首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activity-dependent bulk endocytosis (ADBE) is the dominant SV endocytosis mode during intense neuronal activity. The dephosphorylation of Ser774 on dynamin I is essential for triggering of ADBE, as is its subsequent rephosphorylation by glycogen synthase kinase 3 (GSK3). We show that in primary cultures of cerebellar granule neurons the protein kinase Akt phosphorylates GSK3 during intense neuronal activity, ensuring that GSK3 is inactive during intense stimulation to aid dynamin I dephosphorylation. Furthermore, when a constitutively active form of Akt was overexpressed in primary neuronal cultures, ADBE was inhibited with no effect on clathrin-mediated endocytosis. Thus Akt has two major regulatory roles (i) to ensure efficient dynamin I dephosphorylation via acute activity-dependent inhibition of GSK3 and (ii) to negatively regulate ADBE when activated in the longer term. This is the first demonstration of a role for Akt in SV recycling and suggests a key role for this protein kinase in modulating synaptic strength during elevated neuronal activity.  相似文献   

2.
Neuropathological hallmarks of Alzheimer's disease are extracellular senile plaques and intracellular neurofibrillary lesions. The neurofibrillary lesions mainly consist of the hyperphosphorylated microtubule-associated protein Tau predominantly expressed in the axon of CNS neurons. Hyperphosphorylation of Tau negatively affects its binding to tubulin and decreases the capacity to promote microtubule assembly. Among a number of proline-directed kinases capable of phosphorylating paired helical filament-Tau, glycogen synthase kinase 3beta (GSK3beta) was first identified as a Tau protein kinase I and has been demonstrated to phosphorylate Tau both in vivo and in vitro. However, the phosphorylation mechanism of Tau by GSK3beta remained unclear. In this study, we show that the T231 is the primary phosphorylation site for GSK3beta and the Tau227-237 (AVVRTPPKSPS) derived from Tau containing T231P232 motif is identified as the GSK3beta binding site with high affinity of a Kd value 0.82 +/- 0.16 mumol/L. Our results suggest that direct binding and phosphorylation of T231P232 motif by GSK3beta induces conformational change of Tau and consequentially alters the inhibitory activity of its N-terminus that allows the phosphorylation of C-terminus of Tau by GSK3beta. Furthermore, hyperphosphorylation reduces Tau's ability to promote tubulin assembly and to form bundles in N18 cells. T231A mutant completely abolishes Tau phosphorylation by GSK3beta and retains the ability to promote tubulin polymerization and bundle formation. Taken together, these results suggest that phosphorylation of T231 by GSK3beta may play an important role in Tau's hyperphosphorylation and functional regulation.  相似文献   

3.
Protein kinase B (Akt/PKB) is a Ser/Thr kinase that is involved in the regulation of cell proliferation/survival through mammalian target of rapamycin (mTOR) and the regulation of glycogen metabolism through glycogen synthase kinase 3beta (GSK-3beta) and glycogen synthase (GS). Rapamycin is an inhibitor of mTOR. The objective of this study was to investigate the effects of rapamycin pretreatment on the insulin mediated phosphorylation of Akt/PKB phosphorylation and GS activity in parental HepG2 and HepG2 cells with overexpression of constitutively active Akt1/PKB-alpha (HepG2-CA-Akt/PKB). Rapamycin pretreatment resulted in a decrease (20-30%) in the insulin mediated phosphorylation of Akt1 (Ser 473) in parental HepG2 cells but showed an upregulation of phosphorylation in HepG2-CA-Akt/PKB cells. Rictor levels were decreased (20-50%) in parental HepG2 cells but were not significantly altered in the HepG2-CA-Akt/PKB cells. Furthermore, rictor knockdown decreased the phosphorylation of Akt (Ser 473) by 40-60% upon rapamycin pretreatment. GS activity followed similar trends as that of phosphorylated Akt and so with rictor levels in these cells pretreated with rapamycin; parental HepG2 cells showed a decrease in GS activity, whereas as HepG2-CA-Akt/PKB cells showed an increase in GS activity. The changes in the levels of phosphorylated Akt/PKB (Ser 473) correlated with GS and protein phoshatase-1 activity.  相似文献   

4.
Drugs targeting the histamine H(3) receptor (H(3)R) are suggested to be beneficial for the treatment of neurodegenerative diseases, such as Alzheimer's and Parkinson's disease. The H(3)R activates G(i/o)-proteins to inhibit adenylyl cyclase activity and modulates phospholipase A(2) and MAPK activity. Herein we show that, in transfected SK-N-MC cells, the H(3)R modulates the activity of the Akt/Glycogen synthase kinase 3beta (GSK-3beta) axis both in a constitutive and agonist-dependent fashion. H(3)R stimulation with the H(3)R agonist immepip induces the phosphorylation of both Ser473 and Thr308 on Akt, a serine/threonine kinase that is important for neuronal development and function. The H(3)R-mediated activation of Akt can be inhibited by the H(3)R inverse agonist thioperamide, and by Wortmannin, LY294002 and PTX, suggesting the observed Akt activation occurs via a G(i/o)-mediated activation of phosphoinositide-3-kinase. H(3)R activation also results in the phosphorylation of Ser9 on GSK-3beta, which acts downstream of Akt and has a prominent role in brain function. In addition, we show the H(3)R-mediated phosphorylation of Akt at Ser473 to occur in primary rat cortical neurons and in rat brain slices. The discovery of this signaling property of the H(3)R adds new understanding to the roles of histamine and the H(3)R in brain function and pathology.  相似文献   

5.
Alzheimer's disease is characterized by beta-amyloid (Abeta) overproduction and tau hyperphosphorylation. Recent studies have shown that synthetic Abeta promotes tau phosphorylation in vitro. However, whether endogenously overproduced Abeta promotes tau phosphorylation and the underlying mechanisms remain unknown. Here, we used mouse neuroblastoma N2a stably expressing wild-type amyloid precursor protein (APPwt) or the Swedish mutant APP (APPswe) to determine the alterations of phosphorylated tau and the related protein kinases. We found that phosphorylation of tau at paired helical filament (PHF)-1, pSer396 and pThr231 epitopes was significantly increased in cells transfected with APPwt and APPswe, which produced higher levels of Abeta than cells transfected with vector or amyloid precursor-like protein 1. The activity of glycogen synthase kinase-3 (GSK-3) was up-regulated with a concomitant reduction in the inhibitory phosphorylation of GSK-3 at its N-terminal Ser9 residue. In contrast, the activity of cyclin-dependent kinase-5 (CDK-5) and protein kinase C (PKC) was down-regulated. Inhibition of GSK-3 by LiCl, but not inhibition of CDK-5 by roscovitine, arrested Abeta secretion and tau phosphorylation. Inhibition of PKC by GF-109203X activated GSK-3, whereas activation of PKC by phorbol-12,13-dibutyrate inhibited GSK-3. These results suggest that endogenously overproduced Abeta induces increased tau phosphorylation through activation of GSK-3, and that inactivation of PKC is at least one of the mechanisms involved in GSK-3 activation.  相似文献   

6.
7.
We have previously reported an aberrant accumulation of activated protein kinase B (PKB), glycogen synthase kinase (GSK)-3beta, extracellular signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK), p38 and p70 S6 kinase (p70S6K) in neurons bearing neurofibrillary tangles (NFTs) in Alzheimer's disease (AD). However, the mechanism by which these tau candidate kinases are involved in the regulation of p70S6K and GSK-3beta phosphorylation is unknown. In the current study, 100 microM zinc sulfate was used, and influences of various components of phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways on p70S6K and GSK-3beta phosphorylation have been investigated in serum-deprived SH-SY5Y neuroblastoma cells. We found that zinc could induce an increase of phosphorylated (p) p70S6K, p-PKB, p-GSK-3beta, p-ERK1/2, p-JNK and p-p38, especially in long-term treatment (4-8 h). Treatment with different inhibitors including rapamycin, wortmannin, LY294002, and U0126, and their combinations, indicated that phosphorylation of p70S6K and GSK-3beta is regulated by rapamycin-dependent, PI3K and MAPK pathways. Furthermore, phosphorylation of p70S6K and GSK-3beta affected levels of tau unphosphorylated at the Tau-1 site and phosphorylated at the PHF-1 site, and p70S6K phosphorylation affected the total tau level. Thus, 100 microM zinc might activate PKB, GSK-3beta, ERK1/2, JNK, p38 and p70S6K, that are consequently involved in tau changes in SH-SY5Y cells.  相似文献   

8.
The phosphatidylinositol 3 kinase (PI3K)-Akt/PKB pathway protects neurons from apoptosis caused by diverse stress stimuli. However, its protective role against the amyloid beta peptide (Abeta), a major constituent of Alzheimer's disease plaques, has not been studied. We investigated the effect of the Abeta-derived Abeta(25-35) peptide on apoptosis and on the Akt survival pathway in PC12 cells. Cells submitted to micromolar concentrations of Abeta(25-35) exhibited increased production of reactive oxygen species (ROS) and morphological alterations consistent with apoptosis. Akt1 was activated shortly after incubation with Abeta(25-35) and Abeta(1-40) with a kinetics different to that of nerve-derived growth factor. Akt1 activation was blocked by the PI3K inhibitor wortmannin. We tested the hypothesis that Akt1 might modify the vulnerability of neural cells to apoptosis induced by Abeta(25-35). Overexpression of an active version of Akt1 attenuated the apoptotic effect of Abeta(25-35) as determined by flow cytometry. Moreover, PC12 cells overexpressing a membrane-targeted N-myristylated fusion protein of enhanced green fluorescence protein (EGFP) and mouse Akt1 exhibited lower levels of ROS than control EGFP-transfected cells. The present findings demonstrate that Akt1 is activated in response to Abeta(25-35) in a PI3K-dependent manner and that active Akt1 protects PC12 cells against the pro-apoptotic action of this peptide.  相似文献   

9.
The short and long isoforms of the dopamine D2 receptor (D2S and D2L respectively) are highly expressed in the striatum. Functional D2 receptors activate an intracellular signalling pathway that includes a cAMP-independent route involving Akt/GSK3 (glycogen synthase kinase 3). To investigate the Akt/GSK3 response to the seldom-studied D2S receptor, we established a rat D2S receptor-expressing cell line [HEK (human embryonic kidney)-293/rD2S]. We found that in HEK-293/rD2S cells, the D2/D3 agonists bromocriptine and quinpirole significantly induced Akt and GSK3 phosphorylation, as well as ERK1/2 (extracellular-signal-regulated kinase 1/2) activation. The D2S receptor-induced Akt signals were profoundly inhibited by the internalization blockers monodansyl cadaverine and concanavalin A. Activation of the D2S receptor in HEK-293/rD2S cells appeared to trigger Akt/phospho-Akt translocation to the cell membrane. In addition to our cell culture experiments, we studied D2 receptor-dependent Akt in vivo by systemic administration of the D2/D3 agonist quinpirole. The results show that quinpirole evoked Akt-Ser473 phosphorylation in the ventral striatum. Furthermore, intra-accumbens administration of wortmannin, a PI3K (phosphoinositide 3-kinase) inhibitor, significantly suppressed the quinpirole-evoked behavioural activation. Overall, we demonstrate that activation of the dopamine D2S receptor stimulates Akt/GSK3 signalling. In addition, in vivo Akt activity in the ventral striatum appears to play an important role in systemic D2/D3 agonist-induced behavioural activation.  相似文献   

10.
Glycogen synthase kinase-3 (GSK-3) has been proposed as the main kinase able to aberrantly phosphorylate tau in Alzheimer's disease (AD) and related tauopathies, raising the possibility of designing novel therapeutic interventions for AD based on GSK-3 inhibition. Lithium, a widely used drug for affective disorders, inhibits GSK-3 at therapeutically relevant concentrations. Therefore, it was of great interest to test the possible protective effects of lithium in an AD animal model based on GSK-3 overexpression. We had previously generated a double transgenic model, overexpressing GSK-3beta in a conditional manner, using the Tet-off system and tau protein carrying a triple FTDP-17 (frontotemporal dementia and parkinsonism linked to chromosome 17) mutation. This transgenic line shows tau hyperphosphorylation in hippocampal neurones accompanied by neurofibrillary tangles (NFTs). We used this transgenic model to address two issues: first, whether chronic lithium treatment is able to prevent the formation of aberrant tau aggregates that result from the overexpression of FTDP-17 tau and GSK-3beta; second, whether lithium is able to change back already formed NFTs in aged animals. Our data suggest that progression of the tauopathy can be prevented by administration of lithium when the first signs of neuropathology appear. Furthermore, it is still possible to partially reverse tau pathology in advanced stages of the disease, although NFT-like structures cannot be changed. The same results were obtained after shut-down of GSK-3beta overexpression, supporting the possibility that GSK-3 inhibition is not sufficient to reverse NFT-like aggregates.  相似文献   

11.
Enolase enzymes are abundantly expressed, cytosolic carbon-oxygen lyases known for their role in glucose metabolism. Recently, enolase has been shown to possess a variety of different regulatory functions, beyond glycolysis and gluconeogenesis, associated with hypoxia, ischemia, and Alzheimer's disease (AD). AD is an age-associated neurodegenerative disorder characterized pathologically by elevated oxidative stress and subsequent damage to proteins, lipids, and nucleic acids, appearance of neurofibrillary tangles and senile plaques, and loss of synapse and neuronal cells. It is unclear if development of a hypometabolic environment is a consequence of or contributes to AD pathology, as there is not only a significant decline in brain glucose levels in AD, but also there is an increase in proteomics identified oxidatively modified glycolytic enzymes that are rendered inactive, including enolase. Previously, our laboratory identified α-enolase as one the most frequently up-regulated and oxidatively modified proteins in amnestic mild cognitive impairment (MCI), early-onset AD, and AD. However, the glycolytic conversion of 2-phosphoglycerate to phosphoenolpyruvate catalyzed by enolase does not directly produce ATP or NADH; therefore it is surprising that, among all glycolytic enzymes, α-enolase was one of only two glycolytic enzymes consistently up-regulated from MCI to AD. These findings suggest enolase is involved with more than glucose metabolism in AD brain, but may possess other functions, normally necessary to preserve brain function. This review examines potential altered function(s) of brain enolase in MCI, early-onset AD, and AD, alterations that may contribute to the biochemical, pathological, clinical characteristics, and progression of this dementing disorder.  相似文献   

12.
Akt is a known client protein of heat shock protein 90 (HSP90). We have found that HSP90 is responsible for Akt accumulation in the mitochondria in unstimulated cells. Treatment of SH-SY5Y neuroblastoma cells and human embryonic kidney cells with the HSP90 inhibitors novobiocin and geldanamycin caused substantial decreases in the level of Akt in the mitochondria without affecting the level of Akt in the cytosol. Moreover, intracerebroventricular injection of novobiocin into mice brains decreased Akt levels in cortical mitochondria. Knockdown of HSP90 expression with short interfering RNA also caused a significant decrease in Akt levels in the mitochondria without affecting total Akt levels. Using a mitochondrial import assay it was found that Akt is transported into the mitochondria. Furthermore, it was found that the mitochondrial import of Akt was independent of Akt activation as both an unmodified Akt and constitutively active mutant Akt; both readily accumulated in the mitochondria in an HSP90-dependent manner. Interestingly, incubation of isolated mitochondria with constitutively active Akt caused visible alterations in mitochondrial morphology, including pronounced remodeling of the mitochondrial matrix. This effect was blocked when Akt was mostly excluded from the mitochondria with novobiocin treatment. These results indicate that the level of Akt in the mitochondria is dependent on HSP90 chaperoning activity and that Akt import can cause dynamic changes in mitochondrial configuration.  相似文献   

13.
14.
Site-specific phosphorylation of tau negatively regulates its ability to bind and stabilize microtubule structure. Although tau is a substrate of glycogen synthase kinase 3beta (GSK3beta), the exact sites on tau that are phosphorylated by this kinase in situ have not yet been established, and the effect of these phosphorylation events on tau-microtubule interactions have not been fully elucidated. GSK3beta phosphorylates both primed and unprimed sites on tau, but only primed phosphorylation events significantly decrease the ability of tau to bind microtubules. The focus of the present study is on determining the importance of the GSK3beta-mediated phosphorylation of a specific primed site, Thr231, in regulating tau's function. Pre-phosphorylation of Ser235 primes tau for phosphorylation by GSK3beta at Thr231. Phosphorylation by GSK3beta of wild-type tau or tau with Ser235 mutated to Ala decreases tau-microtubule interactions. However, when Thr231 alone or Thr231 and Ser235 in tau were mutated to Ala, phosphorylation by GSK3beta did not decrease the association of tau with the cytoskeleton. Further, T231A tau was still able to efficiently bind microtubules after phosphorylation by GSK3beta. Expression of each tau construct alone increased tubulin acetylation, a marker of microtubule stability. However, when cells were cotransfected with wild-type tau and GSK3beta, the level of tubulin acetylation was decreased to vector-transfected levels. In contrast, coexpression of GSK3beta with mutated tau (T231A/S235A) did not significantly decrease the levels of acetylated tubulin. These results strongly indicate that phosphorylation of Thr231 in tau by GSK3beta plays a critical role in regulating tau's ability to bind and stabilize microtubules.  相似文献   

15.
Extracellular signal-regulated kinase (ERK), a member of the mitogen-activated protein kinase pathway, has been increasingly implicated in the pathogenesis of Alzheimer's disease due to its critical role in brain function. While we previously demonstrated that ERK is activated in Alzheimer's disease, the upstream cascade leading to its activation had not been fully examined. In this study, we focused on Raf-1, one of the physiological activators of the ERK pathway. Raf-1 is activated by phosphorylation at Ser338 and Tyr340/341 and inhibited by phosphorylation at Ser259. Interestingly, phosphorylation at all three sites on Raf-1 was increased as evidenced by both immunocytochemistry and immunoblot analysis in Alzheimer's disease brains compared to age-matched controls. Both phospho-Raf-1 (Ser259) and phospho-Raf-1 (Ser338) were localized to intracytoplasmic granular structures, whereas phospho-Raf-1 (Tyr340/341) was localized to neurofibrillary tangles and granules in pyramidal neurons in Alzheimer's disease hippocampus. There is extensive overlap between phospho-Raf-1 (Ser338) and phospho-Mek1/2, the downstream effector of Raf-1, suggestive of a mechanistic link. Additionally, increased levels of Raf-1 are associated with Ras and MEK1 in Alzheimer's disease as evidenced by its coimmunoprecipitation with Ras and Mek1, respectively. Based on these findings, we speculate that Raf-1 is activated to effectively mediate Ras-dependent signals in Alzheimer's disease.  相似文献   

16.
Characteristics of hVSMC apoptosis and its inhibition by insulin-like growth factor-1 (IGF-1) remain unclear. Also unclear is whether a balance in hVSMCs exists whereby c-Jun N-terminal stress kinases (JNK) promote apoptosis while extracellular signal-regulated (ERK1/2) MAP kinases inhibit cell death. In this study, we examined the involvement of Akt/PKB and its upstream kinase, PDK1 and whether JNK activation correlated with human and rat VSMC apoptosis induced by staurosporine and by c-myc, respectively. We observed a strong, sustained JNK activation (and c-Jun phosphorylation), which correlated with VSMC apoptosis. IGF-1 (13.3 nM), during apoptosis inhibition, transiently inhibited JNK activity at 1 h in a phosphatidylinositol 3-kinase (PI3-K)- and MEK-ERK-dependent manner, as wortmannin (100 nM) or PD98059 (30 M) partially attenuated the IGF-1 effect. PKC down-regulation had no effect on JNK inhibition by IGF-1. While IGF-1 alone produced a strong phosphorylation of Akt/PKB in hVSMCs up to 6 h, it was notably stronger and more sustained during ratmyc and hVSMCs apoptosis inhibition. Further, whereas transient expression of phosphorylated Akt protected VSMCs from apoptosis by nearly 50%, expression of dominant interfering alleles of Akt or PDK1 strongly inhibited IGF-1-mediated VSMC survival. These results demonstrate for the first time that transient inhibition of a pro-apoptotic stimulus in VSMCs may be sufficient to inhibit a programmed cell death and that sustained anti-apoptotic signals (Akt) elicited by IGF-1 are augmented during a death stimulus. Furthermore, PI3-K and ERK-MAPK pathways may cooperate to protect VSMCs from cell death.This work was supported by a grant from the Nebraska cancer and Smoking Related Disease Program, Department of Health, Nebraska, and National Institutes of Health Grants R01HL070885 (D.K.A.) and R01HL073349 (D.K.A.).  相似文献   

17.
Glycogen synthase kinase-3beta (GSK-3beta) is implicated in regulating apoptosis and tau protein hyperphosphorylation in Alzheimer's disease (AD). We investigated the effects of two key AD molecules, namely apoE (E3 and E4 isoforms) and beta-amyloid (Abeta) 1-42 on GSK-3beta and its major upstream regulators, intracellular calcium and protein kinases C and B (PKC and PKB) in human SH-SY5Y neuroblastoma cells. ApoE3 induced a mild, transient, Ca2+-independent and early activation of GSK-3beta. ApoE4 effects were biphasic, with an early strong GSK-3beta activation that was partially dependent on extracellular Ca2+, followed by a GSK-3beta inactivation. ApoE4 also activated PKC-alpha and PKB possibly giving the subsequent GSK-3beta inhibition. Abeta(1-42) effects were also biphasic with a strong activation dependent partially on extracellular Ca2+ followed by an inactivation. Abeta(1-42) induced an early and potent activation of PKC-alpha and a late decrease of PKB activity. ApoE4 and Abeta(1-42) were more toxic than apoE3 as shown by MTT reduction assays and generation of activated caspase-3. ApoE4 and Abeta(1-42)-induced early activation of GSK-3beta could lead to apoptosis and tau hyperphosphorylation. A late inhibition of GSK-3beta through activation of upstream kinases likely compensates the effects of apoE4 and Abeta(1-42) on GSK-3beta, the unbalanced regulation of which may contribute to AD pathology.  相似文献   

18.
目的:竹节参是人参属植物,和人参成分相似,前期研究其对肺癌具有一定的抑制作用,但作用机制不清,因此,本项目拟研究竹节参皂苷对人肺癌细胞系A549增殖、迁移和侵袭能力以及PTEN-PI3K-AKT信号通路的影响。方法:CCK8法测定不同浓度和不同作用时间的竹节参皂苷对A549存活率的影响,划痕实验测定细胞迁移能力,Transwell小室测定细胞的侵袭能力,ELISA试剂盒测定培养基上清中MMP-2和MMP-9水平的变化。Western blot测定PTEN、P-PI3K和P-Akt表达的变化。结果:竹节参皂苷对A549细胞增殖具有明显的抑制作用,呈浓度和时间依赖关系,与对照组比较具有统计学差异。同时,竹节参皂苷可以浓度依赖性的抑制细胞侵袭和转移,以及MMP-2和MMP-9细胞因子的分泌。Western blot结果表明竹节参皂苷可促进PTEN蛋白表达,抑制P-PI3K和P-Akt蛋白表达,采用PTEN的特异性抑制剂SF1670证实竹节参皂苷通过抑制PTEN发挥作用。结论:竹节参皂苷可抑制肺癌A549细胞增殖、迁移和侵袭,以及分泌蛋白MMP-2和MMP-9表达,其作用机制可能是通过调控PTEN抑制PI3K和Akt磷酸化,从而发挥抗癌作用。  相似文献   

19.
Gene knockout studies in mice suggest that presenilin 1 (PS1) is the major gamma-secretase and that it contributes disproportionately to amyloid beta (Abeta) peptide generation from beta-amyloid precursor protein (APP), whereas PS2 plays a more minor role. Based on this and other observations we hypothesized that familial Alzheimer's disease (FAD) mutations in PS2 would have a dramatic effect on function in order to have an observable effect on Abeta levels in the presence of normal PS1 alleles. Only four of the eight reported FAD mutations in PS2 have altered function in vitro suggesting that the other variants represent rare polymorphisms rather than disease-causing mutations. In support of our hypothesis, the four verified PS2 FAD mutations cause substantial changes in the Abeta 42/40 ratio, comparable with PS1 mutations that cause very-early-onset FAD. Most of the PS2 mutations also cause a significant decrease in Abeta 40, APP C-terminal fragment (CTF)gamma and Notch intracellular domain (NICD) production suggesting that they are partial loss of function mutations. PS2 M239V, its PS1 homolog M233V, and other FAD mutations within transmembrane (TM) 5 of PS1 differentially affect CTFgamma and NICD production suggesting that TM5 of PS are important for gamma-secretase cleavage of APP but not Notch.  相似文献   

20.
The glycosylation of acetylcholinesterase (AChE) in CSF was analyzed by lectin binding. AChE from Alzheimer's disease (AD) patients was found to bind differently to two lectins, concanavalin A and wheat germ agglutinin, than AChE from controls. As multiple isoforms of AChE are present in both CSF and brain, we examined whether the abnormal glycosylation of AD AChE was due to changes in a specific molecular isoform. Globular amphiphilic dimeric (G2a) and monomeric (G1a) isoforms of AChE were found to be differentially glycosylated in AD CSF. Glycosylation of AChE was also altered in AD frontal cortex but not in cerebellum and was also associated with an increase in the proportion of light (G2 and G1) isoforms. This study demonstrates that the glycosylation of AChE is altered in the AD brain and that changes in AChE glycosylation in AD CSF may reflect changes in the distribution of brain isoforms. The study also suggests that glycosylation of AChE may be a useful diagnostic marker for AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号