首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several plant mitochondrial genomes contain repeated sequences that are postulated to be sites of homologous intragenomic recombination (1-3). In this report, we have used filter hybridizations to investigate sequence relationships between the cloned mitochondrial DNA (mtDNA) recombination repeats from turnip, spinach and maize and total mtDNA isolated from thirteen species of angiosperms. We find that strong sequence homologies exist between the spinach and turnip recombination repeats and essentially all other mitochondrial genomes tested, whereas a major maize recombination repeat does not hybridize to any other mtDNA. The sequences homologous to the turnip repeat do not appear to function in recombination in any other genome, whereas the spinach repeat hybridizes to reiterated sequences within the mitochondrial genomes of wheat and two species of pokeweed that do appear to be sites of recombination. Thus, although intragenomic recombination is a widespread phenomenon in plant mitochondria, it appears that different sequences either serve as substrates for this function in different species, or else surround a relatively short common recombination site which does not cross-hybridize under our experimental conditions. Identified gene sequences from maize mtDNA were used in heterologous hybridizations to show that the repeated sequences implicated in recombination in turnip and spinach/pokeweed/wheat mitochondria include, or are closely linked to genes for subunit II of cytochrome c oxidase and 26S rRNA, respectively. Together with previous studies indicating that the 18S rRNA gene in wheat mtDNA is contained within a recombination repeat (3), these results imply an unexpectedly frequent association between recombination repeats and plant mitochondrial genes.  相似文献   

2.
3.
Two novel repetitive DNA sequences, pCtKpnI-1 and pCtKpnI-2, were isolated from Carthamus tinctorius (2n = 2x = 24) and cloned. Both represent tandemly repeated sequences. The pCtKpnI-1 and pCtKpnI-2 clones constitute repeat units of 343-345 bp and 367 bp, respectively, with 63% sequence heterogeneity between the two. Fluorescence in situ hybridization (FISH) was employed on metaphase chromosomes of C. tinctorius using, simultaneously, pCtKpnI-1 and pCtKpnI-2 repeated sequences. The pCtKpnI-1 sequence was found to be exclusively localized at subtelomeric regions on most of the chromosomes. On the other hand, sequence of the pCtKpnI-2 clone was distributed on two nucleolar and one nonnucleolar chromosome pairs. The satellite, and the intervening chromosome segment between the primary and secondary constrictions, in the two nucleolar chromosome pairs were wholly constituted by pCtKpnI-2 repeated sequence. The pCtKpnI-2 repeated sequence, showing partial homology to intergenic spacer (IGS) of 18S-25S ribosomal RNA genes of an Asteraceae taxon (Centaurea stoebe), and the 18S-25S rRNA gene clusters were located at independent, but juxtaposed sites in the nucleolar chromosomes. Variability in the number, size, and location of the two repeated sequences provided identification of most of the chromosomes in the otherwise not too distinctive homologues within the complement. This article reports the start of a molecular cytogenetics program targeting the genome of safflower, a major world oil crop about whose genetics very little is known.  相似文献   

4.
The mitochondrial DNA of maize was cloned using the cosmid, Homer I. Recombinants carrying sequences homologous to the S1 and S2 DNA elements of male sterile maize have been analysed. Restriction endonuclease maps for Sac II, Sma I and Bam HI have been constructed. The S1 and S2 sequences are single copy sequences occurring at unique sites; each is flanked by a 26 kb repeated sequence. The repeated sequence has been shown not to contain the mitochondrial ribosomal RNA genes.  相似文献   

5.
Highly repeated DNA families in the rat   总被引:19,自引:0,他引:19  
We have analyzed the repeated DNA fraction of the rat by characterizing approximately 500 repeat DNA-containing clones using hybridization to a variety of rodent nucleic acids. To facilitate this analysis we devised a method whereby the cloned DNA is transferred to nitrocellulose paper by blotting directly out of colonies of the bacterial clones. In addition to identifying repeated sequences of potential interest (e.g. those transcribed in a tissue-specific manner, or those that are highly conserved in non-rat genomes), we found that, in contrast to what is revealed by the reassociation of rat DNA (e.g. Pearson, W. R., Wu, J. R., and Bonner, J. (1978) Biochemistry 17, 51-59), the rat genome contains a number of different highly repeated (greater than 50,000 copies) sequences. We distinguished the different highly repeated sequences both by their hybridization to different nucleic acids as well as by DNA sequence determination. The highly repeated sequences shared three characteristics that distinguished each of them from the 100,000-member rat satellite I family: (i) they were recovered less often in the cloned repeat DNA library than expected from their copy number in the rat genome; (ii) they reannealed abnormally slowly for their copy number even though they are not significantly divergent; and (iii) they are transcribed in one or more rat tissues. The implications of these findings for the organization of repeated sequences in the rat genome are discussed.  相似文献   

6.
S T Case  R L Summers  A G Jones 《Cell》1983,33(2):555-562
pCtBR2-2 is a genomic clone from Chironomus tentans that hybridized in situ to Balbiani ring 2 (BR2) on salivary gland polytene chromosome IV. DNA sequencing indicated that the insert contained nearly four copies of a 180 bp tandemly repeated nucleotide sequence that was distinctly different from a previously reported BR2 repeat. Sequence titration experiments detected about 70 copies of the 180 bp repeat per haploid genome, which would correspond to approximately 34% of a 37 kb BR2 gene. Each 180 bp repeat included a conserved 90 bp segment whose sequence was internally nonrepeating (INR), and a variable 90 bp repeated (R) segment comprised of three 30 bp repeats that may have evolved from a 9 bp consensus sequence. Results presented here raise the distinct possibility that other BR genes may contain significantly different repeated sequences that have not been identified.  相似文献   

7.
The sequences of several hundred nucleotides around the junctions between the L and S components in concatemeric DNA and in mature virion DNA were ascertained. The two ends of the mature genome (which are joined in concatemeric DNA) show no sequence homology. Several directly repeated elements are present near both ends of the genome. Furthermore, the last 82 nucleotides at the left end of the L component (and of the genome) are repeated in inverted form (inverted repeat within the L component [IRL]) approximately 350 to 600 nucleotides downstream (depending on the virus isolate) bracketing the UL2 component. A comparison between the sequences at the right and left ends of the L component of the genome showed patchy homology, probably representing a vestigial inverted repeat bracketing the L component (IRL). Furthermore, less than 5% of the genomes have an L component that is in the orientation opposite to that of most of the viral genomes, indicating that the vestigial IRL that brackets the UL sequence may be sufficient to mediate inversion of the L component in some of the genomes. On the other hand, the UL2 component, which is bracketed by a perfect IRL, does not invert to a greater extent than does the L component (if it inverts at all). Analysis of the nucleotide sequence at the concatemeric junction of three different pseudorabies virus isolates showed almost complete sequence conservation. The sequence and organization of the repeated elements in the different isolates were almost identical, despite their different histories and origins. The high degree of conservation of these repeated elements implies that they may fulfill an essential function in the life cycle of the virus.  相似文献   

8.
Summary The major families of repeated DNA sequences in the genome of tomato (Lycopersicon esculentum) were isolated from a sheared DNA library. One thousand clones, representing one million base pairs, or 0.15% of the genome, were surveyed for repeated DNA sequences by hybridization to total nuclear DNA. Four major repeat classes were identified and characterized with respect to copy number, chromosomal localization by in situ hybridization, and evolution in the family Solanaceae. The most highly repeated sequence, with approximately 77000 copies, consists of a 162 bp tandemly repeated satellite DNA. This repeat is clustered at or near the telomeres of most chromosomes and also at the centromeres and interstitial sites of a few chromosomes. Another family of tandemly repeated sequences consists of the genes coding for the 45 S ribosomal RNA. The 9.1 kb repeating unit in L. esculentum was estimated to be present in approximately 2300 copies. The single locus, previously mapped using restriction fragment length polymorphisms, was shown by in situ hybridization as a very intense signal at the end of chromosome 2. The third family of repeated sequences was interspersed throughout nearly all chromosomes with an average of 133 kb between elements. The total copy number in the genome is approximately 4200. The fourth class consists of another interspersed repeat showing clustering at or near the centromeres in several chromosomes. This repeat had a copy number of approximately 2100. Sequences homologous to the 45 S ribosomal DNA showed cross-hybridization to DNA from all solanaceous species examined including potato, Datura, Petunia, tobacco and pepper. In contrast, with the exception of one class of interspersed repeats which is present in potato, all other repetitive sequences appear to be limited to the crossing-range of tomato. These results, along with those from a companion paper (Zamir and Tanksley 1988), indicate that tomato possesses few highly repetitive DNA sequences and those that do exist are evolving at a rate higher than most other genomic sequences.  相似文献   

9.
Summary A short, highly repeated, interspersed DNA sequence from rice was characterized using a combination of techniques and genetically mapped to rice chromosomes by restriction fragment length polymorphism (RFLP) analysis. A consensus sequence (GGC)n, where n varies from 13–16, for the repeated sequence family was deduced from sequence analysis. Southern blot analysis, restriction mapping of repeat element-containing genomic clones, and DNA sequence analysis indicated that the repeated sequence is interspersed in the rice genome, and is heterogeneous and divergent. About 200000 copies are present in the rice genome. Single copy sequences flanking the repeat element were used as RFLP markers to map individual repeat elements. Eleven such repeat elements were mapped to seven different chromosomes. The strategy for characterization of highly dispersed repeated DNA and its uses in genetic mapping, DNA fingerprinting, and evolutionary studies are discussed.  相似文献   

10.
11.
We have determined the 903 bp nucleotide sequence of the mitochondrial DNA genome of a Saccharomyces cerevisiae petite mutant BB5. This petite, containing the 265 nucleotide ori1 region, is representative of a class of petites arising at exceptionally high frequency within the population of spontaneous petites derived from a particular mit- strain Mb12. The DNA sequences of both the ori1 region and the flanking intergenic regions have been compared to those of the corresponding regions of mtDNA in a previously reported petite strain, a1/1R/1 of Bernardi's laboratory, that has a similar (880 bp) repeat unit. The BB5 petite genome carries a canonical ori1 sequence that is identical in both petite mtDNAs, but the flanking intergenic sequences show significant differences between the two petite strains. The divergence is considered to arise from differences in the sequences flanking ori1 in the respective parent strains.  相似文献   

12.
Spiroplasma citri virus SpV1-R8A2B is a naked, rod-shaped virus with a circular, single-stranded DNA genome of 8273 bp. SpV1-related sequences were detected in the chromosomal DNA of all S. citri strains tested. Southern blot hybridization analyses revealed that several copies of most, if not all, SpV1 ORFs are present in the chromosome of S. citri strain R8A2. For further study of the integrated viral sequences, a genomic DNA library of S. citri R8A2 was constructed, and two cloned chromosomal DNA fragments containing SpV1 viral sequences were studied by comparison with the free viral genome of SpV1-R8A2B. One fragment seems to contain a full-length viral genome, while the other contains only parts of the viral genome. In both fragments, the left and right ends of viral sequences consist of 31-bp inverted repeat sequences, those which are facing each other at nucleotide 4737 in the circular viral genome. In addition, both fragments contain the SpV1-ORF3, encoding a putative transposase, immediately upstream of the right repeat. These data suggest that the SpV1-ORF3 and the repeat sequences could be parts of an IS-like element of chromosomal origin.  相似文献   

13.
E. coli ribosomal DNA has been used to probe maize mitochondrial DNA. It hybridizes primarily with chloroplast ribosomal DNA sequences and with fungal and bacterial sequences which may contaminate the mtDNA preparations. It also hybridizes to the chloroplast 16S ribosomal RNA gene sequence present in the mitochondrial genome (1) as well as to the mitochondrial 18S ribosomal RNA gene sequence. Weak sequence homology was detected between E. coli rDNA and the mitochondrial 26S ribosomal RNA gene.  相似文献   

14.
A family of moderately repetitive sequences in mouse DNA.   总被引:13,自引:8,他引:13       下载免费PDF全文
When mouse DNA is digested to completion with restriction endonuclease Eco R1, a distinct band of 1.3 kb segments comprising about 0.5-3% of the genome is observed upon agarose gel electrophoresis. This DNA is not tandemly repeated in the genome and is not derived from mouse satellite DNA. Restriction endonuclease analysis suggested that the 1.3 kb segments are heterogeneous. Specific sequences were selected from the 1.3 kb segments and amplified by cloning in plasmid pBR322. Southern transfer experiments indicated that three separately cloned mouse DNA inserts hybridized predominantly to the Eco R1 1.3 kb band and to the conspicuous subsegments generated by secondary restriction endonuclease cleavage of the sucrose gradient purified 1.3 kb segments. Segments were also excised by Hha I (Hha I segments) from the chimeric plasmids containing mouse DNA inserts and subjected to restriction endonuclease and cross-hybridization analysis. It was found that the three Hha I segments were different, although two of them exhibited partial sequence homology. Cot analysis indicated that each of the Hha I segments are repeated about 10(4) times in the mouse genome. These findings indicate that a family of related but non-identical, moderately repetitive DNA sequences, rather than a single homogeneous repeat, is present in the 1.3 kb Eco R1 band.  相似文献   

15.
Summary The organization of the mitochondrial genome in somatic hybrids and cybrids regenerated following fusion of protoplasts from cultivated tomato, Lycopersicon esculentum, and the wild species, L. Pennellii, was compared to assess the role of the nuclear genotype on the inheritance of organellar genomes. No organellar-encoded traits were required for the recorvery of either somatic hybrids or cybrids. The organization of the mitochondrial genome was characterized using Southern hybridization of restriction digestions of total DNA isolated from ten cybrids and ten somatic hybrids. A bank of cosmid clones carrying tomato mitochondrial DNA was used as probes, as well as a putative repeated sequence from L. pennellii mitchondrial DNA. The seven cosmids used to characterize the mitochondrial genomes are predicted to encompass at least 60% of the genome. The frequency of nonparental organizations of the mitochondrial genome was highest with a probe derived from a putative repeat element from the L. pennellii mitochondrial DNA. There was no difference in the average frequency of rearranged mitochondrial sequences in somatic hybrids (12%) versus cybrids (10%), although there were individual cybrids with a very high frequency of novel fragments (30%). The frequency of tomato-specific mtDNA sequences was higher in cybrids (25%) versus somatic hybrids (12%), suggesting a nuclear-cytoplasmic interaction on the inheritance of tomato mitochondrial sequences.  相似文献   

16.
In the African green monkey genome, 20% of the total DNA consists of a highly reiterated DNA sequence that occurs largely in long tandem arrays of a repeat unit that is 172 base-pairs in length. The DNA of the baboon contains sequences homologous to this repeat unit. However, in the baboon genome, these sequences comprise roughly 6% of the total DNA and alternate in a regular fashion with a DNA segment that may be distantly related to the monkey repeat unit. The sequences in the baboon that are homologous to the monkey repeat unit are contained within a 340 base-pair repeat unit of the highly repeated DNA fraction of the baboon. The extent of nucleotide divergence of the homologous repeated sequences between the two species is estimated to be about 10%.  相似文献   

17.
Summary A spontaneously arising mitochondrial DNA (mtDNA) variant ofSaccharomyces cerevisiae has been formed by two exta copies of a 14-bp sequence (TTAATTAAATTATC) being added to a tandem repeat of this unit. Similar polymorphisms in tandemly repeated sequences have been found in a comparison between mtDNAs from our strain and others. In 5850 bp of intergenic mtDNA squence, polymorphisms in tandemly repeated sequences of three or more base pairs occur approximately every 400–500 bp whereas differences in 1–2 bp occur approximately every 60 bp. Some polymorphisms are associated wit optional G+C-rich sequences (GC clusters). Two such optional GC clusters and one A+T repeat polymorphism have been discovered in the tRNA synthesis locus. In addition, the variable presence of large open reading frames are documented and mechanisms for generating intergenic sequence diversity inS. cerevisiae mtDNA are discussed.  相似文献   

18.
鸮形目4种鸟类线粒体调控区全序列的测定与比较研究   总被引:4,自引:0,他引:4  
肖冰  马飞  孙毅  李庆伟 《遗传学报》2006,33(11):965-974
利用Long-PCR和Primer Walking的方法对鸮形目的短耳鸮、长耳鸮、纵纹腹小鸮、灰林鸮4种鸟类的线粒体调控区进行了全序列测定。结果表明:短耳鸮的调控区跃度为3290bp;长耳鸮为2848bp;纵纹腹小鸮为2444bp;灰林鸮为1771bp。短耳鸮的调控区长度是4种鸮中最大的,并且是目前已知最大的鸟类线粒体调控区。这4种鸮类调控区的基本结构和其他鸟类相似,按照碱基变化速率的不同可以分为3个区:碱基变化速率较快的外围区域Ⅰ、Ⅲ和保守的中间区域Ⅱ。这4种鸟类调控区的3’端均存在大量的串联重复序列,短耳鸮为126bp单元重复7次和78bp单元重复14次;长耳鸮为127bp单元重复8次和78bp单几重复6次;纵纹腹小鸮有3个重复单元,分别为89bp单元重复3次、77bp单元重复4次和71bp单元重复6次;灰林鸮仅有1个单元的串联重复为78bp重复5次。调控区中串联重复序列可能是由链的滑动错配产生,另外这些重复序列都能形成热力学稳定的多重茎环二级结构,而且在重复序列中还发现一些保守基序,这说明重复序列可能具有一定的生理功能,影响调控区的调重控功能从而影响线粒体基因组的复制和转录。  相似文献   

19.
The brown frog Rana graeca was believed to be present in two areas, the Balkan Peninsula and the Italian Apennines. We have characterised the S1 satellite DNA family from Rana graeca graeca and compared it with that of Rana graeca italica. On Southern blots, the patterns of S1 satellite DNA bands are very different between Italian and Greek specimens, but homogeneous among various populations of the same taxon. The satellite DNA from the Greek taxon contains two repetitive units (S1a (494 bp) and S1b (363 bp)) that could be sequenced after amplification from genomic DNA to directly yield their consensus sequences in each genome. These consensus sequences were very similar among the Greek populations, but differed either in sequence (in S1a) or in both size and sequence (in S1b) from the corresponding repeats of the Italian taxon. A mechanism of concerted evolution is likely responsible for the high homogeneity of S1a and S1b repeat sequences within each genome and species. The genomic content of S1 satellite DNA was lower in the Greek than in the Italian populations (0.5 vs. 1.9%) and fluorescence in situ hybridization (FISH) analysis showed the S1 satellite on only 4 chromosome pairs in the Greek taxon and on all 13 chromosome pairs in the Italian taxon. The completely different structure and genomic organization of the S1 satellite DNA indicate that the Greek and Italian taxa are distinct species: R. graeca and R. italica.  相似文献   

20.
A novel repeated sequence of chaffinch (Fringilla coelebs) designated as GS was isolated from genomic DNA after in vitro amplification of satellite DNA sequences using GSP-PCR technique. The proportion of this repeat in the chaffinch genome constitutes about 2%. Monomers are 176 to 199 bp in size and contain a short cluster of the TTAGGG telomeric tandem repeat. The oligomer of the telomeric hexanucleotide is flanked by the sequences that are significantly different in different monomers. The GS sequences are organized as tandemly repeated units and located in a number of chromomycin-positive blocks on the long arms of macrochromosomes 1, 2, 3, 5, and 6, as well as on several microchromosomes. The sequences homologous to the GS satellite of chaffinch were not found in the genomes of redwing (Turdus iliacus) and house sparrow (Passer domesticus).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号