首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escherichia coli K12 mutants lacking phenazine-methosulphate-linked formate dehydrogenase (FDH-PMS) activity, but still capable of producing normal levels of benzyl-viologen-linked formate dehydrogenase (FDH-BV) and nitrate reductase activities, have been isolated following P1 localized mutagenesis. The relevant mutations mapped with the same cotransduction frequency close to the rhaD gene, at 88 min on the E. coli chromosome. They were further subdivided into two classes. Class I consisted of six fdhD mutants which synthesized an inactive FDH-PMS protein with the same subunit composition as the wild-type enzyme. In contrast, class II contained four fdhE mutants totally devoid of this antigen. Construction of merodiploid strains harbouring various combinations of the mutated alleles, fdhE on the episome and fdhD on the chromosome, led to the restoration of FDH-PMS activity by complementation of the products encoded by the respective wild-type alleles. Difference spectroscopy suggested that both fdhD and fdhE mutants contained normal amounts of the cytochrome b559 associated with FDH-PMS although the cytochrome had lost its capacity for formate-dependent reduction.  相似文献   

2.
3.
In the presence of nitrate, the major anaerobic respiratory pathway includes formate dehydrogenase (FDH-N) and nitrate reductase (NAR-A), which catalyze formate oxidation coupled to nitrate reduction. Two aerobically expressed isoenzymes, FDH-Z and NAR-Z, have been recently characterized. Enzymatic analysis of plasmid subclones carrying min 88 of the Escherichia coli chromosome was consistent with the location of the fdo locus encoding FDH-Z between the fdhD and fdhE genes which are necessary for the formation of both formate dehydrogenases. The fdo locus produced three proteins (107, 34, and 22 kDa) with sizes similar to those of the subunits of the purified FDH-N. In support to their structural role, these polypeptides were recognized by antibodies specific to FDH-N. Expression of a chromosomal fdo-uidA operon fusion was induced threefold by aerobic growth and about twofold by anaerobic growth in the presence of nitrate. However, it was independent of the two global regulatory proteins FNR and ArcA, which control genes for anaerobic and aerobic functions, respectively, and of the nitrate response regulator protein NARL. In contrast, a mutation affecting either the nucleoid-associated H-NS protein or the CRP protein abolished the aerobic expression. A possible role for FDH-Z during the transition from aerobic to anaerobic conditions was examined. Synthesis of FDH-Z was maximal at the end of the aerobic growth and remained stable after a shift to anaerobiosis, whereas FDH-N production developed only under anaerobiosis. Furthermore, in an fnr strain deprived of both FDH-N and NAR-A activities, aerobically expressed FDH-Z and NAR-Z enzymes were shown to reduce nitrate at the expense of formate under anaerobic conditions, suggesting that this pathway would allow the cell to respond quickly to anaerobiosis.  相似文献   

4.
Previous studies have shown that narL+ is required for nitrate induction of nitrate reductase synthesis and for nitrate inhibition of fumarate reductase synthesis in Escherichia coli. We cloned narL on a 5.1-kilobase HindIII fragment. Our clone also contained a previously unidentified gene, which we propose to designate as narX, as well as a portion of narK. Maxicell experiments indicated that narL and narX encode proteins with approximate MrS of 28,000 and 66,000, respectively. narX insertion mutations reduced nitrate reductase structural gene expression by less than twofold. Expression of phi (narL-lacZ) operon fusions was weakly induced by nitrate but was indifferent to aerobiosis and independent of fnr. Expression of phi (narX-lacZ) operon fusions was induced by nitrate and was decreased by narL and fnr mutations. A phi (narK-lacZ) operon fusion was induced by nitrate, and its expression was fully dependent on narL+ and fnr+. Analysis of these operon fusions indicated that narL and narX are transcribed counterclockwise with respect to the E. coli genetic map and that narK is transcribed clockwise.  相似文献   

5.
B. L. Berg  V. Stewart 《Genetics》1990,125(4):691-702
Formate oxidation coupled to nitrate reduction constitutes a major anaerobic respiratory pathway in Escherichia coli. This respiratory chain consists of formate dehydrogenase-N, quinone, and nitrate reductase. We have isolated a recombinant DNA clone that likely contains the structural genes, fdnGHI, for the three subunits of formate dehydrogenase-N. The fdnGHI clone produced proteins of 110, 32 and 20 kDa which correspond to the subunit sizes of purified formate dehydrogenase-N. Our analysis indicates that fdnGHI is organized as an operon. We mapped the fdn operon to 32 min on the E. coli genetic map, close to the genes for cryptic nitrate reductase (encoded by the narZ operon). Expression of phi(fdnG-lacZ) operon fusions was induced by anaerobiosis and nitrate. This induction required fnr+ and narL+, two regulatory genes whose products are also required for the anaerobic, nitrate-inducible activation of the nitrate reductase structural gene operon, narGHJI. We conclude that regulation of fdnGHI and narGHJI expression is mediated through common pathways.  相似文献   

6.
Expression of the glpA operon encoding the extrinsic membrane anaerobic sn-glycerol-3-phosphate dehydrogenase complex of Escherichia coli K-12 was studied in five strains carrying independent glpA-lac operon fusions. The location of the fusions was confirmed by transduction. Two of the strains produced an enzymatically active anaerobic sn-glycerol-3-phosphate dehydrogenase that accumulated in the cytoplasmic fraction of the cells. This suggests the loss of a specific membrane anchor subunit encoded by a distal gene, glpB, which was disrupted by the insertion. beta-Galactosidase in all five strains carrying phi(glpA-lac) was highly inducible by glycerol only anaerobically. A mutation in fnr, a pleiotropic activator gene, prevented full induction of the phi(glpA-lac), demonstrating that the Fnr protein is a positive regulator of the primary dehydrogenase as well as of the terminal reductases of anaerobic respiratory chains. Low concentrations of the respiratory poison KCN had a permissive effect on aerobic expression of phi(glpA-lac). Aerobic expression of the hybrid operon was also enhanced in isogenic derivatives of the fusion strains deficient in protoporphyrin biosynthesis (hemA). Thus, heme proteins may play a role in mediating aerobic repression of the anaerobic respiratory chain.  相似文献   

7.
Escherichia coli possesses a soluble flavohemoglobin, with an unknown function, encoded by the hmp gene. A monolysogen containing an hmp-lacZ operon fusion was constructed to determine how the hmp promoter is regulated in response to heme ligands (O2, NO) or the presence of anaerobically utilized electron acceptors (nitrate, nitrite). Expression of the phi (hmp-lacZ)1 fusion was similar during aerobic growth in minimal medium containing glucose, glycerol, maltose, or sorbitol as a carbon source. Mutations in cya (encoding adenylate cyclase) or changes in medium pH between 5 and 9 were without effect on aerobic expression. Levels of aerobic and anaerobic expression in glucose-containing minimal media were similar; both were unaffected by an arcA mutation. Anaerobic, but not aerobic, expression of phi (hmp-lacZ)1 was stimulated three- to four-fold by an fnr mutation; an apparent Fnr-binding site is present in the hmp promoter. Iron depletion of rich broth medium by the chelator 2'2'-dipyridyl (0.1 mM) enhanced hmp expression 40-fold under anaerobic conditions, tentatively attributed to effects on Fnr. At a higher chelator concentration (0.4 mM), hmp expression was also stimulated aerobically. Anaerobic expression was stimulated 6-fold by the presence of nitrate and 25-fold by the presence of nitrite. Induction by nitrate or nitrite was unaffected by narL and/or narP mutations, demonstrating regulation of hmp by these ions via mechanisms alternative to those implicated in the regulation of other respiratory genes. Nitric oxide (10 to 20 microM) stimulated aerobic phi (hmp-lacZ)1 activity by up to 19-fold; soxS and soxR mutations only slightly reduced the NO effect. We conclude that hmp expression is negatively regulated by Fnr under anaerobic conditions and that additional regulatory mechanisms are involved in the responses to oxygen, nitrogen compounds, and iron availability. Hmp is implicated in reactions with small nitrogen compounds.  相似文献   

8.
9.
An operon including two new genes ( nasS and nasT ) has been defined, cloned and sequenced. The deduced NASS protein is homologous to NRTA from Synechococcus sp. and to NASF from Klebsiella pneumoniae , two proteins involved in nitrate uptake. The predicted NAST polypeptide is homologous to the regulator proteins of the two-component regulatory systems. NASS plays a negative regulatory role in the synthesis of the nitrate and nitrite reductase. NAST is required for the expression of the nitrite—nitrate reductase operon ( nasAB ). Expression of the nasST operon is not under the control of the NTR system and is not regulated by the nitrogen source. A Φ( nasA—lacZ ) fusion has been used to analyse expression of the nasAB operon in three different genetic backgrounds with altered nitrate reductase activity. Beta-galactosidase activity in two of them was independent of nitrate but in a mutant unable to reduce nitrate, nas-4 , it was normally induced by nitrate.  相似文献   

10.
Escherichia coli has two terminal oxidases for its respiratory chain: cytochrome o (low O2 affinity) and cytochrome d (high O2 affinity). Expression of the cyo operon, encoding cytochrome o, is decreased by anaerobic growth, whereas expression of the cyd operon, encoding cytochrome d, is increased by anaerobic growth. We show by the use of lac gene fusion that the expressions of cyo and cyd are under the control of the two-component arc system. In a cyo+ cyd+ background, expression of phi(cyo-lac) is higher when the organism is grown aerobically than when it is grown anaerobically. A mutation in either the sensor gene arcB or the pleiotropic regulator gene arcA almost abolishes the anaerobic repression. In the same background, expression of phi(cyd-lac) is higher under anaerobic growth conditions than under aerobic growth conditions. A mutation in arcA or arcB lowers both the aerobic and anaerobic expressions, suggesting that ArcA plays an activating role instead of the typical repressing role. Under aerobic growth conditions, double deletions of cyo and cyd lower phi(cyo-lac) expression but enhance phi(cyd-lac) expression. The double deletions also prevent elevated aerobic induction of the lct operon (encoding L-lactate dehydrogenase), another target operon of the arc system. In contrast, these deletions do not circumvent aerobic repression of the nar operon (encoding the anaerobic respiratory enzyme nitrate reductase) under the control of the pleiotropic fnr gene product. It thus appears that ArcB senses the presence of O2 by level of an electron transport component in reduced form or that of an nonautoxidizable compound linked to the process by a redox reaction, whereas Fnr senses O2 by a different mechanism.  相似文献   

11.
12.
13.
14.
15.
16.
Fumarate reductase (encoded by frd) and succinate dehydrogenase (encoded by sdh) of Escherichia coli are both known to catalyze the interconversion of fumarate and succinate. Fumarate reductase, however, is not inducible aerobically and therefore cannot participate in the dehydrogenation of succinate. Three classes of suppressor mutants, classified as frd oxygen-resistant [frd(Oxr)], constitutive [frd(Con)], and gene amplification [frd(Amp)] mutants, were selected from an sdh strain as pseudorevertants that regained the partial ability to grow aerobically on succinate. All contained increased aerobic levels of fumarate reductase activity. In frd(Oxr) mutants expression of the operon showed increased resistance to aerobic repression. Under anaerobic conditions expression of the operon became less dependent on the fnr+ gene product, a pleiotropic activator protein for genes encoding anaerobic respiratory enzymes. Exogenous fumarate, however, was still required for full induction, and repression by nitrate was undiminished. Thus, aerobic repression and anaerobic nitrate repression appear to involve separate mechanisms. In frd(Con) mutants expression of the operon became highly resistant to aerobic repression. Under anaerobic conditions expression of the operon no longer required the fnr+ gene product or exogenous fumarate and became immune to nitrate repression. In partial diploids bearing an frd(Oxr) or an frd(Con) allele and phi(frd+-lac) there was no mutual regulatory influence between the two genetic loci. Thus, the frd mutations act in cis and hence are probably in the promoter region. In frd(Amp) mutants the frd locus was amplified without significant alteration in the pattern of regulation.  相似文献   

17.
18.
The products of four Escherichia coli genes (narX, narL, narQ, and narP) regulate anaerobic respiratory gene expression in response to nitrate and nitrite. We used lacZ gene and operon fusions to monitor the expression of these nar regulatory genes in response to different growth conditions. Maximal expression of the narXL operon required molybdate, nitrate, and integration host factor. Expression of the narP and narQ genes was weakly repressed by nitrate. The NarL and NarP proteins were required for full nitrate induction of narXL operon expression, whereas the nitrate repression of narP and narQ expression was mediated solely by the NarL protein. narXL operon expression was unaffected by anaerobiosis, whereas expression of narP and narQ was induced approximately fourfold. The Fnr and ArcA proteins were not required for this anaerobic induction.  相似文献   

19.
20.
Summary Introduction of chlA, B or E mutant alleles into strains carrying fusions between the lac structural genes and the promoter of the nitrate reductase operon led to the partial or total constitutive expression of the fusion. Presence of chlD mutated alleles in the same strains did not result in constitutive expression of the fusion and allowed full induction by nitrate only in the presence of molybdenum. It is proposed that the molybdenum cofactor, Mo-X, of the nitrate reductase is also corepressor of the operon. The chlA, B and E genes would be involved in the biosynthesis of the X-moity. Mutations in these genes would give an altered X-moity which still binds to molybdenum but leads to a less effcient repressor complex; chlD gene would code for an enzyme inserting molybdenum in the X-moity of the cofactor. Mutations in chlD give an empty cofactor leading to a complex which permanently represses the operon unless molybdenum is added.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号