首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To assess the developmental toxicity of trichloroacetate (TCA), zebrafish embryos were exposed to 8 to 48 mM of TCA and evaluated for developmental milestones from 8‐ to 144‐hour postfertilization (hpf). All developmental toxicities are reported in this paper. Embryos were found to have developed edema in response to 16 to 48 mM of TCA exposure at 32‐ to 80‐hpf, experienced delay in hatching success in response to 24 to 48 mM at 80‐hpf. Lordosis was observed in developing embryos exposed to 40 to 48 mM at 55‐ to 144‐hpf. The observed toxic effects of TCA exposure were found to be concentration and exposure period independent. Effects were found to be associated with increases in superoxide anion production, but these increases were also found to be concentration and time independent. TCA resulted in concentration‐dependent increases in embryonic lethality at 144‐hpf, with an LC50 determined to be 29.7 mM.  相似文献   

2.
The ability of ellagic acid (EA) to modulate dichloroacetic acid (DCA)-induced developmental toxicity and oxidative damage was examined in zebrafish embryos. Embryos were exposed to 20 mM EA administered concomitantly with 32 mM DCA at 4 hours postfertilization (hpf) and 20 h later. Embryos were observed through 144 hpf for developmental malformations, and production of superoxide anion (SA) and nitric oxide (NO) was determined in embryonic homogenates. DCA was shown to produce developmental abnormalities and significant levels of SA and NO in zebrafish embryos. EA exposure alleviated the developmental malformations observed in treated embryos and decreased the levels of SA and NO in those same embryos. Less than 10% of DCA + EA exposed embryos showed developmental malformations compared to 100% of embryos treated with DCA alone. Animals in this group that developed malformations were shown to have fewer defects than those treated with DCA only. Taken together, the results confirm the involvement of oxidative stress in the developmental toxicity of DCA in zebrafish embryos, and suggest possible protection against those effects with the use of antioxidants.  相似文献   

3.
E-peptides and mature insulin-like growth factors (IGFs) are produced from pre-pro-IGFs during post-translational processing and co-secreted into the circulation. Previously, we reported that introduction of a transgene encoding the secreted form of rainbow trout (rt) Ea4-peptide or human (h) Eb-peptide into newly fertilized eggs of medaka (Oryzias latipes) and zebrafish (Danio rerio) resulted in developmental defects in heart, red blood cells and vasculature. In addition to vasculature and red blood cell developmental defects, multiple phenocopies of heart developmental defects categorized by developmental arrest at cardiomyocyte, heart tube and heart looping stages were also observed. These results raise a question of whether rtEa4- or hEb-peptide exerts pleiotropic inhibitory effects on heart, vasculature and red blood cell development in fish embryos. To answer this question, various amounts of recombinant rtEa4-peptide were microinjected into zebrafish eggs at 1.5, 2.5 and 5.5 h post-fertilization (hpf). Although a dose-dependent developmental defect in heart, vasculature and red blood cells was observed in embryos microinjected with rtEa4-peptide at 1.5 and 2.5 hpf, the heart development in all of the microinjected embryos was arrested at the cardiomyocyte stage. Furthermore, the mRNA levels of Nkx2.5, GATA5, VEGF, GATA1 and GATA2 genes in defective embryos were significantly reduced by rtEa4-peptide. These results confirm our previous findings that rtEa4- or hEb-peptide exhibits pleiotropic effects in inhibiting heart, vasculature and red blood cell development in zebrafish embryos.  相似文献   

4.
Iron chelation therapy using iron (III) specific chelators such as desferrioxamine (DFO, Desferal), deferasirox (Exjade or ICL-670), and deferiprone (Ferriprox or L1) are the current standard of care for the treatment of iron overload. Although each chelator is capable of promoting some degree of iron excretion, these chelators are also associated with a wide range of well documented toxicities. However, there is currently very limited data available on their effects in developing embryos. In this study, we took advantage of the rapid development and transparency of the zebrafish embryo, Danio rerio to assess and compare the toxicity of iron chelators. All three iron chelators described above were delivered to zebrafish embryos by direct soaking and their effects on mortality, hatching and developmental morphology were monitored for 96 hpf. To determine whether toxicity was specific to embryos, we examined the effects of chelator exposure via intra peritoneal injection on the cardiac function and gene expression in adult zebrafish. Chelators varied significantly in their effects on embryo mortality, hatching and morphology. While none of the embryos or adults exposed to DFO were negatively affected, ICL -treated embryos and adults differed significantly from controls, and L1 exerted toxic effects in embryos alone. ICL-670 significantly increased the mortality of embryos treated with doses of 0.25 mM or higher and also affected embryo morphology, causing curvature of larvae treated with concentrations above 0.5 mM. ICL-670 exposure (10 µL of 0.1 mM injection) also significantly increased the heart rate and cardiac output of adult zebrafish. While L1 exposure did not cause toxicity in adults, it did cause morphological defects in embryos at 0.5 mM. This study provides first evidence on iron chelator toxicity in early development and will help to guide our approach on better understanding the mechanism of iron chelator toxicity.  相似文献   

5.
Tay TL  Lin Q  Seow TK  Tan KH  Hew CL  Gong Z 《Proteomics》2006,6(10):3176-3188
In the present study, profiles of protein expression were examined during early development of zebrafish, an increasingly popular experimental model in vertebrate development and human diseases. By 2-DE, an initial increase in protein spots from 6 h post-fertilization (hpf) to 8-10 hpf was observed. There was no dramatic change in protein profiles up to 18 hpf, but significant changes occurred in subsequent stages. Interestingly, 49% of the proteins detected at 6 hpf remained detectable by 1 week of age. To map the protein expression patterns in 2-D gels, MALDI-TOF/TOF MS was employed to identify selected protein spots from early embryos. 108 protein spots were found to match known proteins and they were derived from 55 distinct genes. Interestingly, 11 (20%) of them produced multiple protein isoforms or distinct cleavage products. Although deyolked embryos were used in the analysis, a large number of vitellogenin derivatives remained prominently present in the embryos. Other than these, most of the identified proteins are cytosolic, cytoskeletal and nuclear proteins, which are involved in diversified functions such as metabolism, cytoskeleton, translation, protein degradation, etc. Some of the proteins with interesting temporal expression profiles during development are further discussed.  相似文献   

6.
Japanese medaka (Oryzias latipes) embryos exposed to ethanol have developed craniofacial, cardiovascular and skeletal defects which can be compared with the phenotypic features of fetal alcohol spectrum disorder (FASD) observed in human. The present experiment was designed to show that the disruption in circulation by ethanol during embryogenesis is a potential cause of FASD. Fertilized eggs were exposed to ethanol (0, 100 and/or 400 mM) for 24 or 48 h at various developmental stages (Iwamatsu stages 4-30) and were analyzed at 6 day post fertilization (dpf). It was observed that controls and the embryos exposed to 100 mM ethanol were in circulating state; however, a significant number of embryos of stages 4-24 exposed to 400 mM ethanol had disrupted circulation. Compared to controls, protein and RNA contents were significantly reduced in non-circulating embryos. Lipid peroxidation (LPO) analysis was made at 3, 6, 24, 48, 96 and 144 hour post fertilization (hpf). LPO was increased with the advancement of morphogenesis; however, ethanol or the circulation status had no effect. We further analyzed alcohol dehydrogenase (Adh 5 and adh8) and aldehyde dehydrogenase (Aldh9A and Aldh1A2) enzyme mRNAs in the embryos exposed to 400 mM ethanol for 24 h. A developmental stage-specific reduction in these enzyme mRNAs by ethanol was observed. We conclude that ethanol-induced disruption in circulation during embryogenesis is a potential cause of the development of FASD features in medaka.  相似文献   

7.
E-peptide of the pro-insulin-like growth factor (pro-IGF)-I is produced by proteolytic cleavage of the pro-hormone in post-translational processing. Introduction of a transgene encoding a secreted form of rtEa4- or hEb-peptide into newly fertilized zebrafish (Danio rerio) eggs by electroporation or microinjection resulted in embryos with abnormal cardiovascular features and reduced red blood cells and vasculature. Two different phenocopies of heart developmental defects were observed: (i) Group I embryos exhibited heart development arrested at the heart muscle stage and (ii) group II embryos exhibited heart development arrested at the heart tube stage. Both groups of embryos also exhibited reduction of red blood cells and vasculature. The mRNA levels of genes essential for heart development (GATA 5 and NKX2.5), hematopoiesis (GATA 1 and GATA 2), and vasculogenesis (VEGF) in normal and defective embryos were determined by quantitative real-time RT-PCR at 36 hr post-fertilization (hpf). Significant reduction of GATA 5, NKX2.5, GATA 1, GATA 2, and VEGF mRNA levels was observed in both groups of defective embryos. These results suggest that overexpression of rtEa4 or hEb transgene in zebrafish embryos disrupts heart development, hematopoiesis, and vasculogenesis by reducing the levels of GATA 5, NKX2.5, GATA 1, GATA 2, and VEGF mRNA.  相似文献   

8.
目的1-苯基-2-硫脲(PTU)可抑制斑马鱼胚胎黑色素的产生,保持斑马鱼透明,便于形态观察和信号检测。本文研究了PTU对斑马鱼胚胎发育的影响和抑制斑马鱼胚胎黑色素生成,保持斑马鱼透明性的最佳浓度。方法用不同浓度PTU处理23hpf(受精后,hourspostfertilization,hpf)斑马鱼胚胎,作用57h后观察80hpf斑马鱼的形态学、生理学改变,计算死亡率和孵化率,测量心率和静脉窦-动脉球之间的距离。结果浓度为0.197mmo]/L、0.296mmol/LPTU可以有效抑制黑色素生成,保持斑马鱼整体透明,对斑马鱼心血管系统结构和生理功能无影响,且不影响斑马鱼正常孵化过程。随着PTU浓度的增加,斑马鱼死亡率增加,孵化率下降,出现心包水肿,心脏畸形等改变,心率下降,静脉窦-动脉球之间的距离增大。结论浓度不高于0.296mmol/L的PTU溶液能有效抑制斑马鱼黑色素生成,对斑马鱼心血管毒性研究无影响。  相似文献   

9.
Triclocarban (TCC), which is used as an antimicrobial agent in personal care products, has been widely detected in aquatic ecosystems. However, the consequence of TCC exposure on embryo development is still elusive. Here, by using zebrafish embryos, we aimed to understand the developmental defects caused by TCC exposure. After exposure to 0.3, 30, and 300 μg/L TCC from 4‐hour postfertilization (hpf) to 120 hpf, we observed that TCC exposure significantly increased the mortality and malformation, delayed hatching, and reduced body length. Exposure to TCC also affected the heart rate and expressions of cardiac development–related genes in zebrafish embryos. In addition, TCC exposure altered the expressions of the genes involved in hormonal pathways, indicating its endocrine disrupting effects. In sum, our data highlight the impact of TCC on embryo development and its interference with the hormone system of zebrafish.  相似文献   

10.
Wang R  Li Z  Wang Y  Gui JF 《PloS one》2011,6(7):e22555
Several transgenic zebrafish lines for liver development studies had been obtained in the first decade of this century, but not any transgenic GFP zebrafish lines that mark the through liver development and organogenesis were reported. In this study, we analyzed expression pattern of endogenous Apo-14 in zebrafish embryogenesis by whole-mount in situ hybridization, and revealed its expression in liver primordium and in the following liver development. Subsequently, we isolated zebrafish Apo-14 promoter of 1763 bp 5'-flanking sequence, and developed an Apo-14 promoter-driven transgenic zebrafish Tg(Apo14: GFP). And, maternal expression and post-fertilization translocation of Apo-14 promoter-driven GFP were observed in the transgenic zebrafish line. Moreover, we traced onset expression of Apo-14 promoter-driven GFP and developmental behavior of the expressed cells in early heterozygous embryos by out-crossing the Tg(Apo14: GFP) male to the wild type female. Significantly, the Apo-14 promoter-driven GFP is initially expressed around YSL beneath the embryo body at 10 hpf when the embryos develop to tail bud prominence. In about 14-somite embryos at 16-17 hpf, a typical "salt-and-pepper" expression pattern is clearly observed in YSL around the yolk sac. Then, a green fluorescence dot begins to appear between the notochord and the yolk sac adjacent to otic vesicle at about 20 hpf, which is later demonstrated to be liver primordium that gives rise to liver. Furthermore, we investigated dynamic progression of liver organogenesis in the Tg(Apo14: GFP) zebrafish, because the Apo-14 promoter-driven GFP is sustainably expressed from hepatoblasts and liver progenitor cells in liver primordium to hepatocytes in the larval and adult liver. Additionally, we observed similar morphology between the liver progenitor cells and the GFP-positive nuclei on the YSL, suggesting that they might originate from the same progenitor cells in early embryos. Overall, the current study provides a transgenic zebrafish line that marks the through liver organogenesis.  相似文献   

11.
We used a green fluorescent kidney line, Tg(wt1b:GFP), as a model to access the acetaminophen (AAP)-induced nephrotoxicity dynamically. Zebrafish (Danio rerio) embryos at different developmental stages (12–60 hpf) were treated with different dosages of AAP (0–45 mM) for different time courses (12–60 h). Results showed that zebrafish embryos exhibited no evident differences in survival rates and morphological changes between the mock-treated control (0 mM) and 2.25 mM AAP-exposure (12–72 hpf) groups. In contrast, after higher doses (22.5 and 45 mM) of exposure, embryos displayed malformed kidney phenotypes, such as curved, cystic pronephric tube, pronephric duct, and a cystic and atrophic glomerulus. The percentages of embryos with malformed kidney phenotypes increased as the exposure dosages of AAP increased. Interestingly, under the same exposure time course (12 h) and dose (22.5 mM), embryos displayed higher percentages of severe defects at earlier developmental stage of exposure (12–24 hpf), whereas embryos displayed higher percentages of mild defects at later exposure (60–72 hpf). With an exposure time course less than 24 h of 45 mM AAP, no embryo survived by the developmental stage of 72 hpf. These results indicated that AAP-induced nephrotoxicity depended on the exposure dose, time course and developmental stages. Immunohistochemical experiments showed that the cells' morphologies of the pronephric tube, pronephric duct and glomerulus were disrupted by AAP, and consequently caused cell death. Real-time RT-PCR revealed embryos after AAP treatment decreased the expression of cox2 and bcl2, but increased p53 expression. In conclusion, AAP-induced defects on glomerulus, pronephric tube and pronephric duct could be easily and dynamically observed in vivo during kidney development in this present model.  相似文献   

12.
When aequorin is microinjected into cleavage-stage zebrafish embryos, it is largely used up by ~24 hours. Thus, it is currently not possible to image Ca(2+) signals from later stages of zebrafish development using this approach. We have, therefore, developed protocols to express apoaequorin, i.e., the protein component of aequorin, transiently in zebrafish embryos and then reconstitute intact aequorin in vivo by loading the coelenterazine co-factor into the embryos separately. Two types of apoaequorin mRNA, aeq-mRNA and aeq::EGFP-mRNA, the latter containing the enhanced green fluorescent protein (EGFP) sequence, were in vitro transcribed and when these were microinjected into embryos, they successfully translated apoaequorin and a fusion protein of apoaequorin and EGFP (apoaequorin-EGFP), respectively. We show that aeq::EGFP -mRNA was more toxic to embryos than equivalent amounts of aeq-mRNA. In addition, in an in vitro reconstitution assay, apoaequorin-EGFP produced less luminescence than apoaequorin, after reconstitution with coelenterazine and with the addition of Ca(2+). Furthermore, when imaging intact coelenterazine-loaded embryos that expressed apoaequorin, Ca(2+ )signals from ~2.5 to 48 hpf were observed, with the spatio-temporal pattern of these signals up to 24 hpf, being comparable to that observed with aequorin. This transient aequorin expression approach using aeq-mRNA provides a valuable tool for monitoring Ca(2+ )signaling during the 2448 hpf period of zebrafish development. Thus, it effectively extends the aequorin-based Ca(2+) imaging window by an additional 24 hours.  相似文献   

13.
14.
目的:制备地高辛标记的微小染色体维系蛋白3(MCM3)基因的RNA探针,研究MCM3在斑马鱼早期发育中的时空表达。方法:收集并固定受精后24 h时期的野生型斑马鱼胚胎,提取总RNA,制备DIG标记的MCM3 RNA反义探针,整胚原位杂交,研究MCM3在斑马鱼胚胎早期发育过程的表达。结果:斑马鱼的MCM3氨基酸序列与小鼠、人具有高度同源性,通过不同时期胚胎的原位杂交,发现MCM3在早期发育过程中普遍性表达,胚胎受精后0~2 hMCM3在增殖性区域泛表达,受精后14~22 h在中枢神经系统、发育未成熟的眼部、体节及增殖性区域表达,受精后24 h在血液、中枢神经、翼板中脑、视觉盖及增殖性区域表达,受精后48 h在头部及肛门增殖性区域表达。结论:明确了MCM3在斑马鱼胚胎发育过程中的表达模式,证明其与早期斑马鱼发育细胞增殖密切相关,为研究该基因功能提供了一定的理论基础。  相似文献   

15.
Neurohypophysial peptides are important regulators of homeostasis, reproduction and behavior. We have sequenced a zebrafish cDNA representing isotocin-neurophysin (IT-NP) mRNA. The developmental expression pattern of zebrafish IT-NP mRNA was determined by whole-mount in situ hybridization histochemistry. At 32 h post fertilization (hpf) no IT-NP mRNA is detected. However, by 36 hpf, staining for IT-NP mRNA is detected in a tight bilateral cluster of cells located in the anterior hypothalamus. The IT-NP mRNA expression pattern remains remarkably stable throughout further development at least until 120 hpf.  相似文献   

16.
为探索小干扰RNA(small interfering RNA,siRNA)表达质粒在研究斑马鱼血管内皮生长因子(vascular endothelial growth factor,VEGF)基因调控网络中的应用,构建了4个以斑马鱼VEGF基因为靶点的siRNA表达载体pSI—VEGF、pS2-VEGF、pS3-VEGF及pS4-VEGF。通过显微注射的方法将载体导入1-2细胞期斑马鱼体内,于胚胎发育的48h采用RT-PCR的方法检测VEGF基因的表达量,研究不同干扰序列对VEGF基因表达的干涉作用。结果显示,成功地构建了siRNA表达载体。针对不同位点的寡核苷酸序列抑制VEGF基因表达的效率有显著差异,其中注射了ps1-VEGF的胚胎出现了心包膜水肿、血流速度减慢、循环红细胞堆积等症状,同时肠下静脉、节间血管以及其它血管出现不同程度的发育缺陷。实验结果说明,pS1-VEGF可引起斑马鱼胚胎血管发育缺陷。  相似文献   

17.
为研究转化生长因子 (Transforming growth factor , TGF)1对斑马鱼胚胎发育的调控作用, 通过NCBI获得TGF-1基因序列, TGF-1 cDNA全长1571 bp, 编码377个氨基酸。系统进化树分析发现, TGF-蛋白按照不同的类型严格聚类, 斑马鱼TGF-1与其他鱼类的TGF-1聚集到一个分支, 在进化中非常保守。对斑马鱼胚胎进行RT-PCR和Real-Time PCR检测显示, TGF-1基因为母源表达基因, 在分节期之前的表达水平比较低, 而从咽囊期开始持续高水平的表达。胚胎整体原位杂交发现, TGF-1基因在斑马鱼24 hpf 胚胎中开始有特异信号出现, TGF-1基因的表达主要分布在腮弓、侧线原基、耳囊、嗅觉基板、心脏和前肾等处, 表明TGF-1基因可能参与斑马鱼胚胎免疫调节、循环系统发育和侧线形成。用低氧处理斑马鱼胚胎, 发现低氧处理24h后斑马鱼胚胎发育延迟。利用Real-Time PCR和胚胎整体原位杂交检测发现, 低氧处理后发育延迟的斑马鱼胚胎中TGF-1 mRNA表达量较常氧组显著降低。以上结果表明, TGF-1基因参与斑马鱼胚胎发育调控, 并且可能与低氧处理后斑马鱼胚胎发育延迟有关。研究结果将为深入研究斑马鱼TGF-1基因的功能奠定基础。    相似文献   

18.
Early developmental staging from the zygote stage to the gastrula is a basic step for studying embryonic development and biotechnology. We described the early embryonic development of the loach, Misgurnus anguillicaudatus, based on morphological features and gene expression. Synchronous cleavage was repeated for 9 cycles about every 27 min at 20 degrees C after the first cleavage. After the 10th synchronous cleavage, asynchronous cleavage was observed 5.5 h post-fertilization (hpf), indicating the mid-blastula transition. The yolk syncytial layer (YSL) was formed at this time. Expressions of goosecoid and no tail were detected by whole-mount in situ hybridization from 6 hpf. This time corresponded to the late-blastula period. Thereafter, epiboly started and a blastoderm covered over the yolk cell at 8 hpf. At 10 hpf, the germ ring and the embryonic shield were formed, indicating the stage of early gastrula. Afterward, the epiboly advanced at the rate of 10% of the yolk cell each hour. The blastoderm covered the yolk cell completely at 15 hpf. The embryonic development of the loach resembled that of the zebrafish in terms of morphological change and gene expression. Therefore, it is possible that knowledge of the developmental stages of the zebrafish might be applicable to the loach.  相似文献   

19.
为了解斑马鱼胚胎发育过程中FGF3基因的时空性表达情况,并探讨其对胚胎发育的调控作用,该研究分别提取2,4,8,12,24,36,48,72hpf斑马鱼胚胎的总RNA,经逆转录成cDNA,实时荧光定量PcR检测FGF3基因mRNA表达量;扩增FGF3基因特异片段,构建pGEM-T/FGF3基因片段重组质粒,经克隆及测序验证后,合成地高辛标记的反义RNA探针,以整体原位杂交法检测斑马鱼胚胎FGF3基因的空间性表达。结果显示:FGF3P基因在2hp胚胎就有表达,并持续至胚胎孵化,12hpf胚胎FGF3表达量达到高峰(P〈0.01);胚胎发育过程中心表达部位以头、尾、咽弓为主。由此得出结论,FGF3主要在胚胎发育早期表达,其表达可能与胚胎脑、眼、耳、咽弓及尾部器官的发育调控有关。  相似文献   

20.
目的:考察新设计合成的一种FAPα酶激活式靶向抗肿瘤新药甘脯酰阿霉素(Z-GP-Dox)对斑马鱼的毒性作用。方法:以阿霉素作为对照,用不同浓度的Z-GP-Dox处理4月龄的成年斑马鱼及其受精后24h(24hpf)的胚胎,观测其死亡率,并通过显微镜观察Z-GP-Dox对斑马鱼胚胎发育的影响,从形态学和电生理学方面评价其对斑马鱼心脏的毒性作用。结果:Dox对照组的斑马鱼死亡率具有明显的浓度依赖性,而经酰化修饰的前药Z-GP-Dox处理组的斑马鱼死亡率相对较低。Dox可导致斑马鱼胚胎发育严重畸形,心脏功能受损;而相同浓度的前药Z-GP-Dox处理组的胚胎发育基本正常,幼鱼的心脏形态和心率与空白对照组差异不显著。然而,当Z-GP-Dox被FAPα酶解后,其毒性则明显增强,与Dox对照组的毒性相当。结论:与Dox相比,经结构改造的前药Z-GP-Dox对斑马鱼的毒性显著降低,且具有FAPα酶激活式靶向释放特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号