首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyphenol oxidase of avocado mesocarp exists in a supernatant and a participate fraction. Isolation conditions were sought where maximal polyphenol oxidase activity could be retained in the particulate fraction. More polyphenol oxidase was associated with the 270–2000 g pellet than with the 2000–12,000 g pellet. Analysis of the particulate polyphenol oxidase on linear sucrose density gradient revealed two relatively heavy peaks. The data showed that the major part of polyphenol oxidase was not a constituent of chloroplasts, chromoplasts or mitochondria. The closeness of the positions of polyphenol oxidase and of catalase in both the green and the yellow zones of the mesocarp established that most of the particulate polyphenol oxidase of avocado is associated with microbodies.  相似文献   

2.
Acid and neutral invertases were found in the mesocarp of developing muskmelon (Cucumis melo L. cv Prince) fruit and the activities of these enzymes declined with maturation of the fruit, concomitantly with the accumulation of sucrose. Neutral invertase was only present in the soluble fraction and acid invertase was present in both the soluble and cell-wall fractions. The cell-wall fraction contained three types of acid invertase: a NaCl-released invertase; an EDTA-released invertase, and a tightly bound invertase that still remained on the cell wall after treatment with NaCl and EDTA. The soluble acid and neutral invertases could be separated from one another by chromatography on DEAE-cellulose and they exhibited clear differences in their properties, namely, in their pH optima, substrate specificity, Km values for sucrose, and inhibition by metal ions. The EDTA-released invertase and the soluble acid invertase were similar with regard to their chromatographic behavior on DEAE-cellulose, but the NaCl-released invertase was different because it was adsorbed to a column of CM-cellulose. The soluble acid invertase and two cell-wall bound invertases had very similar characteristics with regard to optimal pH and temperature, Km value for sucrose, and substrate specificity.  相似文献   

3.
cDNA for an acid invertase (EC 3.2.1.26 [EC] ) of tomato (Lycopersiconesculentum Mill.) fruit was introduced into tomato plants underthe control of the cauliflower mosaic virus 35S promoter inthe antisense orientation. The antisense gene effectively suppressedthe invertase activity in soluble and cell wall fractions fromripening fruits. The sucrose content of fruits of the transformantswas markedly increased, while the hexose content was reduced.These results indicate that acid invertase is one of main determinantsof the sugar composition of tomato fruit. The invertase activityin the cell wall fraction of the leaf tissues of the transformantswas not suppressed to the same extent as that in the solublefraction. Wounding of the control leaf tissues induced invertaseactivity in both soluble and cell wall fractions. The inductionof activity in the soluble fraction was suppressed by the antisensegene, while that in the cell wall fraction was unaffected. Thesefindings suggest that mRNA for some other invertase, in particular,the mRNA for a cell wall-bound invertase, was present in leaves. 1Present address: Plant Breeding and Genetics Research Laboratory,Japan Tobacco Inc., 700 Higashibara, Toyoda, Iwata, Shizuoka,438 Japan. 2Present address: National Institute of Agrobiological Resources,Kannondai, Tsukuba, Ibaraki, 305 Japan.  相似文献   

4.
Sugar content largely determines watermelon fruit quality. We compared changes in sugar accumulation and activities of carbohydrate enzymes in the flesh (central portion) and mesocarp of elite sweet watermelon line 97103 (Citrullus lanatus subsp. vulgaris) and exotic non-sweet line PI296341-FR (C. lanatus subsp. lanatus) to elucidate the physiological and biochemical mechanisms of sugar accumulation in watermelon fruit. The major translocated sugars, raffinose and stachyose, were more unloaded into sweet watermelon fruit than non-sweet fruit. During the fruit development, acid α-galactosidase activity was much higher in flesh of 97103 than in mesocarp of 97103, in flesh and mesocarp of PI296341-FR fruit. Insoluble acid invertase activity was higher in 97103 flesh than in 97103 mesocarp, PI296341-FR flesh or mesocarp from 18 days after pollination (DAP) to 34 DAP. Changes in soluble acid invertase activity in 97103 flesh were similar to those in PI296341-FR flesh and mesocarp from 18 DAP to full ripening. Sucrose synthase and sucrose phosphate synthase activities in 97103 flesh were significantly higher than those in 97103 mesocarp and PI296341-FR fruits from 18 to 34 DAP. Only insoluble acid invertase and sucrose phosphate synthase activities were significantly positively correlated with sucrose content in 97103 flesh. Therefore, phloem loading, distribution and metabolism of major translocated sugars, which are controlled by key sugar metabolism enzymes, determine fruit sugar accumulation in sweet and non-sweet watermelon and reflect the distribution diversity of translocated sugars between subspecies.  相似文献   

5.
The influence of different sugars on shoot multiplication invitro and on the activity of invertase was studied with sourcherry (Prunus cerasus L.) cultures. The sugars sucrose, glucoseand fructose, and the sugar alcohol sorbitol, were investigatedat a wide range of concentrations. The optimum concentrationsof all carbon sources were 2% and 3% (w/v). Sucrose and glucosefavoured a similar rate of proliferation. However, in the presenceof fructose, proliferation was lowest but was coupled with thehighest frequency of formation of long shoots. The highest activityof total invertase was for tissues growing on a sucrose-containingmedium while, in a sugar-free medium, invertase activity wasmainly found in the ‘salt extracted’ fraction. Inthe remaining treatments, ‘soluble invertase’ dominated.For each sugar investigated, the activity of both forms of invertasewas significantly higher at 2% than at 3% (w/v) sugar. Key words: Tissue culture, sugars, invertase, shoot multiplication, sour cherry  相似文献   

6.
Some characteristics of the carbon compounds released by Daphnia   总被引:2,自引:0,他引:2  
The Daphnia species studied released 18–100% of the algalcarbon ingested as dissolved and particulate carbon compounds,presumably mainly as feces. The particulate fraction constitutedon average 79 5% of the total released compounds, leaving21% as dissolved compounds. The particles released were verysmall and transparent, not visible by light microscopy Moreover,they contained significant amounts of chlorophyll derivatives.The dissolved compounds consisted mainly of small molecules(mol. wt >103 daltons), and were shown to be utilized byplanktonic bacteria. Our results show that particulate organiccarbon and chlorophyll a should not be used as measures foralgal carbon in grazing experiments with Daphnia. Both theseparameters were influenced by the animals' fecal particles,yielding lowered clearance rates compared with those obtainedby using cell numbers as a measure for algal carbon.  相似文献   

7.
1-Aminocyclopropane-1-carboxylic acid (ACC) synthase activityincreased rapidly after wounding of mesocarp tissue of wintersquash fruit (Cucurbita maxima Duch.) and reached a peak at16 h after excision and then declined sharply. The rise in ACCsynthase activity was followed by increases in the endogenousACC content and the rate of ethylene production. The activityof ethylene forming enzyme (EFE) also increased rapidly in theexcised discs of mesocarp of winter squash fruit. ACC synthase activity was strongly inhibited by aminoethoxyvinylglycinewith a Ki value of 2.1 µM. Michaelis-Menten constant ofACC synthase for S-adenosylmethionine was 13.3 µM. Ethylene suppressed the induction of ACC synthase in the woundedmesocarp tissue. The suppression by ethylene increased withthe increasing concentrations of applied ethylene and the maximumeffect was obtained at about 100 µl 1–1 ethylene,at which point the induction was suppressed by 54%. Ethylenedid not inhibit ACC synthase activity, nor did it suppress theinduction of EFE, but rather it slightly enhanced the latter. (Received August 24, 1984; Accepted October 29, 1984)  相似文献   

8.
Invertase activity, grape berry development and cell compartmentation   总被引:1,自引:0,他引:1  
The effect of gibberellic acid on grape (Vitis vinifera L., ev. Sultanina) growth, β-fructofuranosidase (EC 3.2.1.26) activity and carbohydrate levels was investigated throughout berry development and ripening. Although the fruits responded to hormone application with the expected increase in size, growth was not correlated with enzymic activity and hexose accumulation. This suggests that there is no direct regulatory relationship between invertase and the rate of assimilate import. However, fructose:glucose ratios changed from 0.1 in green berries to 1.0 in mature samples. The latter situation can be reconciled with the 1:1 stoichiometry of sucrolysis by invertase. It is suggested that this is attributable to a spatial separation of substrate and enzyme in green tissue. Compartmentation studies indicate that mesocarp cell integrity gradually deteriorates during ripening, which allows invertase to leak out of the vacuole into the surrounding tissue. In fact, the protein fraction retrieved from a buffered medium after incubation of ripening berry slices contained a soluble invertase of presumably vacuolar origin with an acid pH-activity profile and a pI of about 4.  相似文献   

9.
The nature of the electron transfer and terminal oxidase(s)in the sulfite-oxidizing system of Thiobacillus thiooxidnaswas studied in detail with various artificial electron donorsand inhibitors. Thionine, when reduced by ascorbate, was mosteffectively oxidized by whole cells and the particulate fractionof the various artificial electron donors. p-PD and TMPD werescarcely oxidized by either intact cells or the particulatefraction. The optimum pH of the thionine-oxidizing activity by the particulatefraction was 7.0 and that of the sulfite-oxidizing activitywas 6.8. The Km values for thionine and sulfite were 7.6x10–5Mand 1.6xl0–4M, respectively. Sulfite oxidase activity in the particulate fraction was markedlyinhibited by amytal, rotenone, quinacrine-HGl and 2,4-DNP. HOQNOinhibited sulfite oxidase activity completely, but had no effecton thionine oxidase activity. Cyanide- and azide-insensitive respirations were present inthe particulate fraction. Thionine oxidase activity was inhibitedphoto-irreversibly with carbon monoxide, while sulfite oxidaseactivity showed photo-reversible carbon monooxide inhibition.The presence of two carbon monoxide-binding pigments was confirmedin the particulate fraction by a spectrophotometric study. (Received May 16, 1975; )  相似文献   

10.
Changes in avocado (Persea americana) fruit texture during ripeningwere evaluated by stress-relaxation analysis. A conical probewas imposed into the mesocarp tissue to a depth of 0.6 mm andthe initial stress and the stress relaxation over 60 s weredetermined. The initial stress, an elastic parameter, was substantiallyreduced within one day when ripening was initiated by transferringthe fruit from 15 to 25°C. The minimum and maximum relaxationtime, parameters which reflect viscosity, were also reducedwithin one day. Mesocarp cell walls were fractionated into water-soluble(WS), hot EDTA-soluble (EDTA), alkaline soluble (hemicellulose)and the residual (cellulose) fractions. The amount of cellulosedid not change during ripening. Rhamnose, arabinose and uronicacids in the WS fraction increased during the initial day ofripening; those same components decreased in the EDTA fraction.A molecular weight downshift in the WS acidic polysaccharideswas detected within one day, while only slight changes wereobserved in the molecular weights of the EDTA fraction. Thequantities of individual sugar components of major hemicellulosefraction were unchanged, but there was a prominent molecularweight downshift in the xyloglucan components within one day.These results clearly revealed that both elastic and viscousproperties of avocado mesocarp tissues were substantially alteredduring ripening, and that the solubility changes in acidic polysaccharidesand decreases in the average molecular weight of cell wall xyloglucancomponents were associated with significant changes in fruittexture. (Received December 13, 1996; Accepted March 5, 1997)  相似文献   

11.
Many bulbous plants need a low-temperature treatment for flowering. Cold, for example, affects the elongation of the stalk, thereby influencing the quality of the cut flower. How the elongation of the stalk is promoted by cold and which physiological and biochemical mechanisms are involved have remained obscure. As invertase has been shown to be involved in the cold-induced elongation of the flower stalks of tulips (Lambrechts et al., 1994, Plant Physiol 104: 515–520), we further characterized this enzyme by cloning the cDNA and analysing its expression in various tissues of the tulip (Tulipa gesneriana L. cv. Apeldoorn) stalk. In addition, the role of sucrose synthase was investigated. Since turgor pressure is an important force driving cell elongation, the role of a water-channel protein (γTIP) was studied in relation to these two enzymes. The mRNA level of the invertase found was substantially up-regulated as a result of cold treatment. Analysis of the amino acid sequence of this invertase revealed the presence of a vacuolar targeting signal. Two different forms of sucrose synthase were found, the expression of one of them appeared to be restricted to the vascular tissue while the other form was present in the surrounding tissue. Both sucrose synthases were present in the stalk during the entire period of bulb storage and after planting, but their activities declined during stalk elongation. The expression of the γTIP gene was restricted mainly to the vascular tissue and its expression profile was identical to that of invertase. Simultaneous expression of invertase and γTIP possibly leads to an increase in osmotic potential and vacuolar water uptake, thus providing a driving force for stretching the stalk cells. Received: 12 January 1999 / Accepted: 24 March 1999  相似文献   

12.
The synthesis of acid invertase during washing of red beet storageroots has been investigated using protein synthesis inhibitors,antibiotics, and antibodies raised against the purified invertase.Acid invertase increased during the first 3 d of washing thendecreased, with the rates of both processes dependent on temperature.Concomitantly, acid phosphatase declined throughout this period.Activity gels confirmed the increase in the level of activeinvertase protein. The increase in activity was prevented bycycloheximide, monensin, tunicamycin, and carbonyl cyanide m-chlorophenylhydrazone.Leakage of betanin was measured and ultrastructural observationsundertaken to ensure these compounds had no non-specific effects.Immunoblotting confirmed the synthesis of a new 65 kDa invertaseduring washing and its subsequent loss. The location of theinvertase was investigated by immunoblotting of proteins invacuoles isolated from fresh and washed storage root discs,and indicated that the invertase is localized in the vacuole.The results are discussed in relation to the synthesis and targetingof invertase during the changes induced by washing. Key words: Acid invertase, Beta vulgaris L., protein synthesis, protein targeting, vacuole  相似文献   

13.
Three types of invertase (invertase I, II and III) are separatedfrom the soluble and insoluble fractions (4,500xg, 10 min supernatantand pellets of the homogenate, respectively) of baker's yeastby a DEAE cellulose column chromatography. The invertases Iand II are eluted with 0.1 M sodium acetate buffer (pH 3.9)and with 0.1 M sodium acetate buffer (pH 6.2) containing 0.1M NaCl from DEAE cellulose respectively, whereas the invertase-IIIremains adsorbed on the cellulose under these conditions. Theyare present in proportions of 2.5: 1 : 0.06 in the soluble fractionand 1.4: 1 : 0.12 in the insoluble fraction of the fresh baker'syeast cells. While in-vertase-II remains at a constant level,invertases I and III in the soluble fraction increase upon incubationof cells for the formation of invertase under the continuoussupply of sucrose. Invertases I and II differ from each other considerably in theoptimum pH and slightly in the response to (activation and inactivationby) crude papain and are identical with respect to the heatstability and probably to the affinity for sucrose. 1Present address: Chemical Laboratory, Nippon Medical School,Konodai, Ichikawa-shi, Chiba-ken.  相似文献   

14.
Cross-linking Phytochrome to its Receptor in situ using Imidoesters   总被引:1,自引:0,他引:1  
Phytochrome can be cross-linked to a particulate fraction usingimidoesters, namely dimethy adipimidate (DMA) and dimethyl suberimidate(DMS). DMS was more effective than DMA. Cross-linking of phytochrometo its in situ receptor effected by DMS occurred in red light-irradiatedcoleoptiles. If DMS cross-linking was carried out prior to redlight irradiation there was very little formation of particulatephytochrome. Phytochrome in the particulate fraction obtainedby in situ DMS cross-linking was totally resistant to the solubilizingeffect of washing with solutions of high salt concentrationand high pH and was indistinguishable spectro-scopically fromthe phytochrome in untreated coleoptiles. DMS cross-linkingof phytochrome to its assumed receptor in situ preferentiallyprotected it from destruction following red light irradiationand also prevented it from dissociating from its receptor followingR/FR1 irradiation when incubated subsequently in the dark. Thesecharacteristics of phytochrome in DMS-treated coleoptiles matchedthose observed using glutaraldehyde as the cross-linking reagent.It is therefore concluded that earlier results obtained usingglutaraldehyde are not peculiar to that reagent and can be duplicatedreadily using more defined bifunctional cross-linkers.  相似文献   

15.
Invertase ( β -fructofuranoside fructohydrolase, EC 3.2.1.26) activity in developing maize ( Zea mays L. inbred W64A) was separated into soluble and particulate forms. The particulate form was solubilized by treatment with 1 M NaCl or with other salts. However, CaCl2 inhibited invertase activity, and neither detergents nor 0.5 M methyl mannoside were effective in solubilizing the invertase activity. The soluble and particulate invertases were both glycoproteins, both had pH optima of 5.0 and Km values for sucrose of 2.83 and 1.84 m M , respectively. The apparent molecular weight of salt-solubilized invertase was 40 kDa. Gel filtration of the soluble invertase showed multiple peaks with apparent molecular weights ranging from 750 kDa to over 9 000 kDa. Histochemical staining of cell wall preparations for invertase activity suggested that the particulate invertase is associated with the cell wall. Also, nearly all the invertase activity was localized in the basal endosperm and pedicel tissues, which are sites of sugar transport. No invertase activity was found in the upper endosperm, the embryo or in the placento-chalazal tissue. In contrast, sucrose synthase (EC 2.4.1.13) activity was found primarily in the embryo and the upper endosperm, which are areas of active biosynthesis of storage compounds.  相似文献   

16.
Homogenates of excised roots of Lycopersicon esculentum possessboth invertase and glucosidase activity. These were separatedby Sephadex G-100 filtration and their ability to hydrolysea number of different sugars was determined. (Received May 29, 1974; )  相似文献   

17.
1-Aminocyclopropane-1-carboxylate (ACC) oxidase (ethylene-formingenzyme) was isolated from wounded mesocarp tissue of Cucurbitamaxima (winter squash) fruit, and its enzymatic properties wereinvestigated. The enzyme required Fe2+ and ascorbate for itsactivity as well as ACC and O2 as substrates. The in vitro enzymeactivity was enhanced by CO2. The apparent Km value for ACCwas 175 µM under atmospheric conditions. The enzyme activitywas inhibited by sulfhydryl inhibitors and divalent cationssuch as Co2+, Cu2+, and Zn2+. ACC oxidase activity was induced at a rapid rate by woundingin parallel with an increase in the rate of ethylene production.The exposure of excised discs of mesocarp to 2,5-norbornadiene(NBD),an inhibitor of ethylene action, strongly suppressed inductionof the enzyme, and the application of ethylene significantlyaccelerated the induction of the activity of ACC oxidase inthe wounded mesocarp tissue. These results suggests that endogenousethylene produced in response to wounding may function in promotingthe induction of ACC oxidase. (Received January 13, 1993; Accepted April 15, 1993)  相似文献   

18.
Activities of both 1-aminocyclopropane-l-carboxylate (ACC) synthaseand phenylalanine ammonia-lyase (PAL) were rapidly induced inexcised mesocarp discs of Cucurbita maxima Duch. The increasein activity of ACC synthase preceded that of PAL. 2,5-Norbornadiene(NBD), an inhibitor of the action of ethylene [Sisler and Yang(1984) Phytochemistry 12: 2765-2768.], enhanced the level ofactivity of ACC synthase in excised mesocarp disc and overcamethe suppression by exogenous ethylene. NBD, by contrast, suppressedthe level of PAL activity induced in the wounded tissue. Theseresults suggest that endogenous ethylene produced in the woundedmesocarp tissue suppresses the induction of ACC synthase butpromotes the induction of PAL. (Received March 9, 1989; Accepted June 14, 1989)  相似文献   

19.
Soluble acid invertase from wheat coleoptiles was purified toelectrophoretic homogeneity. A comparison of molecular weightby SDS-PAGE and gel filtration suggested that the enzyme wasa monomer of Mr50 000. The enzyme was a glycoprotein and, afterchemical deglycosylation, possessed a Mrof 48000. A polyclonalantiserum was raised against the deglycosylated protein. Thiscross-reacted specifically with acid invertase. A putative precursorof invertase synthesized in a cell-free translation system wasdetected by SDS-PAGE and fluorography of the immunoprecipitatedpolypeptides. The distribution of acid invertase in wheat seedlingshoots was investigated both by visualizing invertase activityafter starch gel electrophoresis and by immunoblotting. Bothtechniques identified two forms of invertase in extracts ofthe primary leaf and only one form in extracts of coleoptiles.The low pH optimum and the glycoprotein nature of wheat coleoptileinvertase are consistent with a vacuolar location. Fructoseinhibited its activity, suggesting that enzyme activity couldbe modulated by end-product inhibition. Key words: Acid invertase, purification, antiserum, glycoprotein, Triticum aestivum, wheat, coleoptiles  相似文献   

20.
The Synthesis of Ethylene in Melon Fruit during the Early Stage of Ripening   总被引:6,自引:0,他引:6  
The levels of mRNA and polypeptide for a 1-aminocyclopropane-1-carboxylate(ACC) oxidase were studied to identify the tissues in whichthe synthesis of ethylene first occurs during the initial stageof ripening. RNA and immunoblot analysis showed that the levelsof the mRNA and polypeptide for ACC oxidase were very low inunripe fruit. They first became detectable in the placentaltissue at the pre-climacteric stage, and then their levels increasedin the mesocarp tissue during the climacteric increase in theproduction of ethylene. Two mRNAs for ACC synthase (transcribedfrom ME-ACS1 and ME-ACS2) were detected in the placental tissueand seeds at the pre-climacteric stage, but only the level ofME-ACS1 mRNA, which has been characterized as the mRNA for awound-inducible ACC synthase, increased in mesocarp, placentaltissues and seeds during ripening. The level of ME-ACS2 mRNAthat was isolated from etiolated seedlings of melon, did notchange markedly during ripening. These results suggest thatthe central region of melon fruit (placental tissue and seeds)plays a major role in the production of ethylene during theearly stage of ripening. 3These three authors made equal contribution to this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号