首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to evaluate the role of mitochondrial Ca2+ uptake (MCU) in modulation (shaping) of the glutamate (Glu)-induced changes in neuronal cytoplasmic Ca2+ ([Ca2+]i). In order to block MCU, nerve cells were treated with mitochondrial inhibitors (MI) inducing collapse of the mitochondrial potential (Delta Psim). Measurements of changes in [Ca2+]i were performed using either the low-affinity (fura-2FF) or high-affinity (fura-2) Ca2+ indicators. Loading of nerve cells with rhodamine 123 made it possible to monitor changes in Delta Psim. In the first series of experiments it was shown that blockade of MCU in fura-2FF-loaded cells with a cocktail of rotenone (2 microM)+oligomycin (2.5 microg/ml) greatly (2.53+/-0.4 times, n=61) increased the [Ca2+]i response to a 1-min Glu (100 microM) pulse. In fura-2-loaded cells, this increase was small (less than 1.3 times) or absent. In the second series of experiments, cocktails of rotenone+oligomycin or FCCP (1 microM)+oligomycin were applied during a prolonged Glu application. This produced strong mitochondrial depolarisation and an additional [Ca2+]i increase. In most cells the latter could be reversed or prevented by a removal of external Ca2+. The MI-induced additional [Ca2+]i increase was especially pronounced in cells loaded with fura-2FF. In some neurones a removal of external Ca2+ did not produce a decrease in [Ca2+]i during combined Glu+MI application, suggesting an impairment of [Ca2+]i extrusion mechanisms of these cells. The conclusion is drawn that MCU makes a considerable contribution to regulation of [Ca2+]i responses caused by Ca2+ influx via Glu-activated ionic channels. The reasons for a quantitative difference between [Ca2+]i responses observed in fura-2- and fura-2FF-loaded neurones are discussed.  相似文献   

2.
In the present work, the forward and/or reversed Na+/Ca2+ exchange in cerebellar granular cells was suppressed by substitution of Na+o by Li+ before, during, and after exposure to glutamate for varied time and also using the inhibitor KB-R7943 of the reversed exchange. After glutamate challenge for 1 min, Na+o/Li+ substitution did not influence the recovery of low [Ca2+]i in a calcium-free medium. A 1-h incubation with 100 microM glutamate induced in the neurons a biphasic and irreversible [Ca2+]i rise (delayed calcium deregulation (DCD)), enhancement of [Na+]i, and decrease in the mitochondrial potential. If Na+o had been substituted by Li+ before the application of glutamate, i.e. the exchange reversal was suppressed during the exposure to glutamate, the number of cells with DCD was nearly fourfold lowered. However, addition of the Na+/K+-ATPase inhibitor ouabain (0.5 mM) not preventing the exchange reversal also decreased DCD in the presence of glutamate. Both exposures decreased the glutamate-caused loss of intracellular ATP. Glucose deprivation partially abolished protective effects of the Na+o/Li+ substitution and ouabain. KB-R7943 (10 microM) increased 7.4-fold the number of cells with the [Ca2+]i decreased to the basal level after the exposure to glutamate. Thus, reversal of the Na+/Ca2+ exchange reinforced the glutamate-caused perturbations of calcium homeostasis in the neurons and slowed the recovery of the decreased [Ca2+]i in the post-glutamate period. However, for development of DCD, in addition to the exchange reversal, other factors are required, in particular a decrease in the intracellular concentration of ATP.  相似文献   

3.
The free cytosolic Ca2+ concentration ([Ca2+]i) of cultured cerebral cortex neurons was determined using a fluorescent Ca2+ chelator (Fluo-3) after exposure of the neurons to glutamate. Mature neurons (8 days in culture) responded within 45 s to 100 microM glutamate by an increase in [Ca2+]i from 75 to 340 nM, an increase that during the following 6 min of exposure reached 400 nM. This increase in [Ca2+]i could not be reversed by removal of glutamate. In the absence of extracellular CaCl2, only part of the initial, rapid, glutamate-induced increase in [Ca2+]i was observed in these neurons. In contrast to these findings, neurons cultured for only 2 days (immature neurons) exhibited only a small (from 75 to 173 nM) increase in [Ca2+]i after exposure to 100 microM glutamate, and this rapid increase in [Ca2+]i tended to decline on prolonged exposure to glutamate. Moreover, after removal of glutamate, the increase in [Ca2+]i was fully reversible. Pharmacological characterization of the response to glutamate in mature neurons showed that the N-methyl-D-aspartate (NMDA) receptor antagonists phencyclidine and D-2-amino-5-phosphonovalerate phosphonovalerate blocked 75 and 90%, respectively, of the response, whereas the non-NMDA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione had little effect.  相似文献   

4.
Mitochondria buffer large changes in [Ca(2+)](i)following an excitotoxic glutamate stimulus. Mitochondrial sequestration of [Ca(2+)](i)can beneficially stimulate oxidative metabolism and ATP production. However, Ca(2+)overload may have deleterious effects on mitochondrial function and cell survival, particularly Ca(2+)-dependent production of reactive oxygen species (ROS) by the mitochondria. We recently demonstrated that the mitochondrial Na(+)-Ca(2+)exchanger in neurons is selectively inhibited by CGP-37157, a benzothiazepine analogue of diltiazem. In the present series of experiments we investigated the effects of CGP-37157 on mitochondrial functions regulated by Ca(2+). Our data showed that 25 microM CGP-37157 quenches DCF fluorescence similar to 100 microM glutamate and this effect was enhanced when the two stimuli were applied together. CGP-37157 did not increase ROS generation and did not alter glutamate or 3mM hydrogen-peroxide-induced increases in ROS as measured by DHE fluorescence. CGP-37157 induces a slight decrease in intracellular pH, much less than that of glutamate. In addition, CGP-37157 does not enhance intracellular acidification induced by glutamate. Although it is possible that CGP-37157 can enhance mitochondrial respiration both by blocking Ca(2+)cycling and by elevating intramitochondrial Ca(2+), we did not observe any changes in ATP levels or toxicity either in the presence or absence of glutamate. Finally, mitochondrial Ca(2+)uptake during an excitotoxic glutamate stimulus was only slightly enhanced by inhibition of mitochondrial Ca(2+)efflux. Thus, although CGP-37157 alters mitochondrial Ca(2+)efflux in neurons, the inhibition of Na(+)-Ca(2+)exchange does not profoundly alter glutamate-mediated changes in mitochondrial function or mitochondrial Ca(2+)content.  相似文献   

5.
In the present study, we have investigated the role of Ca2+ in the coupling of membrane depolarization to neurotransmitter secretion. We have measured (a) intracellular free Ca2+ concentration ([Ca2+]i) changes, (b) rapid 45Ca2+ uptake, and (c) Ca2+-dependent and -independent release of endogenous glutamate (Glu) and gamma-aminobutyric acid (GABA) as a function of stimulus intensity by elevating the extracellular [K+] to different levels in purified nerve terminals (synaptosomes) from rat hippocampus. During stimulation, Percoll-purified synaptosomes show an increased 45Ca2+ uptake, an elevated [Ca2+]i, and a Ca2+-dependent as well as a Ca2+-independent release of both Glu and GABA. With respect to both amino acids, synaptosomes respond on stimulation essentially in the same way, with maximally a fourfold increase in Ca2+-dependent (exocytotic) release. Ca2+-dependent transmitter release as well as [Ca2+]i elevations show maximal stimulation at moderate depolarizations (30 mM K+). A correlation exists between Ca2+-dependent release of both Glu and GABA and elevation of [Ca2+]i. Ca2+-dependent release is maximally stimulated with an elevation of [Ca2+]i of 60% above steady-state levels, corresponding with an intracellular concentration of approximately 400 nM, whereas elevations to 350 nM are ineffective in stimulating Ca2+-dependent release of both Glu and GABA. In contrast, Ca2+-independent release of both Glu and GABA shows roughly a linear rise with stimulus intensity up to 50 mM K+. 45Ca2+ uptake on stimulation also shows a continuous increase with stimulus intensity, although the relationship appears to be biphasic, with a plateau between 20 and 40 mM K+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
In Novikoff hepatoma cell pairs studied by double perforated patch clamp (DPPC), brief (20 s) exposure to 20 microM arachidonic acid (AA) induced a rapid and reversible uncoupling. In pairs studied by double whole-cell clamp (DWCC), uncoupling was completely prevented by effective buffering of Cai2+ with BAPTA. Similarly, AA (20 s) had no effect on coupling in cells perfused with solutions containing no added Ca2+ (SES-no-Ca) and studied by DPPC, suggesting that Ca2+ influx plays an important role. Parallel experiments monitoring [Ca2+]i with fura-2 showed that [Ca2+]i increases with AA to 0.7-1.5 microM in normal [Ca2+]o, and to approximately 400 nM in SES-no-Ca solutions. The rate of [Ca2+]i increase matched that of Gj decrease, but [Ca2+]i recovery was faster. In cells studied by DWCC with 2 mM BAPTA in the pipette solution and superfused with SES-no-Ca, long exposure (1 min) to 20 microM AA caused a slow and virtually irreversible uncoupling. This result suggests that AA has a dual mechanism of uncoupling: one dominant, fast, reversible, and Ca(2+)-dependent, the other slow, poorly reversible, and Ca(2+)-independent. In contrast, uncoupling by oleic acid (OA) or halothane was insensitive to internal buffering with BAPTA, suggesting a Ca(2+)-independent mechanism only.  相似文献   

7.
Histidyl-proline diketopiperazine [cyclo(His-Pro)] has recently been shown to inhibit prolactin (PRL) secretion in vitro and in vivo. This peptide is well known as a metabolite of thyrotropin-releasing hormone (TRH), which is one of the endogenous secretagogues of PRL. In this study, we investigated the effect of cyclo (His-Pro) on the cytosolic Ca2+ concentration [[Ca2+]i) in cultured lactotrophs by using a lactotroph-enriched fraction separated from female rat pituicytes by centrifugal elutriation. TRH (10 nM) induced a rapid rise in [Ca2+]i in the lactotrophs, followed by a plateau phase of prolonged increase in [Ca2+]i. In contrast, the addition of 100 microM of cyclo (His-Pro) caused no changes in the basal level or the TRH-induced plateau response of [Ca2+]i. Although pretreatment with cyclo (His-Pro) tended to decrease the biphasic increase in [Ca2+]i induced by TRH, the inhibitory effect was not statistically significant. These results demonstrated that cyclo (His-Pro) has no effect on [Ca2+]i in lactotrophs, and does not affect the TRH-induced increase in [Ca2+]i, indicating that the inhibition of PRL secretion by cyclo (His-Pro) may be primarily mediated by other intracellular messengers such as cyclic nucleotides and secondarily involved in other inhibitory systems including that of dopamine.  相似文献   

8.
Deregulation of the intracellular Ca2+ homeostasis by NMDA receptor activation leads to neuronal cell death. Induction of the mitochondrial permeability transition pore (MPT) by Ca2+ is a critical event in mediating cell death. In this study, we used fluorescent Ca2+ indicators to investigate the effect of high concentrations of NMDA on cytosolic and mitochondrial Ca2+ concentrations ([Ca2+]c and [Ca2+]m, respectively) in cultured striatal neurons. Exposure to NMDA resulted in an immediate, sustained increase in [Ca2+]c followed by a secondary increase in [Ca2+]c. This second increase of [Ca2+]c was prevented by pretreatment with N-methyl-valine-4-cyclosporin (NMV-Cys). Exposure of neurons to NMDA also resulted in an increase in [Ca2+]m that was followed by a precipitous decrease in the rhod-2 signal. This decrease followed the time frame of the secondary increase in [Ca2+]c. Preincubation of the neurons with NMV-Cys prevented the decrease in rhod-2 fluorescence. These dynamic changes in the rhod-2 signal and [Ca2+]m in response to NMDA were confirmed by using confocal microscopy. The presented results indicate that MPT can be detected in living neurons using fluorescent Ca2+ indicators, which would allow the study of the physiological role of MPT in cell death.  相似文献   

9.
Previous studies examining the role of mitochondria-derived reactive oxygen species (ROS) in hypoxic responses have been mainly conducted in isolated lungs and cultured pulmonary artery smooth muscle cells (PASMCs) using mitochondrial inhibitors, and yielded largely conflicting results. Here we report that in freshly isolated mouse PASMCs, which are devoid of the mixed responses from multi-types of cells in lungs and significant changes in gene expression in cultured cells, the mitochondrial electron transport chain (ETC) complex I, II, or III inhibitors blocked hypoxia-induced increases in intracellular ROS and Ca2+ concentration ([ROS]i and [Ca2+]i) without effects on their resting levels. Inhibition of the complex I plus II and/or III did not produce an additive effect. Glutathione peroxidase-1 (Gpx1) or catalase gene overexpression to enhance H2O2 removal remarkably reduced hypoxic increases in [ROS]i and [Ca2+]i, whereas Gpx1 gene deletion had the opposite effect. None of these genetic modifications changed the resting [ROS]i and [Ca2+]i. H2O2 at 51 microM caused a similar increase in DCF fluorescence ([ROS]i) as that by hypoxia, but only induced 33% of hypoxic increase in [Ca2+]i. Moreover, H2O2 (5.1 microM) reversed the inhibition of the hypoxia-induced increase in [Ca2+]i by rotenone. Collectively, our study using various mitochondrial inhibitors and genetic approaches demonstrates that in response to acute hypoxia, the mitochondrial ETC molecules prior to the complex III ubisemiquinone site act as a functional unit to increase the generation of ROS, particularly H2O2, which is important for, but may not fully cause, the hypoxic increase in [Ca2+]i in freshly isolated PASMCs.  相似文献   

10.
Intracellular free [Ca2+]i was measured using fura-2 in synaptosomes prepared from cerebral cortices of adult male rats (12 weeks). L-(+)-Glutamate, D-(-)-glutamate, and quisqualate produced similar dose-dependent increases in [Ca2+]i, with EC50 values of 0.38 microM, 0.74 microM, and 0.1 microM, respectively, and maximum increases of approximately 40%. Ibotenate showed less affinity (EC50 4.4 microM) but had a greater maximum effect (57%). N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) did not increase [Ca2+]i. The increases in [Ca2+]i induced by quisqualate and ibotenate were not diminished in the absence of extrasynaptosomal Ca2+. L-2-Amino-4-phosphonobutyrate (L-AP4) (1 microM) completely blocked the changes in [Ca2+]i induced by L-(+)-glutamate, D-(-)-glutamate, quisqualate, or ibotenate. The effects of quisqualate and ibotenate on [Ca2+]i were also blocked by coincubation of synaptosomes with L-(+)-serine-O-phosphate (L-SP) (1 mM) (which, like L-AP4, blocks the effects of quisqualate and ibotenate on inositol phospholipid metabolism). 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX) had no effect on agonist-mediated increases in [Ca2+]i when coincubated with either quisqualate or ibotenate. These data are consistent with the existence of presynaptic glutamate receptors (of the excitatory amino acid metabotropic type) which activate phospholipase C leading to the elevation of inositol 1,4,5-trisphosphate and release of Ca2+ from intracellular stores.  相似文献   

11.
Calcium and calcium-dependent processes have been hypothesized to be involved in the induction of epilepsy. It has been shown that epileptic neurons have altered calcium homeostatic mechanisms following epileptogenesis in the hippocampal neuronal culture (HNC) and pilocarpine models of epilepsy. To investigate the mechanisms causing these alterations in [Ca2+]i homeostatic processes following epileptogenesis, we utilized the HNC model of in vitro 'epilepsy' which produces spontaneous recurrent epileptiform discharges (SREDs). Using [Ca2+]i imaging, studies were initiated to evaluate the mechanisms mediating these changes in [Ca2+]i homeostasis. 'Epileptic' neurons required much longer to restore a glutamate induced [Ca2+]i load to baseline levels than control neurons. Inhibition of Ca2+ entry through voltage and receptor gated Ca2+ channels and stretch activated Ca2+ channels had no effect on the prolonged glutamate induced increase in [Ca2+]i in epileptic neurons. Employing thapsigargin, an inhibitor of the sarco/endoplasmic reticulum calcium ATPase (SERCA), it was shown that thapsigargin inhibited sequestration of [Ca2+]i by SERCA was significantly decreased in 'epileptic' neurons. Using Ca2+ induced Ca2+ release (CICR) cell permeable inhibitors for the ryanodine receptor (dantrolene) and the IP3 receptor (2-amino-ethoxydiphenylborate, 2APB) mediated CICR, we demonstrated that CICR was significantly augmented in the 'epileptic' neurons, and determined that the IP3 receptor mediated CICR was the major release mechanism altered in epileptogenesis. These data indicate that both inhibition of SERCA and augmentation of CICR activity contribute to the alterations accounting for the impaired calcium homeostatic processes observed in 'epileptic' neurons. The results suggest that persistent changes in [Ca2+]i levels following epileptogenesis may contribute to the long-term plasticity changes manifested in epilepsy and that understanding the basic mechanisms mediating these changes may provide an insight into the development of novel therapeutic approaches to treat epilepsy and prevent or reverse epileptogenesis.  相似文献   

12.
It is well-known that pH changes can influence a lot of cellular processes. In this work, we have specifically studied the influence of alkalinization, which can be developed in spinal cord neurons during hyperventilation (respiratory alkalosis) and chronic renal failure (metabolic alkalosis) on calcium homeostasis. Application of Tyrode solution with increased pH (pH = 8.8) to secondary sensory neurons isolated from rat spinal dorsal horn induced elevation of intracellular free calcium concentration in the cytosol ([Ca2+]i) if applied after membrane depolarization. Repetitive application of alkaline solution led to disappearance of such elevations. Depletion of endoplasmic reticulum (ER) calcium stores by 30 mM caffeine almost completely blocked the effect of elevated extracellular pH. If caffeine-induced [Ca2+]i transients were evoked during alkalinization, their amplitudes were decreased by 41%. Preapplication of 500 nM ionomycin resulted in disappearance of alkalinization-induced [Ca2+]i transients, whereas prolonged applications (for 20 min) of 200 nM thapsigargin, a blocker of Ca2+ ATPase of the endoplasmic reticulum, resulted in disappearance of the rapid phase of the [Ca2+]i transients induced by alkalinization. Preapplication of the mitochondrial protonophore CCCP (10 microM) also induced changes in the alkalinization-induced calcium response--it lost its peak and was transformed into an irregular wave terminating in several seconds. The data obtained indicate that alkalinization induces an increase of [Ca2+]i level in the investigated neurons via a combined action of both intracellular Ca2+-accumulating structures--the endoplasmic reticulum and mitochondria. This suggestion was supported by morphological data that both structures in these neurons are tightly connected and may interact during release of accumulated calcium ions.  相似文献   

13.
Calcium homeostasis was studied following a depolarization-induced transient increase in [Ca2+]i in single cells of the clonal pituitary cell line of corticotropes, AtT-20 cells. The KCl-induced increase in [Ca2+]i was blocked in (i) extracellular calcium-deficient solutions, (ii) external cobalt (2.0 mM), (iii) cadmium (200 microM), and (iv) nifedipine (2.0 microM). The mean increase in [Ca2+]i in single cells in the presence of an uncoupler of mitochondrial function [carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone, FCCP, 1 microM] was 54 +/- 13 nM (n = 9). The increase in [Ca2+]i produced by FCCP was greater either during or following a KCl-induced [Ca2+]i load. However, FCCP did not significantly alter the clearance of calcium during a KCl-induced rise in [Ca2+]i. Fifty percent of the cells responded to caffeine (10 mM) with an increase in [Ca2+]i (191 +/- 24 nM; n = 21) above resting levels; this effect was blocked by ryanodine (10 microM). Thapsigargin (2 microM) and 2,5 di(-t-butyl)-1,4 hydroquinone (BuBHQ, 10 microM) produced increases in [Ca2+]i (47 +/- 11 nM, n = 6 and 22 +/- 4 nM, n = 8, respectively) that increased cell excitability. These results support a role for mitochondria and sarco-endoplasmic reticulum calcium stores in cytosolic [Ca2+]i regulation; however, none of these organelles are primarily responsible for the return of [Ca2+]i to resting levels following this KCl-induced [Ca2+]i load.  相似文献   

14.
Fura 2 was used to measure changes in cytosolic [Ca2+] ([Ca2+]i) in cultured rabbit kidney proximal tubule cells exposed to HgCl2. Treatment with 2.5-10 microM HgCl2 resulted in an extracellular [Ca2+] ([Ca2+]e)-independent 2- to 12-fold increase in [Ca2+]i above resting levels of about 100 nM. Treatment with 25-100 microM HgCl2 caused a rapid [Ca2+]e-independent 10- to 12-fold increase in [Ca2+]i within 1 min followed by a recovery to about 2-fold steady state by 3 min. With 25-100 microM HgCl2, both magnitude and rate of Ca2+ increase were similar, but recovery was greater with increasing doses. A slower, secondary increase in [Ca2+]i followed which varied with HgCl2 concentration and required [Ca2+]e. The first increase in [Ca2+]i represents release from intracellular pools. Calcium channel blockers, calmodulin inhibitors, and mitochondrial inhibitors do not alter the patterns of [Ca2+]i changes due to HgCl2. The recovery response with higher HgCl2 concentrations appears to be triggered by Hg2+ and not by the increased [Ca2+]i. Sulfhydryl modifiers N-ethylmaleimide, PCMB and PCMBS produced [Ca2+]e-independent [Ca2+]i increases similar to those induced by low HgCl2 concentrations. Cell killing with HgCl2 was about 50% greater with normal [Ca2+]e than with low [Ca2+]e, suggesting that [Ca2+]e influx is important in accelerating injury leading to cell death.  相似文献   

15.
In Madin-Darby canine kidney (MDCK) cells, effect of NPC-15199 on intracellular Ca2+ concentration ([Ca2+]i) was investigated by using fura-2. NPC-15199 (100-1000 microM) caused a rapid and sustained increase of [Ca2+]i in a concentration-dependent manner (EC50=500 microM). NPC-15199-induced [Ca2+]i rise was prevented by 70% by removal of extracellular Ca2+, but was not changed by dihydropyridines, verapamil and diltiazem. In Ca2+-free medium, carbonylcyanide m-chlorophenylhydrazone (CCCP; 2 microM), a mitochondrial uncoupler, and thapsigargin (1 microM), an inhibitor of the endoplasmic reticulum (ER) Ca2(+)-ATPase, caused a monophasic [Ca2+]i rise, respectively, after which the increasing effect of NPC-15199 (1 mM) on [Ca2+]i was substantially attenuated; also, pretreatment with NPC-15199 abolished CCCP- and thapsigargin-induced [Ca2+]i rises. U73122, an inhibitor of phospholipase C, [corrected] abolished 10 microM ATP (but not 1 mM NPC-15199)-induced [Ca2+]i rise. These results suggest that NPC-15199 rapidly increases [Ca2+]i by stimulating both extracellular Ca2+ influx and intracellular Ca2+ release via as yet unidentified mechanism(s).  相似文献   

16.
Using a fluorescent probe for superoxide, hydroethidine, we have demonstrated that glucose deprivation (GD) activates production of reactive oxygen species (ROS) in cultured cerebellar granule neurons. ROS production was insensitive to the blockade of ionotropic glutamate channels by MK-801 (10 microM) and NBQX (10 microM). Inhibitors of mitochondrial electron transport, i.e. rotenone (complex I), antimycin A (complex III), or sodium azide (complex IV), an inhibitor of mitochondrial ATP synthase--oligomycin, an uncoupler of oxidative phosphorylation--CCCP, a chelator of intracellular Ca2+--BAPTA, an inhibitor of electrogenic mitochondrial Ca2+ transport--ruthenium red, as well as pyruvate significantly decreased neuronal ROS production induced by GD. GD was accompanied by a progressive decrease in the mitochondrial membrane potential and an increase in free cytosolic calcium ions, [Ca2+](i). Pyruvate, BAPTA, and ruthenium red lowered the GD-induced calcium overload, while pyruvate and ruthenium red also prevented mitochondrial membrane potential changes induced by GD. We conclude that GD-induced ROS production in neurons is related to potential-dependent mitochondrial Ca2+ overload. GD-induced mitochondrial Ca2+ overload in neurons in combination with depletion of energy substrates may result in the decrease of the membrane potential in these organelles.  相似文献   

17.
Calcium and calcium-dependent systems have been long implicated in the induction of epilepsy. We have previously observed that intracellular calcium ([Ca2+]i) levels remain elevated in cells undergoing epileptogenesis in the hippocampal neuronal culture (HNC) model. In this study, we employed the hippocampal neuronal culture (HNC) model of in vitro 'epilepsy' which produces spontaneous recurrent epileptiform discharges (SREDs) for the life of the neurons in culture to investigate alterations in [Ca2+]i homeostatic mechanisms that may be associated with the 'epileptic' phenotype. [Ca2+]i imaging fluorescence microscopy was performed on control and 'epileptic' neurons with two different fluorescent dyes ranging from high to low affinities for [Ca2+]i. We measured baseline [Ca2+]i levels and the ability to restore resting [Ca2+]i levels after a brief 2-min exposure to the excitatory amino acid glutamate in control neurons and neurons with SREDs. Neurons manifesting SREDs had statistically significantly higher baseline [Ca2+]i levels that persisted for the life of the culture. In addition, the 'epileptic' phenotype was associated with an inability to rapidly restore [Ca2+]i levels to baseline following a glutamate induced [Ca2+]i load. The use of the low affinity dye Fura-FF demonstrated that the difference in restoring baseline [Ca2+]i levels was not due to saturation of the high affinity dye Indo-1, which was utilized for evaluating the [Ca2+]i kinetics at lower [Ca2+]i levels. Peak [Ca2+]i levels in response to glutamate were the same in both 'epileptic' and control neurons. While [Ca2+]i levels recovered in approximately 30 min in control cells, it took more than 90 min to reach baseline levels in cells manifesting SREDs. Alterations of [Ca2+]i homeostatic mechanisms observed with the 'epileptic' phenotype were shown to be independent of the presence of continuous SREDs and persisted for the life of the neurons in culture. Epileptogenesis was shown not to affect the degree or duration of glutamate induced neuronal depolarization in comparing control and 'epileptic' neurons. The results indicate that epileptogenesis in this in vitro model produced long-lasting alterations in [Ca2+]i regulation that may underlie the 'epileptic' phenotype and contribute to the persistent neuroplasticity changes associated with epilepsy.  相似文献   

18.
HIV-1 infection commonly leads to neuronal cell death and a debilitating syndrome known as AIDS-related dementia complex. The HIV-1 protein Tat is neurotoxic, and because cell survival is affected by the intracellular calcium concentration ([Ca2+]i), we determined mechanisms by which Tat increased [Ca2+]i and the involvement of these mechanisms in Tat-induced neurotoxicity. Tat increased [Ca2+]i dose-dependently in cultured human fetal neurons and astrocytes. In neurons, but not astrocytes, we observed biphasic increases of [Ca2+]i. Initial transient increases were larger in astrocytes than in neurons and in both cell types were significantly attenuated by antagonists of inositol 1,4,5-trisphosphate (IP3)-mediated intracellular calcium release [8-(diethylamino)octyl-3,4,5-trimethoxybenzoate HCI (TMB-8) and xestospongin], an inhibitor of receptor-Gi protein coupling (pertussis toxin), and a phospholipase C inhibitor (neomycin). Tat significantly increased levels of IP3 threefold. Secondary increases of neuronal [Ca2+]i in neurons were delayed and progressive as a result of excessive calcium influx and were inhibited by the glutamate receptor antagonists ketamine, MK-801, (+/-)-2-amino-5-phosphonopentanoic acid, and 6,7-dinitroquinoxaline-2,3-dione. Secondary increases of [Ca2+]i did not occur when initial increases of [Ca2+]i were prevented with TMB-8, xestospongin, pertussis toxin, or neomycin, and these inhibitors as well as thapsigargin inhibited Tat-induced neurotoxicity. These results suggest that Tat, via pertussis toxin-sensitive phospholipase C activity, induces calcium release from IP3-sensitive intracellular stores, which leads to glutamate receptor-mediated calcium influx, dysregulation of [Ca2+]i, and Tat-induced neurotoxicity.  相似文献   

19.
A concentration-dependent elevation of intracellular calcium ([Ca2+]i) and oxidation of NAD(P)H occurred in alveolar macrophages during exposure to sublethal tert-butylhydroperoxide concentrations (tBOOH) (< or = 100 microM in 1 ml with 1 x 10(6) cells). Oxidation of NAD(P)H preceded a rise in [Ca2+]i. The elevation of [Ca2+]i was reversible at < 50 microM tBOOH exposure and the return to the steady state [Ca2+]i correlated temporally with repletion of NAD(P)H. At > 50 microM tBOOH, the changes in NAD(P)H and [Ca2+]i were sustained. The relative contributions of NADPH and NADH oxidation were examined by varying the substrates supplying reducing equivalents and by inhibiting glutathione reductase activity. The results suggested that at < 50 microM tBOOH, oxidation of NADPH predominated, while at > 50 microM tBOOH, NADH oxidation predominated. A complex relationship between the relative roles of NADPH and NADH oxidation and the elevation of [Ca2+]i was revealed: (i) reversible oxidation of NADPH is associated with the initial and reversible elevation of [Ca2+]i at < 50 microM tBOOH; (ii) the sustained elevation of [Ca2+]i at > 50 microM tBOOH correlates with the sustained oxidation of NADH; and (iii) the changes in [Ca2+]i did not depend on influx of extracellular Ca2+. We speculate that at low tBOOH, Ca2+ was released from the NADPH/NADP(+)-sensitive mitochondrial Ca2+ pool while higher tBOOH caused additional Ca2+ release from GSH/GSSG-sensitive nonmitochondrial Ca2+ pools with sustained elevation of [Ca2+]i due to decreased mitochondrial Ca2+ reuptake.  相似文献   

20.
Using inhibitors of arachidonic acid (AA) metabolism, the possible involvement of AA products in the generation of [Ca2+]i and the pHi rise induced by the mitogen concanavalin A (Con A) in rat thymocytes has been studied. The lipoxygenase inhibitor nordihydroguaiaretic acid (NDGA, 10 microM) and the phospholipase A2 inhibitor bromophenacyl bromide (10 microM) eliminated the [Ca2+]i signal induced by Con A; the cyclooxygenase blocker indomethacin also inhibited it. However, neither NDGA nor indomethacin suppressed the pHi rise stimulated by Con A. Exogenous AA induced an increase in [Ca2+]i but not in the pHi. These results indicate that AA metabolites, probably of the lipoxygenase pathway, take part in the generation of the [Ca2+]i response to the mitogen. In contrast, they appear not to be involved in the pHi rise evoked by Con A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号