首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
The expression and the physiological properties of acetylcholine receptors (AChRs) of mononucleated myogenic cells, isolated from either embryonic or adult muscle of the mouse, have been investigated using the gigaohm seal patch-clamp technique in combination with immunocytochemistry (with an anti-myosin antibody) and alpha-bungarotoxin binding techniques. Undifferentiated (myosin-negative) embryonic myoblasts, grown either in mass culture or under clonal conditions, were found to be unresponsive to ACh and did not bind alpha-bungarotoxin. On the contrary, undifferentiated satellite cells (from adult muscle) exhibited channels activated by ACh and alpha-bungarotoxin binding sites similar to those observed in differentiated (myosin-positive) embryonic myoblasts and myotubes. Two classes of ACh-activated channels with different opening frequencies were identified. The major class of channels had a conductance of about 42 pS and mean open time of 3.1-8.2 msec. The minor class of channels had smaller conductance (about 17 pS) and similar open time. During differentiation, the conductance of the two channels did not change significantly, while channel lifetime became shorter in myotubes derived from satellite cells but not in myotubes derived from embryonic myoblasts. The relative proportion of small over large channels was significantly larger in embryonic than in adult myogenic cells.  相似文献   

2.
The isolation and characterization of five clones carrying sequences of the alpha-, beta-, gamma-, delta- and epsilon-subunit precursors of the rat muscle acetylcholine receptor (AChR) are described. The deduced amino acid sequences indicate that these polypeptides contain 457-519 amino acids and reveal the structural characteristics common to subunits of ligand-gated ion channels. The pattern of subunit-specific mRNA levels in rat muscle shows characteristic changes during development and following denervation, suggesting that innervation of muscle reduces the expression of the alpha-, beta- and delta-subunit mRNAs, suppresses the expression of the gamma-subunit mRNA, and induces expression of epsilon-subunit mRNA. Subunit-specific cRNAs generated in vitro were injected into Xenopus laevis oocytes, resulting in the assembly of two functionally different AChR channel subtypes. The AChR gamma, composed of the alpha-, beta-, gamma- and delta-subunits, has functional properties similar to those of the native AChRs in fetal muscle. The AChR epsilon, composed of alpha-, beta-, delta- and epsilon-subunits, corresponds to the end-plate channel of the adult muscle. Thus in rat skeletal muscle the motor nerve regulates the expression of two functionally different AChR subtypes with different molecular composition by the differential expression of subunit-specific mRNAs.  相似文献   

3.
4.
Acetylcholine receptor (AChR) was found to be present on the cell surface of the human rhabdomyoblast (RD) cell line. Two classes of ACh-activated channels have been observed, one with a large conductance and long duration and the other with smaller conductance and short duration, similar to those of human myotubes. RD membrane exhibited a specific binding to the alpha-bungarotoxin indicating the presence of nicotinic AChRs. These results support the hypothesis that rhabdomyosarcomas derive from myogenic precursors.  相似文献   

5.
Development of chicken breast muscle is characterized by the sequential appearance of six electrophoretically distinct myosin heavy chain (HC) isoforms. Cultured secondary myotubes, derived from 12-day embryonic chick breast muscle, mainly express the early embryonic HC isoform HCemb/e, normally present in 8-day embryonic breast muscle, and the two fast light chain isoforms LC1f and LC2f. Direct low-frequency (2.5 Hz) stimulation of these myotubes via platinum electrodes leads to a shift in myosin HC expression with increases in the late embryonic HC isoform HCemb/l amounting to 35% of total HC in 19-day-stimulated cultures. Measurements of 35S-methionine incorporation and immunohistochemical analyses demonstrate increases in LC3f. This increase is also seen at the mRNA level. These results indicate that induced contractile activity promotes myotube maturation in vitro. The observation that chronic stimulation enhances the expression of the slow isoform LC2s at the RNA, as well as the protein level, suggests an additional effect consisting of a fast-to-slow change in phenotype expression. In view of the fact that muscle maturation and phenotype expression is under neural control during development in vivo, our results on directly stimulated, aneural myotubes indicate that neurally transmitted contractile activity may be an important factor in modulating phenotype expression of secondary myotubes.  相似文献   

6.
7.
The properties of single acetylcholine-activated ion channels in developing rat myoblasts and myotubes in tissue culture have been investigated using the gigaohm seal patch clamp technique. Two classes of ACh-activated channels were identified. The major class of channels (accounting for >95% of all channel openings) has a conductance of 35 pS and a mean open time of 15 msec (at room temperature and ?80 mV). The minor class of channels has a larger conductance (55 pS) and a briefer mean open time (2–3 msec). Functional ACh-activated channels are present in undifferentiated mononucleated myoblasts 1–2 days in culture, although the channel density on such cells is low. Over the next week in culture, as the myoblasts fuse to form multinucleate myotubes, there is a marked increase in channel density and an increase in the proportion of large conductance channels. No significant change, however, occurs in channel conductance or open time (within a given class of channels) during this period. At high concentrations of ACh, channels desensitize and channel openings occur in groups, similar to what has been previously described in adult muscle. The rate of channel opening within a group of openings increases with increasing agonist concentration while mean open time is independent of agonist concentration, as expected from simple models of drug action. During a group of openings, the channel is open for half the time (i.e., channel opening rate is equal to channel closing rate) at a concentration of approximately 6 μm ACh.  相似文献   

8.
The emergence of avian satellite cells during development has been studied using markers that distinguish adult from fetal cells. Previous studies by us have shown that myogenic cultures from fetal (Embryonic Day 10) and adult 12-16 weeks) chicken pectoralis muscle (PM) each regulate expression of the embryonic isoform of fast myosin heavy chain (MHC) differently. In fetal cultures, embryonic MHC is coexpressed with a ventricular MHC in both myocytes (differentiated myoblasts) and myotubes. In contrast, myocytes and newly formed myotubes in adult cultures express ventricular but not embryonic MHC. In the current study, the appearance of myocytes and myotubes which express ventricular but not embryonic MHC was used to determine when adult myoblasts first emerge during avian development. By examining patterns of MHC expression in mass and clonal cultures prepared from embryonic and posthatch chicken skeletal muscle using double-label immunofluorescence with isoform-specific monoclonal antibodies, we show that a significant number of myocytes and myotubes which stain for ventricular but not embryonic MHC are first seen in cultures derived from PM during fetal development (Embryonic Day 18) and comprise the majority, if not all, of the myoblasts present at hatching and beyond. These results suggest that adult type myoblasts become dominant in late embryogenesis. We also show that satellite cell cultures derived from adult slow muscle give results similar to those of cultures derived from adult fast muscle. Cultures derived from Embryonic Day 10 hindlimb form myocytes and myotubes that coexpress ventricular and embryonic MHCs in a manner similar to cells of the Embryonic Day 10 PM. Thus, adult and fetal expression patterns of ventricular and embryonic MHCs are correlated with developmental age but not muscle fiber type.  相似文献   

9.
10.
'Giga-seal' patch-clamp recording was performed in embryonic chick myotubes at day 3 to 4 of culture. Myotubes were exposed to agents that enhance the concentration of cytosolic cyclic AMP (cAMPi) and their action on acetylcholine- (ACh) activated channels was investigated. While the conductance and the closed time was unaffected by forsokolin, cholera toxin, dibutyryl cyclic AMP and 8-bromo-cyclic AMP, these agents lengthened the ACh-activated channel life time with efficacy that paralleled with their capability to increase the cAMPi.  相似文献   

11.
Neural factors regulate AChR subunit mRNAs at rat neuromuscular synapses   总被引:21,自引:6,他引:21  
To elucidate the nature of signals that control the level and spatial distribution of mRNAs encoding acetylcholine receptor (AChR), alpha-, beta-, gamma-, delta- and epsilon-subunits in muscle fibers chronic paralysis was induced in rat leg muscles either by surgical denervation or by different neurotoxins that cause disuse of the muscle or selectively block neuromuscular transmission pre- or postsynaptically and cause an increase of AChRs in muscle membrane. After paralysis, the levels and the spatial distributions of the different subunit-specific mRNAs change discoordinately and seem to follow one of three different patterns depending on the subunit mRNA examined. The level of epsilon-subunit mRNA and its accumulation at the end-plate are largely independent on the presence of the nerve or electrical muscle activity. In contrast, the gamma-subunit mRNA level is tightly coupled to innervation. It is undetectable or low in innervated normally active muscle and in innervated but disused muscle, whereas it is abundant along the whole fiber length in denervated muscle or in muscle in which the neuromuscular contact is intact but the release of transmitter is blocked. The alpha-, beta-, and delta-subunit mRNA levels show a different pattern. Highest amounts are always found at end-plate nuclei irrespective of whether the muscle is innervated, denervated, active, or inactive, whereas in extrasynaptic regions they are tightly controlled by innervation partially through electrical muscle activity. The changes in the levels and distribution of gamma- and epsilon-subunit-specific mRNAs in toxin-paralyzed muscle correlate well with the spatial appearance of functional fetal and adult AChR channel subtypes along the muscle fiber. The results suggest that the focal accumulation at the synaptic region of mRNAs encoding the alpha-, beta-, delta-, and epsilon-subunits, which constitute the adult type end-plate channel, is largely determined by at least two different neural factors that act on AChR subunit gene expression of subsynaptic nuclei.  相似文献   

12.
Formation of the vertebrate neuromuscular junction (NMJ) takes place in a stereotypic pattern in which nerves terminate at select sarcolemmal sites often localized to the central region of the muscle fibers. Several lines of evidence indicate that the muscle fibers may initiate postsynaptic differentiation independent of the ingrowing nerves. For example, nascent acetylcholine receptors (AChRs) are pre-patterned at select regions of the muscle during the initial stage of neuromuscular synaptogenesis. It is not clear how these pre-patterned AChR clusters are assembled, and to what extent they contribute to pre- and post-synaptic differentiation during development. Here, we show that genetic deletion of the AChR gamma-subunit gene in mice leads to an absence of pre-patterned AChR clusters during initial stages of neuromuscular synaptogenesis. The absence of pre-patterned AChR clusters was associated with excessive nerve branching, increased motoneuron survival, as well as aberrant distribution of acetylcholinesterase (AChE) and rapsyn. However, clustering of muscle specific kinase (MuSK) proceeded normally in the gamma-null muscles. AChR clusters emerged at later stages owing to the expression of the AChR epsilon-subunit, but these delayed AChR clusters were broadly distributed and appeared at lower level compared with the wild-type muscles. Interestingly, despite the abnormal pattern, synaptic vesicle proteins were progressively accumulated at individual nerve terminals, and neuromuscular synapses were ultimately established in gamma-null muscles. These results demonstrate that the gamma-subunit is required for the formation of pre-patterned AChR clusters, which in turn play an essential role in determining the subsequent pattern of neuromuscular synaptogenesis.  相似文献   

13.
During differentiation of embryonic chick skeletal muscle in culture, elaboration of acetylcholine receptor (AChR) and acetylcholinesterase occurs shortly after myoblast fusion. During further development, AChR was found to decrease markedly on the myotube surface, while acetylcholinesterase continued to increase. Surface distribution of AChR, as followed by autoradiography using 125I-α-bungarotoxin, was homogeneous in newly fused myotubes. With further differentiation, clusters of AChR appeared on the surface of the myotubes, and their subsequent disappearance paralleled a decrease in overall AChR levels. Quantitative autoradiography showed a reduction of over 75% in the density of AChR on the surface of well differentiated, cross-striated myotubes. Thus the appearance of AChR on the cell surface, its condensation into clusters, and finally its depletion seem to be sequential events in the differentiation of skeletal muscle in culture in the absence of direct neuronal influence.  相似文献   

14.
15.
L P Henderson  P Brehm 《Neuron》1989,2(4):1399-1405
The time course of synaptic currents is significantly longer in slow than in fast twitch muscle fibers. To examine the underlying basis for these slow synaptic currents, single-channel recordings were made from the synapses of slow muscle fibers. Our analysis indicates that low conductance acetylcholine receptor (AChR) channels predominate in innervated slow fibers. The high level of expression of low conductance channels is in contrast to fast twitch fibers, in which these channels are expressed in significant numbers only in embryonic or denervated muscle. Analysis of the distribution of open durations for the low conductance channel class suggests that the open time of this AChR class is the major determinant in shaping the slow time course of synaptic current decay. The predominant contribution of low conductance channel openings to synaptic currents of slow muscle fibers indicates a well-defined physiological role for this class of AChRs.  相似文献   

16.
17.
The nuclei of cultured noninnervated muscle cells are heterogeneous with respect to production of mRNA for the nicotinic acetylcholine receptor (AChR). Some nuclei actively express AChR mRNA while others have a low level of activity or are inactive. To determine if innervation, or a factor released by neurons, influences nuclear expression of AChR mRNA, we examined mRNA at a single cell level via in situ hybridization and autoradiography with an alpha-subunit AChR genomic probe. Four days after plating, we co-cultured chicken primary muscle cells with spinal cord explants, ciliary neurons, or dorsal root ganglia (DRG) cells. In situ hybridization of the spinal-cord and muscle-cell co-cultures with the AChR alpha-subunit probe revealed a high density of silver grains on muscle cells, which were within two explant diameters of the spinal cord explant, and a graded decrease in silver grain density as the distance from the explant increased, as well as the appearance of a strikingly nonhomogenous distribution of active and inactive muscle cell nuclei. When ciliary neurons were uniformly distributed over the muscle cells, a high level of AChR mRNA was induced, but no gradients appeared. Neither an increased mRNA level nor a gradient was observed when DRG cells were co-cultured with muscle cells. When ciliary neurons are cultured within Costar permeable inserts, which prevent any contact between the neurons and the underlying muscle cells, AChR messenger RNA is still induced, showing that diffusible factors are responsible. Our results indicate that molecules released by cholinergic neurons regulate the expression of AChR mRNA in the myotubes and raise the possibility that AChR expression depends on both neuronal signals and on intracellular information from the muscle cell.  相似文献   

18.
To analyze the formation of neuromuscular junctions, mouse pluripotent embryonic stem (ES) cells were differentiated via embryoid bodies into skeletal muscle and neuronal cells. The developmentally controlled expression of skeletal muscle-specific genes coding for myf5, myogenin, myoD and myf6, α1subunit of the L-type calcium channel, cell adhesion molecule M-cadherin, and neuron-specific genes encoding the 68-, 160-, and 200-kDa neurofilament proteins, synaptic vesicle protein synaptophysin, brain-specific proteoglycan neurocan, and microtubule-associated protein tau was demonstrated by RT-PCR analysis. In addition, genes specifically expressed at neuromuscular junctions, the γ- and ?-subunits of the nicotinic acetylcholine receptor (AChR) and the extracellular matrix protein S-laminin, were found. At the terminal differentiation stage characterized by the formation of multinucleated spontaneously contracting myotubes, the myogenic regulatory gene myf6 and the AChR ?-subunit gene, both specifically expressed in mature adult skeletal muscle, were found to be coexpressed. Only the terminally differentiated myotubes showed a clustering of nicotinic acetylcholine receptors (AChR) and a colocalization with agrin and synaptophysin. The formation of AChRs was also demonstrated on a functional level by using the patch clamp technique. Taken together, our results showed that during ES cell differentiationin vitroneuron- and muscle-specific genes are expressed in a developmentally controlled manner, resulting in the formation of postsynaptic-like membranes. Thus, the embryonic stem cell differentiation model will be helpful for studying cellular interactions at neuromuscular junctions by “loss of function” analysisin vitro.  相似文献   

19.
Multinucleated myotubes, grown in vitro from satellite cells of dystrophic mice (C57BL/6J/dydy) exhibit a reduced sensitivity to ACh. This reduction correlates with a reduced density of 125I-alpha-bungarotoxin (125I-BTX) binding sites on the surface of dystrophic myotubes. Denervated adult muscle fibers from dystrophic mice respond to Ach similarly to denervated normal muscle fibers. Furthermore, cultured dystrophic myotubes, treated with a brain extract which induces AChR clusterization, still show an impaired response to ACh and reduced 125I-BTX binding. Thus AChR function appears altered in dystrophic muscle cells in culture while it appears normal in dystrophic adult muscle, regardless of whether the receptors are dispersed on the membrane or clustered at the junctional site. Metabolic studies on the reduced AChR level in dystrophic myotubes revealed a dramatically reduced half-life (2 vs 10 hr) while the rate of synthesis was unchanged. An increased rate of internalization of AChR was observed in dystrophic myotubes with a corresponding relative increase of the "hidden AChR pool," which could be partially reduced by agents which disrupt the cytoskeleton. No structural alterations could be detected on the AChR molecule as its sedimentation coefficient and subunit composition appeared identical between normal and dystrophic myotubes. Thus the increased turnover of AChR in dystrophic myotubes either reflects subtle alterations of the molecule or a more generalized increase of endocytosis in this form of myopathy.  相似文献   

20.
In cultured chicken myotubes, calcitonin gene-related peptide (CGRP), a peptide present in spinal cord motoneurons, increased by 1.5-fold the number of surface acetylcholine receptors (AChRs) and by threefold AChR alpha-subunit mRNA level without affecting the level of muscular alpha-actin mRNA. Cholera toxin (CT), an activator of adenylate cyclase, produced a similar effect, which did not add up with that of CGRP. In contrast, tetrodotoxin, a blocker of voltage-sensitive Na+ channels, elevated the level of AChR alpha-subunit mRNA on top of the increase caused by either CGRP or CT. 12-O-Tetradecanoyl phorbol-13-acetate (TPA), an activator of protein kinase C, markedly decreased the cell surface and total content of [125I]alpha BGT-binding sites and reduced the rate of appearance of AChR at the surface of the myotubes without reducing the level of AChR alpha-subunit mRNA. Moreover, TPA inhibited the increase of AChR alpha-subunit mRNA caused by tetrodotoxin without affecting that produced by CGRP or CT. Under the same conditions, TPA decreased the level of muscular alpha-actin mRNA and increased that of nonmuscular beta- and gamma-actins mRNA. These data suggest that distinct second messengers are involved in the regulation of AChR biosynthesis by CGRP and muscle activity and that these two pathways may contribute to the development of different patterns of AChR gene expression in junctional and extrajunctional areas of the muscle fiber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号