首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The consequences of habitat alteration on the role of understory insectivorous birds as predators of herbivorous insects in tropical forests are poorly understood. To examine whether fragmentation may affect the top–down controls of herbivory, we compared the number of species, individuals, and the community structure of insectivorous birds between fragments and continuous tropical moist forest in Mexico. We also registered insect herbivore abundances and conducted a larvae predation experiment to evaluate the potential role of insectivorous birds as predators of herbivorous insects. We recorded 63 bird species from 22 families, 43 percent of which were insectivorous birds. Species richness, abundance, and diversity of the avian community were higher in continuous forest compared with forest fragments. For insectivorous birds in particular, there was low similarity in avian insectivore communities between forest types, and forest fragments had more heavily dominated communities of avian insectivores. During the dry season, forest fragments presented significantly higher predation rates on artificial caterpillars, and lower abundance of herbivorous Lepidoptera larvae, compared with continuous forest. Furthermore, there was a significant negative correlation between artificial caterpillar predation rate and larval Lepidoptera abundance, with higher rates of predation in sample sites of low Lepidoptera abundance. Hence, the potentially greater light in the dry season combined with a more dominated avian insectivore community in forest fragments may facilitate increased predation by avian insectivores, resulting in a decline in abundance of larval Lepidoptera, with implications for the process of insect‐driven herbivory in forest fragments.  相似文献   

2.
The niche theory predicts that environmental heterogeneity and species diversity are positively correlated in tropical forests, whereas the neutral theory suggests that stochastic processes are more important in determining species diversity. This study sought to investigate the effects of soil nutrient (nitrogen and phosphorus) heterogeneity on tree species diversity in the Xishuangbanna tropical seasonal rainforest in southwestern China. Thirty‐nine plots of 400 m2 (20 × 20 m) were randomly located in the Xishuangbanna tropical seasonal rainforest. Within each plot, soil nutrient (nitrogen and phosphorus) availability and heterogeneity, tree species diversity, and community phylogenetic structure were measured. Soil phosphorus heterogeneity and tree species diversity in each plot were positively correlated, while phosphorus availability and tree species diversity were not. The trees in plots with low soil phosphorus heterogeneity were phylogenetically overdispersed, while the phylogenetic structure of trees within the plots became clustered as heterogeneity increased. Neither nitrogen availability nor its heterogeneity was correlated to tree species diversity or the phylogenetic structure of trees within the plots. The interspecific competition in the forest plots with low soil phosphorus heterogeneity could lead to an overdispersed community. However, as heterogeneity increase, more closely related species may be able to coexist together and lead to a clustered community. Our results indicate that soil phosphorus heterogeneity significantly affects tree diversity in the Xishuangbanna tropical seasonal rainforest, suggesting that deterministic processes are dominant in this tropical forest assembly.  相似文献   

3.
Insect herbivores have the potential to consume large amounts of plant tissue in tropical forests, but insectivorous vertebrates effectively control their abundances, indirectly increasing plant fitness accordingly. Despite several studies already sought understanding of the top-down effects on arthropod community structure and herbivory, such studies of trophic cascades in old tropics are underrepresented, and little attention was paid to top-down forces in various habitats. Therefore, we examine how flying insectivorous vertebrates (birds and bats) impact arthropods and, consequently, affect herbivore damage of leaves in forest habitats in Papua New Guinea. In a 3-month long predator exclosure experiment conducted at four study sites across varying elevation and successional stage, we found that vertebrate predators reduced arthropod density by ∼52%. In addition, vertebrate predators decreased the mean body size of arthropods by 26% in leaf chewers and 47% in non-herbivorous arthropods but had only a small effect on mesopredators and sap suckers. Overall, the exclusion of vertebrate predators resulted in a ~ 41% increase in leaf damage. Our results, across different types of tropical forests in Papua New Guinea, demonstrate that flying vertebrate insectivores have a crucial impact on plant biomass, create a selective pressure on larger and non-predatory prey individuals and they prey partition with mesopredators.  相似文献   

4.
Tropical forest floor characteristics such as depth and nutrient concentrations are highly heterogeneous even over small spatial scales and it is unclear how these differences contribute to patchiness in forest floor arthropod abundance and diversity. In a lowland tropical forest in Panama we experimentally increased litter standing crop by removing litter from five plots (L−) and adding it to five other plots (L+); we had five control plots. After 32 mo of treatments we investigated how arthropod abundance and diversity were related to differences in forest floor physical (mass, depth, water content) and chemical properties (pH, nutrient concentrations). Forest floor mass and total arthropod abundance were greater in L+ plots compared with controls. There were no treatment differences in nutrient concentrations, pH or water content of the organic horizons. Over all plots, the mass of the fermentation horizon (Oe) was greater than the litter horizon (Oi); arthropod diversity and biomass were also greater in the Oe horizon but nutrient concentrations tended to be higher in the Oi horizon. Arthropod abundance was best explained by forest floor mass, while arthropod diversity was best explained by phosphorus, calcium and sodium concentrations in the Oi horizon and by phosphorus concentrations in the Oe horizon. Differences in arthropod community composition between treatments and horizons correlated with phosphorus concentration and dry mass of the forest floor. We conclude that at a local scale, arthropod abundance is related to forest floor mass (habitat space), while arthropod diversity is related to forest floor nutrient concentrations (habitat quality).  相似文献   

5.
Inverse trophic cascades are a well explored and common consequence of the local depletion or extinction of top predators in natural ecosystems. Despite a large body of research, the cascading effects of predator removal on ecosystem functions are not as well understood. Developing microcosm experiments, we explored food web changes in trophic structure and ecosystem functioning following biomass removal of top predators in representative temperate and tropical rock pool communities that contained similar assemblages of zooplankton and benthic invertebrates. We observed changes in species abundances following predator removal in both temperate and tropical communities, in line with expected inverse effects of a trophic cascade, where predation release benefits the predator’s preys and competitors and impacts the preys of the latter. We also observed several changes at the community and ecosystem levels including a decrease in total abundance and mean trophic level of the community, and changes in chlorophyll-a and total dissolved particles. Our results also showed an increase in variability of both community and ecosystem processes following the removal of predators. These results illustrate how predator removal can lead to inverse trophic cascades both in structural and functioning properties, and can increase variability of ecosystem processes. Although observed patterns were consistent between tropical and temperate communities following an inverse cascade pattern, changes were more pronounced in the temperate community. Therefore, aquatic food webs may have inherent traits that condition ecosystem responses to changes in top-down trophic control and render some aquatic ecosystems especially sensitive to the removals of top predators.  相似文献   

6.
Nutrient availability and herbivory control the biomass of primary producer communities to varying degrees across ecosystems. Ecological theory, individual experiments in many different systems, and system-specific quantitative reviews have suggested that (i) bottom-up control is pervasive but top-down control is more influential in aquatic habitats relative to terrestrial systems and (ii) bottom-up and top-down forces are interdependent, with statistical interactions that synergize or dampen relative influences on producer biomass. We used simple dynamic models to review ecological mechanisms that generate independent vs. interactive responses of community-level biomass. We calibrated these mechanistic predictions with the metrics of factorial meta-analysis and tested their prevalence across freshwater, marine and terrestrial ecosystems with a comprehensive meta-analysis of 191 factorial manipulations of herbivores and nutrients. Our analysis showed that producer community biomass increased with fertilization across all systems, although increases were greatest in freshwater habitats. Herbivore removal generally increased producer biomass in both freshwater and marine systems, but effects were inconsistent on land. With the exception of marine temperate rocky reef systems that showed positive synergism of nutrient enrichment and herbivore removal, experimental studies showed limited support for statistical interactions between nutrient and herbivory treatments on producer biomass. Top-down control of herbivores, compensatory behaviour of multiple herbivore guilds, spatial and temporal heterogeneity of interactions, and herbivore-mediated nutrient recycling may lower the probability of consistent interactive effects on producer biomass. Continuing studies should expand the temporal and spatial scales of experiments, particularly in understudied terrestrial systems; broaden factorial designs to manipulate independently multiple producer resources (e.g. nitrogen, phosphorus, light), multiple herbivore taxa or guilds (e.g. vertebrates and invertebrates) and multiple trophic levels; and - in addition to measuring producer biomass - assess the responses of species diversity, community composition and nutrient status.  相似文献   

7.
Apex predators and plant resources are both critical for maintaining diversity in biotic communities, but the indirect (‘cascading’) effects of top‐down and bottom‐up forces on diversity at different trophic levels are not well resolved in terrestrial systems. Manipulations of predators or resources can cause direct changes of diversity at one trophic level, which in turn can affect diversity at other trophic levels. The indirect diversity effects of resource and consumer variation should be strongest in aquatic systems, moderate in terrestrial systems, and weakest in decomposer food webs. We measured effects of top predators and plant resources on the diversity of endophytic animals in an understorey shrub Piper cenocladum (Piperaceae). Predators and resource availability had significant direct and indirect effects on the diversity of the endophytic animal community, but the effects were not interactive, nor were they consistent between living vs. detrital food webs. The addition of fourth trophic level beetle predators increased diversity of consumers supported by living plant tissue, whereas balanced plant resources (light and nutrients) increased the diversity of primary through tertiary consumers in the detrital resources food web. These results support the hypotheses that top‐down and bottom‐up diversity cascades occur in terrestrial systems, and that diversity is affected by different factors in living vs. detrital food webs.  相似文献   

8.
We tested integrative bottom-up and top-down trophic cascade hypotheses with manipulative experiments in a tropical wet forest, using the ant-plant Piper cenocladum and its associated arthropod community. We examined enhanced nutrients and light along with predator and herbivore exclusions as sources of variation in the relative biomass of plants, their herbivores (via rates of herbivory), and resident predaceous ants. The combined manipulations of secondary consumers, primary consumers, and plant resources allowed us to examine some of the direct and indirect effects on each trophic level and to determine the relative contributions of bottom-up and top-down cascades to the structure of the community. We found that enhanced plant resources (nutrients and light) had direct positive effects on plant biomass. However, we found no evidence of indirect (cascading through the herbivores) effects of plant biomass on predators or top predators. In contrast, ants had indirect effects on plant biomass by decreasing herbivory on the plants. This top-down cascade occurred whether or not plant resources were enriched, conditions which are expected to modify top-down forces. Received: 9 August 1998 / Accepted: 1 December 1998  相似文献   

9.
Deron E. Burkepile 《Oikos》2013,122(2):306-312
‘Grazing ecosystem’ is typically used to describe terrestrial ecosystems with high densities of mammalian herbivores such as the Serengeti in East Africa or the Greater Yellowstone Ecosystem in North America. These abundant, large herbivores determine plant community dynamics and ecosystem processes. The general concepts that define grazing ecosystems also aptly describe many aquatic ecosystems, including coral reefs, seagrass beds, and lakes, where herbivores such as parrotfishes, turtles, and zooplankton have strong impacts on ecosystem processes. Here, I compare the ecology of grazing ecosystems in search of common concepts that transcend the terrestrial‐aquatic boundary. Specifically, I evaluate: 1) the feedbacks between herbivory and primary production, 2) the roles of herbivore richness and facilitation, 3) how predators and diet quality shape patterns of herbivory, and 4) how altering herbivory mediates alternative states.  相似文献   

10.
Vertical stratification of avian communities has been studied in both temperate and tropical forests; however, the majority of studies used ground-based methods. In this study we used ground-to-canopy mist nets to collect detailed data on vertical bird distribution in primary rain forest in Wanang Conservation Area in Papua New Guinea (Madang Province). In total 850 birds from 86 species were caught. Bird abundance was highest in the canopy followed by the understory and lowest in the midstory. Overall bird diversity increased towards the canopy zone. Insectivorous birds represented the most abundant and species-rich trophic guild and their abundances decreased from the ground to canopy. The highest diversity of frugivorous and omnivorous birds was confined to higher vertical strata. Insectivorous birds did not show any pattern of diversity along the vertical gradient. Further, insectivores preferred strata with thick vegetation, while abundance and diversity of frugivores increased with decreasing foliage density. Our ground-to-canopy (0–27 m) mist netting, when compared to standard ground mist netting (0–3 m), greatly improved bird diversity assessment and revealed interesting patterns of avian community stratification along vertical forest strata.  相似文献   

11.
Higher trophic level interactions are key mediators of ecosystem functioning in tropical forests. A rich body of theory has been developed to predict the effects of plant diversity on communities at higher trophic levels and the mechanisms underlying such effects. The 'enemies hypothesis’ states that predators exert more effective top–down control of herbivorous insects with increasing plant diversity. Support for this hypothesis has been found in temperate forests and agroecosystems, but remains understudied in tropical forests. We compared incidence of attacks of different natural enemies using artificial caterpillars in a tropical forest landscape and investigated the role of plant community structure (i.e. species richness, composition and density), and the role of forest fragmentation (i.e. patch size, edge distance and canopy openness) on predation intensity. Plant community effects were tested with respect to three vegetation strata: trees, saplings and herbs. Observed predation was substantially due to ants. Predation rates increased with plant species richness for trees and herbs. Density of saplings, herb cover and herb species composition were important factors for predation. No significant patterns were found for fragmentation parameters, suggesting that forest fragmentation has not altered predation intensity. We conclude that in tropical forests, top–down control of herbivorous insects in the understory vegetation is affected by a combination of plant diversity, plant species composition and structural features of the plant community.  相似文献   

12.
The role of riparian forests in the functioning of aquatic ecosystems is well known, and they are recognized as an important food source for riverine fauna. This study investigates the trophic structure of coastal freshwater stream fishes from a large conservation area in an Atlantic rainforest using stomach content and food availability analyses. Four samples were collected from 19 sample sites. Fishes were caught with electrofishing. Prey were sampled with trays, Surber, traps, and electrofishing to evaluate the availability of food resources. The diets of 20 fish species were determined from the stomach contents of 1691 individuals. Terrestrial and aquatic insects and detritus were the most consumed items. Fish diet and prey availability were not seasonally dependent. A cluster analysis showed five trophic functional groups: terrestrial insectivores, aquatic insectivores, detritivores, carnivores, and omnivores. Insectivores predominated in species richness (60%), abundance (47%) and biomass (39%). Allochthonous and autochthonous items were found in similar proportions in the environment; however, allochthonous items were representative for insectivores and detritivores, whereas autochthonous items were important for primarily aquatic insectivores. The preference for certain insects by insectivorous fishes was associated with food selectivity rather than the availability of the resource and demonstrated the strong relationship between feeding behavior and food preference. The absence of seasonal variation in the diets of the fishes was possibly related to the consistent food supply. Our results confirm the role of the forest as a food provider for stream fishes, such as terrestrial insects and plant debris/detritus (also consumed by aquatic insects, which subsequently serve as food for fish), highlighting the importance of conserving the Brazilian Atlantic rainforests.  相似文献   

13.
Human-driven changes in nitrogen (N) and phosphorus (P) inputs are modifying biogeochemical cycles and the trophic state of many habitats worldwide. These alterations are predicted to continue to increase, with the potential for a wide range of impacts on invertebrates, key players in ecosystem-level processes. Here, we present a meta-analysis of 1679 cases from 207 studies reporting the effects of N, P, and combined N + P enrichment on the abundance, biomass, and richness of aquatic and terrestrial invertebrates. Nitrogen and phosphorus additions decreased invertebrate abundance in terrestrial and aquatic ecosystems, with stronger impacts under combined N + P additions. Likewise, N and N + P additions had stronger negative impacts on the abundance of tropical than temperate invertebrates. Overall, the effects of nutrient enrichment did not differ significantly among major invertebrate taxonomic groups, suggesting that changes in biogeochemical cycles are a pervasive threat to invertebrate populations across ecosystems. The effects of N and P additions differed significantly among invertebrate trophic groups but N + P addition had a consistent negative effect on invertebrates. Nutrient additions had weaker or inconclusive impacts on invertebrate biomass and richness, possibly due to the low number of case studies for these community responses. Our findings suggest that N and P enrichment affect invertebrate community structure mainly by decreasing invertebrate abundance, and these effects are dependent on the habitat and trophic identity of the invertebrates. These results highlight the important effects of human-driven nutrient enrichment on ecological systems and suggest a potential driver for the global invertebrate decline documented in recent years.  相似文献   

14.
Fonte SJ  Schowalter TD 《Oecologia》2005,146(3):423-431
The role of phytophagous insects in ecosystem nutrient cycling remains poorly understood. By altering the flow of litterfall nutrients from the canopy to the forest floor, herbivores may influence key ecosystem processes. We manipulated levels of herbivory in a lower montane tropical rainforest of Puerto Rico using the common herbivore, Lamponius portoricensis (Phasmatidea), on a prevalent understory plant, Piper glabrescens (Piperaceae), and measured the effects on nutrient input to the forest floor and on rates of litter decomposition. Four treatment levels of herbivory generated a full range of leaf area removal, from plants experiencing no herbivory to plants that were completely defoliated (>4,000 cm2 leaf area removed during the 76-day study duration). A significant (P<0.05) positive regression was found between all measures of herbivory (total leaf area removed, greenfall production, and frass-related inputs) and the concentration of NO 3 in ion exchange resin bags located in the litter layer. No significant relationship was found between any of the herbivory components and resin bag concentrations of NH 4 + or PO 4 . Rates of litter decay were significantly affected by frass-related herbivore inputs. A marginally significant negative relationship was also found between the litter mass remaining at 47 days and total leaf area removed. This study demonstrated a modest, but direct relationship between herbivory and both litter decomposition and NO 3 transfer to the forest floor. These results suggest that insect herbivores can influence forest floor nutrient dynamics and thus merit further consideration in discussions on ecosystem nutrient dynamics.  相似文献   

15.
Comparisons of bird community composition in burned and unburned areas of a lowland tropical rainforest in Sumatra, Indonesia indicated the following during the first 5 years after burning: (1) original burn severity strongly affected bird community composition at both the genus and family levels; (2) bird community composition continued to change progressively away from immediate post-burn composition in medium and severely burned forest as well as adjacent unburned forest; and (3) the degree of impact was both taxon and guild specific, with understory insectivores most detrimentally affected. Although species richness may temporarily increase in burned areas, this study suggests that multiple wildfires will lead to a decline in diversity over a large scale as birds of open fields replace interior forest specialists.  相似文献   

16.
Tropical rainforests around the world are rapidly being converted into cash crop agricultural systems. The associated massive losses of plant and animal species lead to changes in arthropod food webs and the energy fluxes therein. These changes are poorly understood, in particular in the extremely biodiverse canopies of tropical ecosystems. Using canopy fogging followed by stable isotope and energy flux analyses, we show that land-use conversion from rainforest to rubber and oil palm plantations not only causes a drastic reduction in energy fluxes of up to 75%, but also shifts fluxes among trophic groups. While rainforest featured high levels of both herbivory and algae-microbivory, and a balanced ratio of herbivory to predation, relative fluxes were shifted towards predation in rubber and towards herbivory in oil palm plantations, indicating profound shifts in ecosystem functioning. Our results highlight that the ongoing loss of animal biodiversity and biomass in tropical canopies degrades animal-driven functions and restructures canopy food webs.  相似文献   

17.
1. The characterisation of energy flow through communities is a primary goal of ecology. Furthermore, predator–prey interactions can influence both species abundance and community composition. The ant subfamily Ponerinae includes many predatory species that range from generalist insectivores to highly specialised hunters that target a single prey type. Given their high diversity and ubiquity in tropical ecosystems, measuring intra- and interspecific variation in their trophic ecology is essential for understanding the role of ants as predators of insect communities. 2. The stable isotopic composition of nitrogen of 22 species from the ant subfamily Ponerinae was measured, relative to plants and other predatory and herbivorous insects at two Atlantic Forest sites in Argentina. The study tested the general assumption that ponerine ants are all predatory, and examined intra- and interspecific variation in trophic ecology relative to habitat, body size and cytochrome c oxidase subunit 1 sequences (DNA barcoding). 3. Stable isotope analysis revealed that most ponerines occupy high trophic levels (primary and secondary predators), but some species overlapped with known insect herbivores. Species residing at low trophic levels were primarily arboreal and may rely heavily on nectar or other plant-based resources in their diet. In addition, larger species tend to occupy lower trophic positions than smaller species. 4. Although some of the species were divided into two or more genetic clusters by DNA barcoding analysis, these clusters did not correspond to intraspecific variation in trophic position; therefore, colony dietary flexibility most probably explains species that inhabit more than one trophic level.  相似文献   

18.
Ecological restoration is increasingly applied in tropical forests to mitigate biodiversity loss and recover ecosystem functions. In restoration ecology, functional richness, rather than species richness, often determines community assembly, and measures of functional diversity provide a mechanistic link between diversity and ecological functioning of restored habitat. Vertebrate animals are important for ecosystem functioning. Here, we examine the functional diversity of small‐to‐medium sized mammals to evaluate the diversity and functional recovery of tropical rainforest. We assess how mammal species diversity and composition and functional diversity and composition, vary along a restoration chronosequence from degraded pasture to “old‐growth” tropical rainforest in the Wet Tropics of Australia. Species richness, diversity, evenness, and abundance did not vary, but total mammal biomass and mean species body mass increased with restoration age. Species composition in restoration forests converged on the composition of old‐growth rainforest and diverged from pasture with increasing restoration age. Functional metrics provided a clearer pattern of recovery than traditional species metrics, with most functional metrics significantly increasing with restoration age when taxonomic‐based metrics did not. Functional evenness and dispersion increased significantly with restoration age, suggesting that niche complementarity enhances species' abundances in restored sites. The change in community composition represented a functional shift from invasive, herbivorous, terrestrial habitat generalists and open environment specialists in pasture and young restoration sites, to predominantly endemic, folivorous, arboreal, and fossorial forest species in older restoration sites. This shift has positive implications for conservation and demonstrates the potential of tropical forest restoration to recover rainforest‐like, diverse faunal communities.  相似文献   

19.
Large mammalian herbivores manifest a strong top‐down control on ecosystems that can transform entire landscapes, but their impacts have not been reviewed in the context of terrestrial carbon storage. Here, we evaluate the effects of plant biomass consumption by large mammalian herbivores (>10 kg adult biomass), and the responses of ecosystems to these herbivores, on carbon stocks in temperate and tropical regions, and the Arctic. We calculate the difference in carbon stocks resulting from herbivore exclusion using the results of 108 studies from 52 vegetation types. Our estimates suggest that herbivores can reduce terrestrial above‐ and below‐ground carbon stocks across vegetation types but reductions in carbon stocks may approach zero given sufficient periods of time for systems to respond to herbivory (i.e. decades). We estimate that if all large herbivores were removed from the vegetation types sampled in our review, increases in terrestrial carbon stocks would be up to three orders of magnitude less than many of the natural and human‐influenced sources of carbon emissions. However, we lack estimates for the effects of herbivores on below‐ground biomass and soil carbon levels in many regions, including those with high herbivore densities, and upwards revisions of our estimates may be necessary. Our results provide a starting point for a discussion on the magnitude of the effects of herbivory on the global carbon cycle, particularly given that large herbivores are common in many ecosystems. We suggest that herbivore removal might represent an important strategy towards increasing terrestrial carbon stocks at local and regional scales within specific vegetation types, since humans influence populations of most large mammals.  相似文献   

20.
Habitat homogenization is one of the most important drivers of change in riverine fauna. Therefore, the aim of this study was to determine whether habitat homogenization influences the trophic structure of fish assemblages in tropical streams. We sampled 78 streams located in pasture and crop lands to examine habitat variables and fish. Principal coordinates analysis, canonical analysis of principal coordinates, and a distance-based test for homogeneity of multivariate dispersions revealed two groups of streams, designated homogeneous and heterogeneous, based on the habitat variables. We determined trophic guilds according to the frequency and biovolume of food items. Seven guilds were identified: aquatic insectivores, terrestrial insectivores, detritivores, herbivores, omnivores, algivores, and detritivores–algivores. Homogeneous streams showed higher abundance and biomass of aquatic insectivores, detritivores, and algivores. Heterogeneous streams showed greater diversity of trophic guilds and higher abundance and biomass of terrestrial insectivores and herbivores than homogeneous streams. Our results demonstrate that trophic structure is influenced by habitat condition. Additionally, the riparian canopy and nearshore vegetation have a modulating role in the trophic structure of stream fishes due to their influence on resource supply and promotion of the physical heterogeneity of the channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号