首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Injection of 5 μg endotoxin to adult C57BL mice caused a marked increase in the sedimentation velocity of granulocytic and macrophage progenitor (colony-forming) cells in the bone marrow. This change was maximal two days after injection and was not accompanied by corresponding changes in total marrow nucleated cell populations. The endotoxin-induced shift was not dependent on the presence of the thymus but did not occur in mice challenged after preinjection with endotoxin. No changes in buoyant density, cell cycle status, pattern of differentiation and responsiveness of granulocytic and macrophage progenitor cells were observed after the injection of endotoxin. The increased sedimentation velocity of progenitor cells appears to indicate an increase in cell volume but the mechanisms involved have not been identified.  相似文献   

2.
Recent studies have shown that the T cell-derived cytokine, interleukin-17 (IL-17), stimulates hematopoiesis, specifically granulopoiesis inducing expansion of committed and immature progenitors in bone marrow. Our previous results pointed to its role in erythropoiesis too, demonstrating significant stimulation of BFU-E and suppression of CFU-E growth in the bone marrow from normal mice. As different sensitivities of erythroid and myeloid progenitor cells to nitric oxide (NO) were found, we considered the possibility that the observed effects of IL-17 were mediated by NO. The effects of recombinant mouse IL-17, NO donor (sodium nitroprusside - SNP) and two NO synthases inhibitors (L-NAME and aminoguanidine) on erythroid progenitor cells growth, as well as the ability of IL-17 to induce nitric oxide production in murine bone marrow cells, were examined. In addition, we tested whether the inhibition of CFU-E colony formation by IL-17 could be corrected by erythropoietin (Epo), the principal regulator of erythropoiesis. We demonstrated that IL-17 can stimulate low level production of NO in murine bone marrow cells. Exogenously added NO inhibited CFU-E colony formation, whereas both L-NAME and aminoguanidine reversed the CFU-E suppression by IL-17 in a dose-dependent manner. The inhibition of CFU-E by IL-17 was also corrected by exposure to higher levels of Epo. The data obtained demonstrated that at least some of the IL-17 effects in bone marrow related to the inhibition of CFU-E, were mediated by NO generation. The fact that Epo also overcomes the inhibitory effect of IL-17 on CFU-E suggests the need for further research on their mutual relationship and co-signalling.  相似文献   

3.
4.
There are tremendous unmet clinical needs for effective strategies to enhance bone regeneration in vivo. The sustained presence of multipotent mesenchymal progenitors in the bone marrow in aged and osteoporotic individuals offers the potential for therapeutic interventions to induce osteoblast production from the resident progenitors. Recent advances in understanding the intercellular signals governing osteogenic decisions may provide targets for developing novel bone-enhancing therapeutics.  相似文献   

5.
《Cell reports》2023,42(8):112881
  1. Download : Download high-res image (203KB)
  2. Download : Download full-size image
  相似文献   

6.
7.
Messenger RNA turnover during bone marrow erythroid cell differentiation   总被引:2,自引:0,他引:2  
Incubation of bone marrow cells from anaemic rabbits in the presence of actinomycin D led to a decrease in total protein synthesis and an increase in the relative synthesis of globin. This increase in the proportion of globin was observed with in vivo labelling of cellular proteins and in vitro translation of isolated RNA, which indicates that the messenger RNA for globin is much more stable than the other bone marrow cell messages. This was further shown by pulse-labelling the RNA and characterization of the different species by separation on a cDNA-oligo(dT)-cellulose column. Within 12 h after pulse-labelling the relative levels of globin mRNA had risen 10-fold, while a rapid decrease in the level of the poly(A)-rich RNA fraction was observed. Investigations into the mechanisms of this differential stability indicate that the more metabolically active cells from the early stages of erythropoietic development are more susceptible to inhibitors of RNA synthesis such as actinomycin D and alpha-amanitin. A preliminary study using a lysosomal inhibitor, chloroquine, indicates that there appear to be at least two degradative mechanisms, involving a lysosomal and a non-lysosomal pathway, with selective specificity for different messages.  相似文献   

8.
Characterization of thymic progenitors in adult mouse bone marrow   总被引:5,自引:0,他引:5  
Thymic cellularity is maintained throughout life by progenitor cells originating in the bone marrow. In this study, we describe adult mouse bone cells that exhibit several features characteristic of prothymocytes. These include 1) rapid thymic engraftment kinetics following i.v. transplantation, 2) dramatic expansion of thymic progeny, and 3) limited production of hemopoietic progeny other than thymocytes. The adult mouse bone marrow population that is depleted of cells expressing any of a panel of lineage-specific Ags, stem cell Ag-1 positive, and not expressing the Thy1.1 Ag (Thy1.1(-)) (Thy1.1(-) progenitors) can repopulate the thymus 9 days more rapidly than can hemopoietic stem cells, a rate of thymic repopulation approaching that observed with transplanted thymocytes. Additionally, Thy1.1(-) progenitors expand prolifically to generate thymocyte progeny comparable in absolute numbers to those observed from parallel hemopoietic stem cell transplants, and provide a source of progenitors that spans multiple waves of thymic seeding. Nevertheless, the Thy1.1(-) population yields relatively few B cells and rare myeloid progeny posttransplant. These observations describe the phenotype of an adult mouse bone marrow population highly enriched for rapidly engrafting, long-term thymocyte progenitors. Furthermore, they note disparity in B and T cell expansion from this lymphoid progenitor population and suggest that it contains the progenitor primarily responsible for seeding the thymus throughout life.  相似文献   

9.
Z Ben-Ishay  G Prindull 《Blut》1989,58(6):295-298
Bone marrow cells of normal and cytosine-arabinoside (Ara-C) treated C57B1 mice were cultured in primary long-term culture (LTBMC) for a period of eight weeks. Non-adherent cells collected at weekly culture feedings consisted of neutrophils, macrophages and megakaryocytes. These were transferred into a) secondary peritoneal diffusion chamber cultures (DC) and b) secondary stromal cell cultures (SCC) first, and then into tertiary DC cultures. While in LTBMC and SCC there was no evidence of erythropoiesis, many erythroid colonies developed in DC cultures. It appears that undifferentiated erythroid progenitors may have a long survival in LTBMC and SCC devoid of erythropoietin and then differentiate in vivo in DC cultures in host mice without specific erythropoietic stimuli. Terminal differentiation and maturation of erythroid progenitors occurs to a limited extent in conventional DC cultures. The large number of erythroid colonies in DC observed in the present study could be due to increased sensitivity of undifferentiated erythroid progenitors from LTBMC to physiological levels of Epo in host mice of DC.  相似文献   

10.
11.
S H Lee 《Blood cells》1991,17(1):45-54; discussion 54-8
Bone marrow macrophages have been isolated for phenotypic analysis by their ability to bind erythroblasts in erythroid clusters. In situ, when labeled for CD68 antigen, they are seen to form an arborizing network uniformly distributed throughout the hemopoietic marrow. Marrow macrophages isolated within erythroid clusters are acid phosphatase and alpha-naphthol butyrate esterase positive. Immunophenotypically, they are highly reactive for CD4, phagocytic receptors FcRI, II, and III, for HLA-Dr and CD31, as well as for the integrins CD11a, CD11c, and CD18, but negative for CD35 and transferrin receptor epitopes. Comparison of their phenotype with blood monocytes and cultured macrophages reveals significant differences, which indicate that marrow macrophages are specialized, differentiated mononuclear phagocytes that selectively associate with developing erythroblasts.  相似文献   

12.
13.
Different fractions of cellular RNA from erythroid enriched bone marrow cells of the rabbit, extracted by the temperature fractionation method, were investigated by hybridization to globin cDNA. 97.4% of all globin sequences were found in the 4 degrees C franction (cytoplasmic RNA) 0.11% are in the 40 degrees / 50 degrees C fraction and 2.47% in the 65 degrees C and 85 degrees C franctions (pre-mRNA). This shows a substantial purification of the pre-mRNA fractions from cytoplasmic mRNA. 33% of the globin sequences in the 65 degrees C and 85 degrees C fractions are polyadenylated. The poly(A)+-RNA from the 65 degrees C and 85 degrees C fractions separated in a formamide sucrose gradient showed a clear hybridization to globin cDNA in the region between 9S and 28S and around 4S. In a control experiment in which RNA from baby hamster kidney cells (BHK) was mixed with globin mRNA and separated in the same manner hybridization was observed at the 9S position of the gradient only.  相似文献   

14.
Summary Leupeptin, a thiol- and serine-proteinase inhibitor of low molecular weight, quickly enters viable cells. This property has been used to protect cells during thawing against intracellular proteolytic activities released by injured lysosomes. The bone marrow nucleated cells were frozen without rate-controlled freezing devices. Concentrations ranging from 0.1 to 1μM of leupeptin allow to recover 87% of the most immature multipotent bone marrow progenitors which can develop in vitro into large multilineage colonies, instead of 58% recovery without leupeptin. The protective effect of leupeptin is particularly useful to freeze cells difficult to cryopreserve or when freezing-control equipments are not available.  相似文献   

15.
Crystalloid material in macrophages of mouse bone marrow   总被引:1,自引:0,他引:1  
G Hudson 《Acta anatomica》1968,71(1):100-107
  相似文献   

16.
The reticuloendothelial system is responsible for removing old and damaged erythrocytes from the circulation, allowing iron to return to bone marrow for hemoglobin synthesis. Cultured bone marrow macrophages were loaded with 59Fe-labelled erythroblasts and iron mobilization was studied. After erythroblast digestion, iron taken up by macrophages was found in ferritin as well as in a low-molecular-weight fraction. The analysis of iron mobilization from macrophages shows: (1) the iron was mobilized as ferritin. (2) A higher mobilization was observed when apotransferrin was present in the culture medium. (3) In the presence of apotransferrin in the culture medium, part of the iron was found as transferrin iron. (4) Iron transfer from ferritin to apotransferrin was observed in a cell-free culture medium and this process was temperature independent. The results indicate that after phagocytosis of 59Fe-labelled erythroblasts by macrophages, iron is mobilized as ferritin. In the plasma, this iron can be transferred to apotransferrin.  相似文献   

17.
Summary The development of macrophages in culture from mouse bone marrow was followed for 14 days by light and electron microscopy, ultrastructural cytochemistry, and flow cytometric analysis. By 10 days greater than 97% of the cells in culture were mononuclear phagocytes, and by 12 days greater than 99% were identifiable as macrophages. Ultrastructurally, three subpopulations of mononuclear phagocytes were distinguished based on the appearance of cytoplasmic structures. Early in culture, cells containing large, membrane-bounded vesicles predominated. With increasing time in culture these cells were replaced to varying degrees first by cells that contained vesicles filled with relatively dense, osmiophilic material and, finally, by macrophages that contained granules of various sizes, shapes and staining densities. Cytochemical (peroxidase and acid phosphatase) and colloidal gold uptake studies at the ultrastructural level suggested that many, if not all, of these cytoplasmic structures arose by pinocytosis and subsequent fusion of pinocytic vesicles with lysosomes. Analysis of DNA content of propidium iodide-stained nuclei by flow cytometry, coupled with the examination of cells treated with colchicine to arrest mitosis in metaphase, suggested that cell cycling was a negligible contributor to heterogeneity within cultured populations. Thus, by waiting until 12–14 days after bone marrow cultures were initiated, with partial replenishment of the culture medium at 7 days, heterogeneity could be greatly reduced in cultured macrophage populations. Taking this fact into consideration could help to reduce the variability seen in functional studies of macrophage populations that are less homogeneous.  相似文献   

18.
19.
In vitro suspension culture procedures for erythroid progenitor cells make it possible for us to obtain large cultures of erythrocyte populations for the investigation of globin gene switching. In this study we aimed to establish optimized culture systems for neonatal and adult erythroblasts and to explore the globin expression patterns in these culture systems. To culture CD34+ cells purified from human umbilical cord blood (CB) and adult bone marrow (BM), we respectively replaced the fetal bovine serum (FBS) with human cord serum and human adult serum. These CD34+ cells were then induced to erythroid differentiation. All the globin mRNA (including alpha-, zeta-, beta-, gamma-and epsilon-globin), the hemoglobin (Hb)-producing erythroid cells and the cellular distribution of fetal hemoglobin (Hb F) were identified during the culture process. The results showed that the globin expression pattern during erythroid differentiation in our culture systems closely recapitulated neonatal and adult patterns of globin expression in vivo, suggesting that our specially optimized culture systems not only overcame the higher Hb F levels in the BM-derived CD34+ culture in FBS-containing medium but also eliminated the disadvantages of low cell proliferation rate and low globin mRNA levels in serum-free medium.  相似文献   

20.
Our studies on the capacity of bone marrow (BM) to generate T lymphocytes in aging have revealed that under the competitive conditions of thymic reconstitution, cells of aged mice are significantly inferior to those of the young. The present study was designed to further investigate the basis of this age-related change. Two mechanisms were considered: (a) The potential of BM-derived T cell precursors from aged mice to proliferate and differentiate in the thymic microenvironment is impaired. (b) The frequency of T cell precursors is reduced in BM of aged mice, thus affecting their ability to compete efficiently in reconstituting the thymus. These possibilities were studied in vitro by colonizing thymocyte-depleted fetal thymic lobes with BM cells from aged (24-month) and young (3-month) C57BL/6 mice. By determining the cell cycle duration of BM-derived cells which have seeded the thymic lobes, we found that cells originating from aged mice proliferate in the thymus at the same rate as those from young mice. Reconstitution with limiting numbers of BM cells indicated that the frequency of thymic progenitors in the BM is significantly reduced in aged as compared to young mice. We thus conclude that aging is associated with a quantitative reduction in the frequency of thymic progenitors in the BM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号