首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Effects of ionizing radiation on multidrug resistance (MDR) of human larynx cancer HEp-2 cells have been studied. MDR was determined from sensitivity of HEp-2 cells to daunorubicin, taxol and vincristine in the absence and in the presence of MDR inhibitors (cyclosporin A and avermectin B1) and from the suppression by cyclosporin A of the rhodamine-123 release from HEp-2 cells. It was found that 8 and 16 h after irradiation (4 Gy), HEp-2 MDR was increased with a further return to the control level by the 24th hour after irradiation. The effect of irradiation was especially well-pronounced by 16 h for cells irradiated with 1 Gy and was manifested in enhanced release of rhodamine-123 and increased resistance of HEp-2 cells to vincristine. Besides, this effect depended on cell density, being at maximum at 80–100 × 103 cells/cm2. It is concluded that the observed dependence of HEp-2 MDR on ionizing radiation and cell density is a result of changes in intracellular content of reactive oxygen species.  相似文献   

2.
Under natural conditions we found a significant variation in oxygen evolution rate (OER) in flag leaves of different rice genotypes during the grain filling stage. Cv. Roxinho showed the highest OER [42 μmol(O2) m−2 s−1], followed by BRS Taim, BRS Pelota, BRS Bojuru, IR58025B, BRS 6 Chui, and BR-IRGA 409, with 37.0, 34.0, 33.0, 31.8, 29.0, 28.0, and 27.6 μmol(O2) m−2 s−1, respectively. The lack of fertility in the male-sterile rice line IR58025A prolonged the photosynthetic capacity by at least 15 d when compared to the normal fertility found in the IR58025B line. No difference was observed in OER among first (flag) and second leaves in both IR58025A and IR58025B rice lines.  相似文献   

3.
Oxygen sensitizes cells toward the effect of ionizing radiation. This sensitization, quantified by the oxygen enhancement ratio (OER), decreases with increasing ionization density or linear energy transfer (LET) of the radiation applied. One explanation for the decreased OER at high LET offers the oxygen-in-the-track hypothesis. It claims that oxygen is produced in the track of densely ionizing particles providing an oxic microenvironment around the relevant cellular target molecules, even if cells are exposed under anoxic atmospheric conditions. Experimental evidence is presented against this hypothesis. It is based on the different kinetic pattern of DNA double-strand-break rejoining observed in yeast cells exposed under oxic or anoxic conditions to 3.5 MeV -particles.  相似文献   

4.
The influence of dissolved oxygen concentration on the nitrification kinetics was studied in the circulating bed reactor (CBR). The study was partly performed at laboratory scale with synthetic water, and partly at pilot scale with secondary effluent as feed water. The nitrification kinetics of the laboratory CBR as a function of the oxygen concentration can be described according to the half order and zero order rate equations of the diffusion-reaction model applied to porous catalysts. When oxygen was the rate limiting substrate, the nitrification rate was close to a half order function of the oxygen concentration. The average oxygen diffusion coefficient estimated by fitting the diffusion-reaction model to the experimental results was around 66% of the respective value in water. The experimental results showed that either the ammonia or the oxygen concentration could be limiting for the nitrification kinetics. The latter occurred for an oxygen to ammonia concentration ratio below 1.5–2 gO2/gN-NH4 + for both laboratory and pilot scale reactors. The volumetric oxygen mass transfer coefficient (k L a) determined in the laboratory scale reactor was 0.017?s?1 for a superficial air velocity of 0.02?m s?1, and the one determined in the pilot scale reactor was 0.040?s?1 for a superficial air velocity of 0.031?m?s?1. The k L a for the pilot scale reactor did not change significantly after biofilm development, compared to the value measured without biofilm.  相似文献   

5.
A cyclone reactor for microbial fermentation processes was developed with high oxygen transfer capabilities. Three geometrically similar cyclone reactors with 0.5?l, 2.5?l and 15?l liquid volume, respectively, were characterized with respect to oxygen mass transfer, mixing time and residence time distribution. Semi-empirically correlations for prediction of oxygen mass transfer and mixing times were identified for scale-up of cyclone reactors. A volumetric oxygen mass transfer coefficient k L a of 1.0?s?1 (available oxygen transfer rate with air: 29?kg?m?3?h?1) was achieved with the cyclone reactor at a volumetric power input of 40?kW?m?3 and an aeration gas flow rate of 0.2?s?1. Continuous methanol controlled production of formate dehydrogenase (FDH) with Candida boidinii in a 15?l cyclone reactor resulted in more than 100% improvement in dry cell mass concentration (64.5?g?l?1) and in about 100% improvement in FDH space-time yield (300?U?l?1?h?1) compared to steady state results of a continuous stirred tank reactor.  相似文献   

6.
The relation between oxygen evolution rate (OER) and quantum yield of photochemical reactions in photosystem 2 (ΦPS2) was examined in lichen symbiotic alga Trebouxia erici Ahmadjian (strain UTEX 911) exposed to different irradiances and osmotic stress (2 M sucrose for 60 h). Linear relationship was found between OER and ΦPS2 in control cell suspension within irradiance range of 0 – 500 μmol m−2 s−1. Under osmotic stress, OER and ΦPS2 were significantly reduced. Relation between OER and ΦPS2 was curvilinear due to strong osmotically-induced inhibition of OER at high irradiance. The highest used irradiance (500 μmol m−2 s−1) was photoinhibitory for osmotically-stressed T. erici because non-photochemical quenching (NPQ) increased substantially. Energy-dependent quenching represented major part of NPQ increase. Osmotic stress led also to the reduction of capacity of photochemical processes in PS 2 (FV/FM) and increase in F0/FM. These changes indicated negative effects of osmoticum on structure and function of photosynthetic apparatus.  相似文献   

7.
Nonprecious metal catalysts (NPMCs) Fe? N? C are promising alternatives to noble metal Pt as the oxygen reduction reaction (ORR) catalysts for proton‐exchange‐membrane fuel cells. Herein, a new modulation strategy is reported to the active moiety Fe? N4 via a precise “single‐atom to single‐atom” grafting of a Pt atom onto the Fe center through a bridging oxygen molecule, creating a new active moiety of Pt1? O2? Fe1? N4. The modulated Fe? N? C exhibits remarkably improved ORR stabilities in acidic media. Moreover, it shows unexpectedly high catalytic activities toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), with overpotentials of 310 mV for OER in alkaline solution and 60 mV for HER in acidic media at a current density of 10 mA cm?2, outperforming the benchmark RuO2 and comparable with Pt/C(20%), respectively. The enhanced multifunctional electrocatalytic properties are associated with the newly constructed active moiety Pt1? O2? Fe1? N4, which protects Fe sites from harmful species. Density functional theory calculations reveal the synergy in the new active moiety, which promotes the proton adsorption and reduction kinetics. In addition, the grafted Pt1? O2? dangling bonds may boost the OER activity. This study paves a new way to improve and extend NPMCs electrocatalytic properties through a precisely single‐atom to single‐atom grafting strategy.  相似文献   

8.
Pentaammineruthenium(III) complexes of deoxyinosine (dIno) and xanthosine (Xao) ([RuIII(NH3)5(L)], L?is?dIno, Xao) in basic solution were studied by UV?Cvis spectroscopy, liquid chromatography/electrospray ionization mass spectrometry, and high-performance liquid chromatography. Both RuIII complexes disproportionate to RuII and RuIV. Disproportionation followed the rate law d[RuII]/dt?=?(k o?+?k 1[OH?])[RuIII]. k o and k 1 of disproportionation at 25?°C were 2.1 (±0.1)?×?10?3?s?1 and 21.4?±?3.2?M?1 s?1, respectively, for [RuIII(NH3)5(dIno)], and 3.5 (±0.7)?×?10?4?s?1 and 59.7?±?3.6?M?1?s?1, respectively, for [RuIII(NH3)5(Xao)]. The [RuIII(NH3)5(Xao)] complex disproportionates at a faster rate than [RuIII(NH3)5(dIno)] owing to the stronger electron-withdrawing effect of exocyclic oxygen in Xao. The activation parameters ??H ? and ??S ? for k 1 of [RuIII(NH3)5(dIno)] were 80.2?±?15.2?kJ?mol?1 and 47.6?±?9.8?J?K?1 mol?1, respectively, indicating that the disproportionation of RuIII to RuII and RuIV is favored owing to the positive entropy of activation. The final products of both complexes in basic solution under Ar were compared with those under O2. Under both conditions [Ru(NH3)5(8-oxo-L)] was produced, but via different mechanisms. In both aerobic and anaerobic conditions, the deprotonation of highly positively polarized C8-H of Ru-L by OH? initiates a two-electron redox reaction. For the next step, we propose a one-step two-electron redox reaction between L and RuIV under anaerobic conditions, which differentiates from Clarke??s mechanism of two consecutive one-electron redox reactions between L, RuIII, and O2.  相似文献   

9.
Quenching of Trp phosphorescence in proteins by diffusion of solutes of various molecular sizes unveils the frequency-amplitude of structural fluctuations. To cover the sizes gap between O2 and acrylamide, we examined the potential of acrylonitrile to probe conformational flexibility of proteins. The distance dependence of the through-space acrylonitrile quenching rate was determined in a glass at 77 K, with the indole analog 2-(3-indoyl) ethyl phenyl ketone. Intensity and decay kinetics data were fitted to a rate, k(r) = k0 exp[−(rr0)/re], with an attenuation length re = 0.03 nm and a contact rate k0 = 3.6 × 1010 s−1. At ambient temperature, the bimolecular quenching rate constant (kq) was determined for a series of proteins, appositely selected to test the importance of factors such as the degree of Trp burial and structural rigidity. Relative to kq = 1.9 × 109 M−1s−1 for free Trp in water, in proteins kq ranged from 6.5 × 106 M−1s−1 for superficial sites to 1.3 × 102 M−1s−1 for deep cores. The short-range nature of the interaction and the direct correlation between kq and structural flexibility attest that in the microsecond-second timescale of phosphorescence acrylonitrile readily penetrates even compact protein cores and exhibits significant sensitivity to variations in dynamical structure of the globular fold.  相似文献   

10.
Nonprecious metal catalysts (NPMCs) Fe?N?C are promising alternatives to noble metal Pt as the oxygen reduction reaction (ORR) catalysts for proton‐exchange‐membrane fuel cells. Herein, a new modulation strategy is reported to the active moiety Fe?N4 via a precise “single‐atom to single‐atom” grafting of a Pt atom onto the Fe center through a bridging oxygen molecule, creating a new active moiety of Pt1?O2?Fe1?N4. The modulated Fe?N?C exhibits remarkably improved ORR stabilities in acidic media. Moreover, it shows unexpectedly high catalytic activities toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), with overpotentials of 310 mV for OER in alkaline solution and 60 mV for HER in acidic media at a current density of 10 mA cm?2, outperforming the benchmark RuO2 and comparable with Pt/C(20%), respectively. The enhanced multifunctional electrocatalytic properties are associated with the newly constructed active moiety Pt1?O2?Fe1?N4, which protects Fe sites from harmful species. Density functional theory calculations reveal the synergy in the new active moiety, which promotes the proton adsorption and reduction kinetics. In addition, the grafted Pt1?O2? dangling bonds may boost the OER activity. This study paves a new way to improve and extend NPMCs electrocatalytic properties through a precisely single‐atom to single‐atom grafting strategy.  相似文献   

11.
Unveiling the intrinsic effects of Ruddlesden‐Popper (RP) series An+1BnO3n+1 (A = La, B = Ni, Co, Mn, Cu, n = 1, 2 and 3) catalysts is essential in order to optimize the activity of oxygen reduction reaction (ORR) and evolution reaction (OER). Here, it is demonstrated that the oxygen vacancy is not the key point for RP to realize high ORR and OER activity at high temperature. Instead, interstitial O2? with high concentration and fast migration, and lattice oxygen with high activity are favorable for the high‐temperature catalytic activity. Aliovalent cation doping is an effective strategy to modify the catalytic activity. For the RP catalysts, low‐valence ion doping does not introduce oxygen vacancies, which suppresses the activity of lattice oxygen and decreases the interstitial O2? concentration; whereas high‐valence ion doping enhances the interstitial O2– concentration and the lattice oxygen activity. The evaluations of six RP series (La2NiO4, La2CoO4, La3Co2O7, La4Ni3O10, La2MnO4, and La2CuO4 based) and twenty samples as oxygen electrodes for solid oxide fuel cells (SOFCs) and solid oxide electrolysis cells (SOECs) demonstrate that this finding is applicable to all the selected RP series.  相似文献   

12.
Characterization was performed of a UV-resistant variant strain, UVr-10, derived from a human clonal cell line, RSb, with high sensitivity not only to the lethal effect of 254-nm far-ultraviolet (UV) irradiation but also to the effects of 4-nitroquinoline 1-oxide (4NQO) and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), and to the cell proliferation inhibition (CPI) effect of human leukocyte interferon (HuIFN-α) preparations.Colony-formation assays confirmed the increased resistance of UVr-10 cells to both UV and 4NQO, but no increased resistance to MNNG. The marked recovery from the inhibition of the total cellular DNA synthesis of UVr-10 cells, estimated by [methyl-3H]thymidine ([3H]dThd) uptake into the cellular DNA materials, was seen during 6 h after irradiation or 4NQO treatment even under the conditions without the recovery uptake into those of the parent RSb cells, but not during 6 h after MNNG treatment. Comparative studies on the activity of DNA repair synthesis between UVr-10 and RSb cells, by measuring the extent of UV-, 4NQO- or MNNG-induced unscheduled DNA synthesis (UDS) and DNA repair replication, revealed an increased activity of UVr-10 cells to UV and 4NQO but no significant increase of the activity to MNNG. These results suggest that increased DNA repair activities of a UVr-10 cell line may account for its becoming resistant to the lethal effect of UV and 4NQO.Concerning the CPI effect of HuIFN-α, UVr-10 cells showed increased resistance. Further, the DNA synthesis activity of UVr-10 cells was not so inhibited by HuIFN-α exposure as that of RSb cells. However, HuIFN-α-exposed UVr-10 cells showed more enhanced levels of activity of pppA(2′p5′A)n synthetase (2–5A synthetase) than the exposed RSb, thus suggesting that HuIFN-α could exert enough intracellular effect even in UVr-10 cells.The implication of the increased resistance of UVr-10 cells to the effects of UV, 4NQO and HuIFN-α, but not to those of MNNG, is discussed.  相似文献   

13.
The relative biological effectiveness (RBE) and oxygen enhancement ratio (OER) were determined in the yeast Saccharomyces cerevisiae for the induction of gene conversion (the product of recombinational repair) and mutation (the product of error prone repair) by 14.5-MeV neutrons in comparison with 60Co gamma rays and 150 KVp X rays. Neutron irradiation in oxic or anoxic conditions induced significantly higher yields of convertants and mutants than sparsely ionizing radiations under the same conditions. RBEs for both gene conversion and mutation under anoxia were significantly higher than under oxic conditions. RBEs for mutant induction under anoxia were lower than the RBEs for gene conversion under the same conditions. The data support the hypothesis that the production of lesions leading to the genetic consequences of gene conversion and mutation differ in their dependence upon LET and the presence of oxygen during irradiation, and therefore the two DNA repair processes which produce these end points recognize, at least in part, different classes of damage.  相似文献   

14.
Cobalt selenide has been proposed to be an effective low‐cost electrocatalyst toward the oxygen evolution reaction (OER) due to its well‐suited electronic configuration. However, pure cobalt selenide has by far still exhibited catalytic activity far below what is expected. Herein, this paper for the first time reports the synthesis of new monoclinic Co3Se4 thin nanowires on cobalt foam (CF) via a facile one‐pot hydrothermal process using selenourea. When used to catalyze the OER in basic solution, the conditioned monolithic self‐supported Co3Se4/CF electrode shows an exceptionally high catalytic current of 397 mA cm?2 at a low overpotential (η) of 320 mV, a small Tafel slope of 44 mV dec?1, a turnover frequency of 6.44 × 10?2 s?1 at η = 320 mV, and excellent electrocatalytic stability at various current densities. Furthermore, an electrolyzer is assembled using two symmetrical Co3Se4/CF electrodes as anode and cathode, which can deliver 10 and 20 mA cm?2 at low cell voltages of 1.59 and 1.63 V, respectively. More significantly, the electrolyzer can operate at 10 mA cm?2 over 3500 h and at 100 mA cm?2 for at least 2000 h without noticeable degradation, showing extraordinary operational stability.  相似文献   

15.
Ionizing radiation has different biological effects according to dose and dose rate. In particular, the biological effect of low-dose radiation is unclear. Low-dose whole-body gamma irradiation activates immune responses in several ways. However, the effects and mechanism of low-dose radiation on allergic responses remain poorly understood. Previously, we reported that low-dose ionizing radiation inhibits mediator release in IgE-mediated RBL-2H3 mast cell activation. In this study, to have any physiological relevance, we investigated whether low-dose radiation inhibits allergic responses in activated human mast cells (HMC-1(5C6) and LAD2 cells), mouse models of passive cutaneous anaphylaxis and the late-phase cutaneous response. High-dose radiation induced cell death, but low-dose ionizing radiation of <0.5 Gy did not induce mast cell death. Low-dose ionizing radiation that did not induce cell death significantly suppressed mediator release from human mast cells (HMC-1(5C6) and LAD2 cells) that were activated by antigen-antibody reaction. To determine the inhibitory mechanism of mediator released by low-dose ionizing radiation, we examined the phosphorylation of intracellular signaling molecules such as Lyn, Syk, phospholipase Cγ, and protein kinase C, as well as the intracellular free Ca2+ concentration ([Ca2+]i). The phosphorylation of signaling molecules and [Ca2+]i following stimulation of FcεRI receptors was inhibited by low dose ionizing radiation. In agreement with its in vitro effect, ionizing radiation also significantly inhibited inflammatory cells infiltration, cytokine mRNA expression (TNF-α, IL-4, IL-13), and symptoms of passive cutaneous anaphylaxis reaction and the late-phase cutaneous response in anti-dinitrophenyl IgE-sensitized mice. These results indicate that ionizing radiation inhibits both mast cell-mediated immediate- and delayed-type allergic reactions in vivo and in vitro.  相似文献   

16.
When mouse thymocytes are stimulated with PHA, the proliferative response is very low, unless the culture medium is enriched with interleukin 1 (IL-1)- or interleukin 2 (IL-2)-containing supernatants. Cytofluorometric analyses show, however, that PHA stimulation generates a significant number of cells with increased RNA content (transition from the G0 to G1 phase of the cell cycle). If IL-2 is added to such cultures, the activated cells complete their process of RNA synthesis and then enter the S phase. The use of IL-2-containing culture medium thus permits one to obtain a high correlation between the number of g1 cells and [3H]thymidine incorporation (r = 0.97). Enrichment with IL-1-containing supernatants also results in a statistically significant correlation (r = 0.68), but the regression lines are markedly different for the two interleukins (s = 20.3 for IL-2 and s = 9.2 for IL-1), when analyzed after 48 hr of incubation. These observations suggest that the G1 phase must be divided into two subcompartments, G1a and G1b, the G1a-G1b transition being an IL-2-dependent event. If the number of G1b cells is used to establish correlations with [3H]thymidine incorporation, all values fall on the same regression line, regardless of culture conditions and of the addition of interleukins. It is concluded that IL-2 regulates lymphocyte proliferation at the level of RNA synthesis (G1a-G1b transition) rather than that of DNA synthesis (G1-S transition).  相似文献   

17.
THE model proposed by Alper1 for lethal radiation damage to cells is based on inferential evidence that there are two important sites of damage by ionizing radiation. At one site, damage referred to as type “N” is associated with a low oxygen enhancement ratio (OER) and is probably to nucleic acid, while at the other site, type “O” damage is associated with a considerably higher oxygen enhancement value and is to a non-nucleic acid target. The model demands that the two values of OER are respectively less and greater than that observed for the overall lethal effect. More recently2 Alper reviewed further inferential evidence3 that cell membranes are the site of type O damage, though there may be subsequent interaction with the lesions following energy deposition in DNA4.  相似文献   

18.
Rates of organic matter mineralization in peatlands, and hence production of the greenhouse gases CH4 and CO2, are highly dependent on the distribution of oxygen in the peat. Using laboratory incubations of peat, we investigated the sensitivity of the anoxic production of CH4 and CO2 to a transient oxic period of a few weeks’ duration. Production rates during 3 successive anoxic periods were compared with rates in samples incubated in the presence of oxygen during the second period. In surface peat (5–10‐cm depth), with an initially high level of CH4 production, oxic conditions during period 2 did not result in a lower potential CH4 production rate during period 3, although production was delayed ~1 week. In permanently anoxic, deep peat (50–55‐cm depth) with a comparatively low initial production of CH4, oxic conditions during period 2 resulted in zero production of CH4 during period 3. Thus, the methanogens in surface peal—but not in deep peat—remained viable after several weeks of oxic conditions. In contrast to CH4 production, the oxic period had a negligible effect on anoxic CO2 production during period 3, in surface as well as deep peat. In both surface and deep peat, CO2 production was several times higher under oxic than under anoxic conditions. However, for the first 2 weeks of oxic conditions, CO2 production in the deep peat was very low. Still, deep peat obviously contained facultative microorganisms that, after a relatively short period, were able to maintain a considerably higher rate of organic matter mineralization under oxic than under anoxic conditions.  相似文献   

19.
Carbon balancing within the plant species is an important feature for climatic adaptability. Photosynthesis and respiration traits are directly linked with carbon balance. These features were studied in 20 wild rice accessions Oryza spp., and cultivars. Wide variation was observed within the wild rice accessions for photosynthetic oxygen evolution or photosynthetic rate (A), dark (R d), and light induced respiration (LIR) rates, as well as stomatal density and number. The mean rate of A varied from 10.49 μmol O2 m?2 s?1 in cultivated species and 13.09 μmol O2 m?2 s?1 in wild spp., The mean R d is 2.09 μmol O2 m?2 s?1 and 2.31 μmol O2 m?2 s?1 in cultivated and wild spp., respectively. Light induced Respiration (LIR) was found to be almost twice in wild rice spp., (16.75 μmol O2 m?2 s?1) compared to cultivated Oryza spp., Among the various parameters, this study reveals LIR and A as the key factors for positive carbon balance. Stomatal contribution towards carbon balance appears to be more dependent on abaxial surface where several number of stomata are situated. Correlation analysis indicates that R d and LIR increase with the increase in A. In this study, O. nivara (CR 100100, CR 100097), O. rufipogon (IR 103404) and O. glumaepatula (IR104387) were identified as potential donors which could be used in rice breeding program. Co-ordination between gas exchange and patchiness in stomatal behaviour appears to be important for carbon balance and environmental adaptation of wild rice accessions, therefore, survival under harsh environment.  相似文献   

20.
Here, this work reports an innovative strategy for the synthesis of chemically robust metal–organic frameworks (MOFs), and applies them as catalysts for the electrocatalytic oxygen evolution reaction (OER). A bimetallic squarate-based MOF (Sq-MOF) with a zbr topology serves as an excellent platform for electrocatalytic OER owing to its open porous structure, high affinity toward water, and presence of catalytically active 1D metal hydroxide strips. By regulating the Ni2+ content in a bimetallic squarate MOF system, the electrochemical structural stability toward OER can be improved. The screening of various metal ratios demonstrates that Ni3Fe1 and Ni2Fe1 Sq- zbr -MOFs show the best performance for electrocatalytic OER in terms of catalytic activity and structural stability. Ni2Fe1 Sq- zbr -MOF shows a low overpotential of 230 mV (at 10 mA cm−2) and a small Tafel slope of 37.7 mV dec−1, with an excellent long-term electrochemical stability for the OER. Remarkably, these overpotential values of Ni2Fe1 Sq- zbr -MOF are comparable with those of the best-performing layered double hydroxide (LDH) systems and outperforms the commercially available noble-metal-based RuO2 catalyst for OER under identical operational conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号