulphatase (STS) catalyzes the conversion of oestrone sulphate (E1S) to oestrone (E1) and its action in breast tumours makes a major contribution to in situ oestrogen production in this tissue. Although expression of STS mRNA and STS activity are increased in malignant breast tissues compared with that in non-malignant tissues, little is known about the regulation of its expression or activity. In the present study we have used a RT-PCR technique to investigate the regulation of STS mRNA expression in cultured breast tissue fibroblasts and MCF-7 cells. STS mRNA expression was readily detectable in fibroblasts derived from breast tissue proximal to tumours, breast tumour tissue and reduction mammoplasty tissue. For two pre-menopausal subjects, STS mRNA expression was similar in proximal and tumour fibroblasts whereas for a third, post-menopausal subject, expression in breast tumour fibroblasts was 2.4-fold that in proximal fibroblasts. The cytokine tumour necrosis factor alpha (TNFalpha) or the STS inhibitor, 2-methoxyoestrone-3-O-sulphamate, had no effect on STS mRNA expression in fibroblasts. STS mRNA was detectable in MCF-7 cells but neither TNFalpha nor interleukin 6 (IL-6) affected its expression. Transient transfection of COS-1 and MCF-7 cells with a STS cDNA lacking STS 5' and 3' sequences increased activity 17-fold and 2-fold, respectively. TNFalpha plus IL-6 increased STS activity in mock transfected MCF-7 cells and further increased STS activity in transfected MCF-7 cells. This indicates that activation can occur independently of STS promoter and enhancer elements. In conjunction with the lack of regulation of STS mRNA it suggest that TNFalpha and IL-6 may increase STS activity via a post-translational modification of the enzyme or by increasing substrate availability.  相似文献   

14.
Aromatase (estrogen synthase) is the cytochrome P450 enzyme complex that converts C(19) androgens to C(18) estrogens. Aromatase activity has been demonstrated in breast tissue in vitro, and expression of aromatase is highest in or near breast tumor sites. Thus, local regulation of aromatase by both endogenous factors as well as exogenous medicinal agents will influence the levels of estrogen available for breast cancer growth. The prostaglandin PGE(2) increases intracellular cAMP levels and stimulates estrogen biosynthesis, and our recent studies have shown a strong linear association between CYP19 expression and the sum of cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) expression in breast cancer specimens. Knowledge of the signaling pathways that regulate the expression and enzyme activity of aromatase and cyclooxygenases (COXs) in stromal and epithelial breast cells will aid in understanding the interrelationships of these two enzyme systems and potentially identify novel targets for regulation. The effects of epidermal growth factor (EGF), transforming growth factor-beta (TGFbeta), and tetradecanoyl phorbol acetate (TPA) on aromatase and COXs were studied in primary cultures of normal human adipose stromal cells and in cell cultures of normal immortalized human breast epithelial cells MCF-10F, estrogen-responsive human breast cancer cells MCF-7, and estrogen-unresponsive human breast cancer cells MDA-MB-231. Levels of the constitutive COX isozyme, COX-1, were not altered by the various treatments in the cell systems studied. In breast adenocarcinoma cells, EGF and TGFbeta did not alter COX-2 levels at 24h, while TPA induced COX-2 levels by 75% in MDA-MB-231 cells. EGF and TPA in MCF-7 cells significantly increased aromatase activity while TGFbeta did not. In contrast to MCF-7 cells, TGFbeta and TPA significantly increased activity in MDA-MB-231 cells, while only a modest increase with EGF was observed. Untreated normal adipose stromal cells exhibited high basal levels of COX-1 but low to undetectable levels of COX-2. A dramatic induction of COX-2 was observed in the adipose stromal cells by EGF, TGFbeta, and TPA. Aromatase enzyme activity in normal adipose stromal cells was significantly increased by EGF, TGFbeta and TPA after 24h of treatment. In summary, the results of this investigation on the effects of several paracrine and/or autocrine signaling pathways in the regulation of expression of aromatase, COX-1, and COX-2 in breast cells has identified more complex relationships. Overall, elevated levels of these factors in the breast cancer tissue microenvironment can result in increased aromatase activity (and subsequent increased estrogen biosynthesis) via autocrine mechanisms in breast epithelial cells and via paracrine mechanisms in breast stromal cells. Furthermore, increased secretion of prostaglandins such as PGE(2) from constitutive COX-1 and inducible COX-2 isozymes present in epithelial and stromal cell compartments will result in both autocrine and paracrine actions to increase aromatase expression in the tissues.  相似文献   

15.
Abstract. Regulation of the growth of breast cancer cells is the result of a complex interaction between steroid hormones and growth factors, and in particular of oestrogen and insulin-like growth factors (IGF). Alteration of any one mitogenic component can affect the cell response to other pathways. Previous work has shown that increased autocrine production of IGF-II from a transfected inducible expression vector can result in reduced oestrogen sensitivity of growth of MCF-7 human breast cancer cells. This report describes alterations to non-oestrogen regulated pathways of cell growth following enhanced IGF-II expression in these transfected MI7 cells. Serum sensitivity of cell growth in the absence of oestrogen was found to differ between MI7 and untransfected MCF-7 cells, in that growth of MI7 but not MCF-7 cells was strongly inhibited by high serum levels. Increased serum had no effect on levels of IGF-II mRNA, IGFIR, IGFBP4 mRNA, or IGFBP secreted in MI7 cells. However, growth inhibition by serum in MI7 cells could be overcome by increasing levels of IGF-II in the serum or by removal of IGFBP onto polycarbonate membranes. Thus, the growth inhibition by serum in MI7 cells is concluded to result from the increased levels of IGFBP added with higher serum. This would support an inhibitory role for IGFBP on growth of breast cancer cells when cell growth is being driven by IGF pathways in the absence of oestrogen, and would suggest that cellular sensitivity to such factors can depend on levels of endogenous IGF production.  相似文献   

16.
The EFM-19 human breast cancer cell line contains high levels of oestrogen receptor mRNA and is oestrogen responsive for growth. The oestrogen receptor gene appears to be specifically regulated by oestrogens in EFM-19 cells. The induction by oestradiol is half-maximal in the presence of 3 x 10(-11) M oestradiol. LY117018 is a potent antioestrogen with a similar affinity to oestradiol for the oestrogen receptor. LY117018 completely blocks the induction of the oestrogen receptor mRNA by oestradiol when it is present in a 50-fold molar excess. The ability of oestrogens to control the levels of their own receptor in human breast cancer cells has implications for the understanding of oestrogen responsiveness and the amelioration of endocrine therapy.  相似文献   

17.
A novel binding site for a synthetic progestagen in breast cancer cells   总被引:3,自引:0,他引:3  
A novel, high-affinity saturable binding site for the synthetic 19-nor testosterone progestagen, 17 alpha-ethinyl-13 beta-ethyl 17 beta-hydroxy-4,15-oestradiene-3-one (gestodene) has been detected using a sensitive affinity chromatography technique. This binding site is present in a range of malignant breast-derived cells lines, regardless of the presence of oestrogen and progesterone receptors, but is absent from endometrial carcinoma cells that contain both oestrogen and progesterone receptors. Competition studies show that this binding is not attributable to the receptors for the progestagens, androgens, glucocorticoids or mineralocorticoids. Cytosolic gestodene binding is refractory to competition with oestradiol but nuclear gestodene binding is completely abolished by oestradiol. The binding of oestradiol to the oestrogen receptor is reduced 40-50% by competition with gestodene. Non-dissociating polyacrylamide gel electrophoresis and size-exclusion high performance liquid chromatography reveal that this binding activity is associated with a protein of mean molecular mass 47 +/- 9 kDa. Ligand binding studies with a range of other cell lines indicates that this binding site appears to be specific to breast cancer cells. These data show the presence of a partly oestrogen competable novel binding protein in breast cancer cells which does not appear to be due to any of the conventional steroid receptors.  相似文献   

18.
19.
The formation of oestrone sulphate has been examined in MCF-7 (oestrogen receptor positive, ER+) and MDA-MB-231 (ER negative, ER-) breast cancer cells. Using intact cell monolayers and a physiological substrate concentration, progesterone (1 microM) and dexamethasone (1 microM) both increased oestrone sulphate formation in MCF-7 cells. In MDA-MB-231 cells, dexamethasone, but not progesterone, increased conjugate formation. A number of growth factors, cytokines and human serum albumin (HSA), which have previously been found to regulate oestrogen synthesis, were also examined for their ability to regulate oestrone sulphate formation. In MCF-7 cells epidermal growth factor, acidic and basic fibroblast growth factors, insulin-like growth factor-type I and insulin all stimulated oestrone sulphate formation. The cytokines, tumour necrosis factor alpha (TNFalpha) and interleukin-1beta also increased conjugate formation in the ER+ cells, as did HSA. In contrast, in MDA-MB-231 cells TNFalpha was without effect and HSA inhibited oestrone sulphate formation. The ability to modulate oestrone sulphate formation in ER+ cells may be an important mechanism to limit the availability of oestrogen to interact with the ER.  相似文献   

20.
Heparan sulfate proteoglycans (HSPG) are involved in the regulation of cellular proliferation, differentiation, and migration. We have studied the effect of three inhibitors of proliferation on35S incorporation into HSPG of the breast cancer cell lines MCF-7 and MDA-MB-231 and the normal breast epithelial cells (NBEC). Transforming growth factor β-1 (TGFβ-1), which inhibits the proliferation of NBEC, but not of MCF-7 and MDA-MB-231, cells induced an increase in35S incorporation of HSPG in NBEC, but had no effect on cancer cells. Sodium butyrate (NaB), which inhibits NBEC as well as cancer cell proliferation, induced an increase in35S incorporation into HSPG in all cell types studied. In contrast, retinoic acid had no effect on HSPG of breast epithelial cells. Modification of HSPG induced by TGFβ-1 or NaB treatments in normal and breast cancer epithelial cells resulted in an increase in125I-fibroblast growth factor-2 (FGF-2) binding on HSPG. More importantly, NaB pretreatment resulted in an inhibition of the MCF-7 cell responsiveness to FGF-2, even though these cells remained sensitive to growth stimulation induced by serum or epidermal growth factor. These results indicate that changes in HSPG production are a key process involved in the mechanism of breast epithelial cell growth regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号