首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial reduction of selenium (Se) oxyanions (Se[VI] and Se[IV]) to elemental Se (Se[0]) is one of the major biogeochemical processes removing Se from agricultural drainage water and depositing Se in the sediment. This study was conducted to characterize Se-reducing bacterial populations in Lost Hills evaporation pond sediment and to observe their response to Se(VI) and organic C amendments. Se(VI) was removed from the dissolved phase in the sediment slurries amended with organic C with a decrease in redox potential (Eh). Se(VI) concentrations decreased from 2137 to 79 microg L-1 after 9 days of incubation in a 5% soil slurry. Upon our screening process, 9 Se(VI)- and 14 Se(IV)-reducing bacteria were isolated from sediment slurries and identified by amplification and sequencing of 16S rDNA. Bacillus strains appeared to be dominant in the bacterial assemblages active in Se(VI) and Se(IV) reduction in the sediment. Halomonas pacifica and Staphylococcus warneri were also identified as Se(IV)-reducers. Indigenous bacteria have a significant role in the biogeochemical cycling of Se and may be stimulated by addition of a suitable organic source for Se reduction. The bacterial strains isolated from salt-affected and Se-contaminated Lost Hills evaporation pond sediment may have potential application in removing Se from high salt drainage water.  相似文献   

2.

Microbial volatilization of selenium (Se) may be an effective bioremediation technique to remove Se from dewatered sediments. In this laboratory study, soil management parameters (wetting and drying cycles, aeration, mixing, aggregate size, and water quality) were assessed for their influence upon Se volatilization. Selenium volatilization rates were higher under continuously moist conditions (—33 kPa) compared with wetting and drying cycles. After 6 months of incubation, a continuously moist seleniferous soil had lost approximately 21% of the Se inventory, whereas the same soil incubated under wetting and drying cycles had dissipated 7% of the total Se. Incubation under anoxia (N2 atmosphere) increased evolution of dimethyl selenide (DMSe) 1.4‐fold compared with aerated conditions. When soil samples were incubated under static versus continuously mixed conditions, the latter treatment enhanced volatilization 1.8‐fold. This was attributed to increased availability of the Se to the methylating soil microbiota. The optimum aggregate size to promote volatilization of Se was 0.53 mm when compared to 0.15, 1, and 2 mm. The application of saline well water (7.5 dS m‐1) over 6 months, compared with deionized water, had little effect on volatilization rates of Se from a highly saline (22 dS mr‐1) seleniferous dewatered sediment. Each of these parameters should be considered in promoting volatilization of Se as a bioremediation approach in the cleanup of seleniferous sediments.  相似文献   

3.
The animal biopolymers prepared from hen eggshell membrane and broiler chicken feathers, which are byproducts of the poultry-processing industry, were evaluated for the removal of the oxyanions selenium [Se(IV) and Se(VI)] and arsenic [As(III) and As(V)] from aqueous solutions. The biopolymers were found to be effective at removing Se(VI) from solution. Optimal Se(IV) and Se(VI) removal was achieved at pH 2.5–3.5. At an initial Se concentration of 100 mg/L (1.3 m M), the eggshell membrane removed approx 90% Se(VI) from the solution. Arsenic was removed less effectively than Se, but the chemical modification of biopolymer carboxyl groups dramatically enhanced the As(V) sorption capacity. Se(VI) and As(V) sorption isotherms were developed at optimal conditions and sorption equilibrium data fitted the Langmuir isotherm model. The maximum uptakes by the Langmuir model were about 37.0 mg/g and 20.7 mg/g of Se(VI) and 24.2 mg/g and 21.7 mg/g of As(V) for eggshell membrane and chicken feathers, respectively.  相似文献   

4.
Recent studies have detected phylogenetic signals in pathogen–host networks for both soil‐borne and leaf‐infecting fungi, suggesting that pathogenic fungi may track or coevolve with their preferred hosts. However, a phylogenetically concordant relationship between multiple hosts and multiple fungi in has rarely been investigated. Using next‐generation high‐throughput DNA sequencing techniques, we analyzed fungal taxa associated with diseased leaves, rotten seeds, and infected seedlings of subtropical trees. We compared the topologies of the phylogenetic trees of the soil and foliar fungi based on the internal transcribed spacer (ITS) region with the phylogeny of host tree species based on matK, rbcL, atpB, and 5.8S genes. We identified 37 foliar and 103 soil pathogenic fungi belonging to the Ascomycota and Basidiomycota phyla and detected significantly nonrandom host–fungus combinations, which clustered on both the fungus phylogeny and the host phylogeny. The explicit evidence of congruent phylogenies between tree hosts and their potential fungal pathogens suggests either diffuse coevolution among the plant–fungal interaction networks or that the distribution of fungal species tracked spatially associated hosts with phylogenetically conserved traits and habitat preferences. Phylogenetic conservatism in plant–fungal interactions within a local community promotes host and parasite specificity, which is integral to the important role of fungi in promoting species coexistence and maintaining biodiversity of forest communities.  相似文献   

5.
山东省烟草根际土壤真菌多样性研究   总被引:1,自引:1,他引:1  
为了有助于研究烟草根际土壤真菌与根茎病害发生程度的相互关系,文中对采自山东省6个地区的122份烟草根际土壤样品进行了真菌的分离和培养,采用形态学方法进行鉴定,并分析了菌群的多样性组成。从山东烟草根际土壤中分离和鉴定出真菌22属79种,其中接合菌门4属6种,子囊菌门1属1种,无性型真菌17属72种。优势真菌种群为青霉属(Penicillium)、木霉属(Trichoderma)、镰孢菌属(Fusarium)和曲霉属(As-pergillus),所占分离真菌总菌数的比例分别为22.39%、13.62%、12.69%和9.88%。6个采样地区间真菌菌群的多样性水平存在差异,其中诸城地区的多样性指数(H′=2.066 6)、均匀度指数(J=0.689 8)和丰富度指数(R=3.730 1)均最高。  相似文献   

6.
Selenium (Se), an element found naturally in a variety of soils, can accumulate in drainage water of lands under intensive irrigation, even reaching levels that are toxic to mammals and birds. Volatilization of Se by soil microorganisms into dimethylselenide (DMSe) can be enhanced by certain soil amendments and, thus, be used as a soil remediation process. In an 8-wk laboratory study, five soils from California and one from Germany were spiked with75SeO3 2- (22.3 mg/kg Se). Two amino acids (DL-homocysteine and L-methionine), a carbohydrate (pectin), and a protein (zein) were tested as soil amendments. Gaseous75Se emissions were trapped with activated carbon and measured in a gamma counter. Depending on soil type, the cumulative volatilization from the control flasks varied between 1.2% and 9.0% of applied75Se. Both zein and L-methionine strongly increased volatilization (max. 43% of75Se applied), whereas DL-homocysteine had a much smaller stimulating effect. Pectin showed a moderate effect, but enhanced Se volatilization rates were sustained much longer when compared to the zein amendment. Volatilization rates of Se followed a simple first-order reaction. Gaseous Se emission in the soils treated with L-methionine yielded an S-shaped curve, which fit a growth-modified first-order rate model. Although zein and L-methionine were the most favorable treatments enhancing Se volatilization, all six soils responded differently to the soil amendments.  相似文献   

7.
Microbially mediated oxidation of Mn(II) to Mn(III/IV) oxides influences the cycling of metals and remineralization of carbon. Despite the prevalence of Mn(II)‐bearing minerals in nature, little is known regarding the ability of microbes to oxidize mineral‐hosted Mn(II). Here, we explored oxidation of the Mn(II)‐bearing mineral rhodochrosite (MnCO3) and characteristics of ensuing Mn oxides by six Mn(II)‐oxidizing Ascomycete fungi. All fungal species substantially enhanced rhodochrosite dissolution and surface modification. Mineral‐hosted Mn(II) was oxidized resulting in formation of Mn(III/IV) oxides that were all similar to δ‐MnO2 but varied in morphology and distribution in relation to cellular structures and the MnCO3 surface. For four fungi, Mn(II) oxidation occurred along hyphae, likely mediated by cell wall‐associated proteins. For two species, Mn(II) oxidation occurred via reaction with fungal‐derived superoxide produced at hyphal tips. This pathway ultimately resulted in structurally unique Mn oxide clusters formed at substantial distances from any cellular structure. Taken together, findings for these two fungi strongly point to a role for fungal‐derived organic molecules in Mn(III) complexation and Mn oxide templation. Overall, this study illustrates the importance of fungi in rhodochrosite dissolution, extends the relevance of biogenic superoxide‐based Mn(II) oxidation and highlights the potential role of mycogenic exudates in directing mineral precipitation.  相似文献   

8.
Ectomycorrhizal (ECM) fungal communities covary with host plant communities along soil fertility gradients, yet it is unclear whether this reflects changes in host composition, fungal edaphic specialization or priority effects during fungal community establishment. We grew two co‐occurring ECM plant species (to control for host identity) in soils collected along a 2‐million‐year chronosequence representing a strong soil fertility gradient and used soil manipulations to disentangle the effects of edaphic properties from those due to fungal inoculum. Ectomycorrhizal fungal community composition changed and richness declined with increasing soil age; these changes were linked to pedogenesis‐driven shifts in edaphic properties, particularly pH and resin‐exchangeable and organic phosphorus. However, when differences in inoculum potential or soil abiotic properties among soil ages were removed while host identity was held constant, differences in ECM fungal communities and richness among chronosequence stages disappeared. Our results show that ECM fungal communities strongly vary during long‐term ecosystem development, even within the same hosts. However, these changes could not be attributed to short‐term fungal edaphic specialization or differences in fungal inoculum (i.e. density and composition) alone. Rather, they must reflect longer‐term ecosystem‐level feedback between soil, vegetation and ECM fungi during pedogenesis.  相似文献   

9.
Understanding the effects of root‐associated microbes in explaining plant community patterns represents a challenge in community ecology. Although typically overlooked, several lines of evidence point out that nonmycorrhizal, root endophytic fungi in the Ascomycota may have the potential to drive changes in plant community ecology given their ubiquitous presence, wide host ranges, and plant species‐specific fitness effects. Thus, we experimentally manipulated the presence of root endophytic fungal species in microcosms and measured its effects on plant communities. Specifically, we tested whether (1) three different root endophyte species can modify plant community structure; (2) those changes can also modified the way plant respond to different soil types; and (3) the effects are modified when all the fungi are present. As a model system, we used plant and fungal species that naturally co‐occur in a temperate grassland. Further, the soil types used in our experiment reflected a strong gradient in soil texture that has been shown to drive changes in plant and fungal community structure in the field. Results showed that each plant species responded differently to infection, resulting in distinct patterns of plant community structure depending on the identity of the fungus present. Those effects depended on the soil type. For example, large positive effects due to presence of the fungi were able to compensate for less nutrients levels in one soil type. Further, host responses when all three fungi were present were different from the ones observed in single fungal inoculations, suggesting that endophyte–endophyte interactions may be important in structuring plant communities. Overall, these results indicate that plant responses to changes in the species identity of nonmycorrhizal fungal community species and their interactions can modify plant community structure.  相似文献   

10.
Soil fungi play a crucial role in ecosystem functioning and there is increasing evidence that exotic plants invading forests can affect soil fungal communities. We examined potential effects of the invasive plant Impatiens glandulifera on hyphal biomass of ectomycorrhizal fungi, their genetic diversity and the diversity of other soil fungi in deciduous forests in Switzerland. We compared invaded patches with patches where I. glandulifera had been removed, by establishing pairs of 3-m long transect lines at the edge of seven areas of either type. Along the transects we assessed the length of ectomycorrhizal fungal hyphae using the ‘ingrowth mesh bag method’, and used terminal restriction fragment length polymorphism (T-RFLP) analysis to examine fungal genetic diversity. The invasive plant reduced fungal hyphal biomass by 30–80%: the reduction was largest in the centre of the patch. I. glandulifera did not alter fungal richness, but affected the composition of fungal communities. This is probably the result of a decrease of mycorrhizal fungi, coupled with an increase of saprotrophic fungi. Our findings demonstrate the adverse impacts of an annual invasive plant species on both fungal hyphal biomass and the composition of soil fungal communities. This may negatively affect forest nutrient and carbon cycling, soil stability and the functionality of the fungal community, with major consequences for forest ecosystem functioning.  相似文献   

11.
The potential of the environment to yield organisms that can produce functional bionanominerals is demonstrated by selenium-tolerant, aerobic bacteria isolated from a seleniferous rhizosphere soil. An isolate, NS3, was identified as a Bacillus species (EU573774.1) based on morphological and 16S rRNA characterization. This strain reduced Se(IV) under aerobic conditions to produce amorphous α Se(0) nanospheres. A room-temperature washing treatment was then employed to remove the biomass and resulted in the production of clusters of hexagonal Se(0) nano-rods. The Se(0) nanominerals were analyzed using electron microscopy and X-ray diffraction techniques. This Bacillus isolate has the potential to be used both in the neutralizing of toxic Se(IV) anions in the environment and in the environmentally friendly manufacture of nanomaterials.  相似文献   

12.
Volatiles play major roles in mediating ecological interactions between soil (micro)organisms and plants. It is well‐established that microbial volatiles can increase root biomass and lateral root formation. To date, however, it is unknown whether microbial volatiles can affect directional root growth. Here, we present a novel method to study belowground volatile‐mediated interactions. As proof‐of‐concept, we designed a root Y‐tube olfactometer, and tested the effects of volatiles from four different soil‐borne fungi on directional growth of Brassica rapa roots in soil. Subsequently, we compared the fungal volatile organic compounds (VOCs) previously profiled with Gas Chromatography–Mass Spectrometry (GC–MS). Using our newly designed setup, we show that directional root growth in soil is differentially affected by fungal volatiles. Roots grew more frequently toward volatiles from the root pathogen Rhizoctonia solani, whereas volatiles from the other three saprophytic fungi did not impact directional root growth. GC–MS profiling showed that six VOCs were exclusively emitted by R. solani. These findings verify that this novel method is suitable to unravel the intriguing chemical cross‐talk between roots and soil‐borne fungi and its impact on root growth.  相似文献   

13.
The research on the function and mechanism of selenium (Se) is of great significance for the development of Se-enriched agricultural products. In this paper, uptake, speciation distribution, the effects on the flue-cured tobacco growth and antioxidant system of Se at different levels (0–22.2 mg Se kg−1) were studied through a pot experiment, aiming to clarify flue-cured tobacco's response to Se stress and the relationship between Se speciation and antioxidant system. The results showed that the leaf area and number, the biomass and the chlorophyll content reached the maximum at 4.4 mg kg−1 of Se treatment. Selenium at low levels (≤4.4 mg kg−1) stimulated the growth of flue-cured tobacco by elevating the capability of antioxidant stress and reducing the malondialdehyde (MDA) content to 0.6–0.8 times of that of the control. However, high Se levels (≥11.1 mg kg−1) depressed the capability of antioxidant stress and raised the MDA content to 1.5-fold of that of the control, and meanwhile the biomass of the aboveground parts and underground parts declined notably. The Se content in different parts of flue-cured tobacco significantly increased with the growth of Se levels. The range of Se content in roots, leaves and stems at 2.2–22.2 mg kg−1 of Se treatment were 16.7–58.6 mg kg−1, 2.6–37.3 mg kg−1 and 2.2–10.3 mg kg−1, respectively. According to the detection of different Se speciation, only selenocysteine (SeCys) was detectable in leaves at 2.2 mg kg−1 Se treatment; SeCys, selenite [Se(IV)]and selenate [Se(VI)] were detected in flue-cured tobacco leaves at Se treatment (≥4.4 mg kg−1), which accounted for 4.6–10%, 9–18.7% and 71–86% respectively; SeCys, selenomethionine (SeMet) and Se(IV) were detected in roots, and organic selenium(66–84%) was the main Se species at Se  11.1 mg kg−1 treatment; four Se species [SeCys, SeMet, Se(IV) and Se(VI)] were detected in flue-cured tobacco roots, and the main Se species was inorganic Se (60%) at 22.2 mg kg−1 Se treatment. That was to say, the percentage of organic Se species (SeCys and SeMet in flue-cured tobacco leaves and root) declined, whereas the ratio of inorganic Se species [Se(IV) and Se(VI)] increased with the growth of Se levels. The correlation analysis showed that the superoxide dismutase (SOD) activity as well as the glutathione (GSH) and MDA contents were positively correlated with the Se(IV) and Se(VI) contents at P < 0.01 and excessive inorganic Se might destruct the reactive oxygen species (ROS) balance and enhance the MDA content, thus causing damage to the plant growth. In a word, the present study suggested that the ratio of inorganic Se [Se(IV) and Se(VI)] was closely related with the growth and the antioxidant capacity of flue-cured tobacco and the excessive application of Se led to the higher proportion of inorganic Se and poorer antioxidant capacity, which ultimately inhibited the growth of flue-cured tobacco.  相似文献   

14.
Little is known about how fungi affect elemental accumulation in hyperaccumulators (HAs). Here, two rhizosphere fungi from selenium (Se) HA Stanleya pinnata, Alternaria seleniiphila (A1) and Aspergillus leporis (AS117), were used to inoculate S. pinnata and related non‐HA Stanleya elata. Growth and Se and sulfur (S) accumulation were analyzed. Furthermore, X‐ray microprobe analysis was used to investigate elemental distribution and speciation. Growth of S. pinnata was not affected by inoculation or by Se. Stanleya elata growth was negatively affected by AS117 and by Se, but combination of both did not reduce growth. Selenium translocation was reduced in inoculated S. pinnata, and inoculation reduced S translocation in both species. Root Se distribution and speciation were not affected by inoculation in either species; both species accumulated mainly (90%) organic Se. Sulfur, in contrast, was present equally in organic and inorganic forms in S. pinnata roots. Thus, these rhizosphere fungi can affect growth and Se and/or S accumulation, depending on host species. They generally enhanced root accumulation and reduced translocation. These effects cannot be attributed to altered plant Se speciation but may involve altered rhizosphere speciation, as these fungi are known to produce elemental Se. Reduced Se translocation may be useful in applications where toxicity to herbivores and movement of Se into the food chain is a concern. The finding that fungal inoculation can enhance root Se accumulation may be useful in Se biofortification or phytoremediation using root crop species.  相似文献   

15.
An ecological approach was used to investigate the relationship between diversity of soil fungal communities and soil‐borne pathogen inoculum in a potato growing area of northern Italy affected by yield decline. The study was performed in 14 sites with the same tillage management practices: 10 named ‘potato sites’, that for many years had been intensely cultivated with potatoes, and 4 named ‘rotation sites’, subject to a 4‐year rotation without potatoes or any recurrent crop for many years. Fungal communities were recorded using conventional (soil fungi by plate count and endophytic fungi as infection frequency on pot‐grown potato plant roots in soil samples) and molecular approaches [Basidiomycetes and Ascomycetes with specific and denaturing gradient gel electrophoresis (DGGE) analysis]. Diversity of fungal communities in potato sites was significantly lower than that in rotation sites. In addition, fungal communities in rotation sites showed lower Berger–Parker dominance than those in the potato sites, suggesting that rotation sites had a higher diversity as well as a better fungal community balance than potato sites. The ANalysis Of SIMilarity test of soil fungi and root endophytic fungi revealed that the two cropping systems differed significantly for species composition. Root endophytic fungal communities showed a greater ability to colonise potato roots in soil samples from potato sites than those from rotation sites. Moreover, the majority of endophytic root fungal community species in potato sites belonged to the potato root rot complex and storage disease (Colletotrichum coccodes, Fusarium solani and Fusarium oxysporum), while those in rotation sites were mainly ubiquitous or saprobic fungi. Soil rDNA analyses showed that Ascomycetes were much more frequent than Basidiomycetes in all the soils examined. DGGE analysis, with the Ascomycete‐specific primer (ITS1F/ITS4A), did not reveal distinctions between the communities found at the potato and rotation sites, although the same analysis showed differences between the communities of Basidiomycetes (specific primer ITS1F/ITS4B). These findings showed that recurrent potato cropping affected diversity and composition of soil fungal communities and induced a shift in specialisation of the endophytic fungi towards potato.  相似文献   

16.
Two chromate-resistant filamentous fungi, strains H13 and Ed8, were selected from seven independent fungal isolates indigenous to Cr(VI)-contaminated soil because of their ability to decrease hexavalent chromium levels in the growth medium. Morphophysiological studies identified strain H13 as a Penicillium sp. isolate and Ed8 as an Aspergillus sp. isolate. When incubated in minimal medium with glucose as a carbon source and in the presence of 50 microg/mL Cr(VI), these strains caused complete disappearance of Cr(VI) in the growth medium after about 72 h of incubation. Total chromium concentration in growth medium was constant during culture growth, and no accumulation of chromium in fungal biomass was observed. Quantitative determinations of oxidized and reduced chromium species during the reduction process revealed stoichiometric conversion of Cr(VI) to Cr(III). A decrease in Cr(VI) levels from industrial wastes was also induced by Ed8 or H13 biomass. These results indicate that chromate-resistant filamentous fungi with Cr(VI)-reducing capability could be useful for the removal of Cr(VI) contamination.  相似文献   

17.
With the expansion of cities around the world there is a growing interest in the factors that influence biodiversity and ecosystem processes in urban areas. Fungi are exceptionally diverse and play key roles in ecosystem function, yet despite predictions of negative impacts due to urbanization, fungi have been generally overlooked in urban ecological studies. We surveyed fungi in 16 remnant river red gum (Eucalyptus camaldulensis: Myrtaceae) woodlands along a gradient of 4–35 km from the city of Melbourne (south‐east Australia). Using both sporocarp surveys and terminal restriction fragment length polymorphism (T‐RFLP; primer pair ITS1‐F‐ITS4), we examined relationships between fungal community composition, landscape context (i.e. urbanization) and soil physicochemical properties. Community compositions from sporocarp data were significantly correlated with those from T‐RFLP data, largely because of correlations with ectomycorrhizal sporocarps (Spearman rank correlation coefficients ρ 0.31–0.42) rather than saprotrophic fungi (ρ 0.18–0.21). Principal components analysis of soil properties and non‐metric multidimensional scaling ordinations of fungal community composition showed no clear separation of sites according to urbanization, and there were no significant correlations between fungal community composition and urbanization. However, fungal community composition was significantly correlated with soil chemical properties (ρ 0.41–0.55). These data suggest that site‐scale soil properties, and associated effects of past and current land management activities, were more important in determining fungal community composition than the landscape‐level influences of urbanization.  相似文献   

18.
In natural forests, hundreds of fungal species colonize plant roots. The preference or specificity for partners in these symbiotic relationships is a key to understanding how the community structures of root‐associated fungi and their host plants influence each other. In an oak‐dominated forest in Japan, we investigated the root‐associated fungal community based on a pyrosequencing analysis of the roots of 33 plant species. Of the 387 fungal taxa observed, 153 (39.5%) were identified on at least two plant species. Although many mycorrhizal and root‐endophytic fungi are shared between the plant species, the five most common plant species in the community had specificity in their association with fungal taxa. Likewise, fungi displayed remarkable variation in their association specificity for plants even within the same phylogenetic or ecological groups. For example, some fungi in the ectomycorrhizal family Russulaceae were detected almost exclusively on specific oak (Quercus) species, whereas other Russulaceae fungi were found even on “non‐ectomycorrhizal” plants (e.g., Lyonia and Ilex). Putatively endophytic ascomycetes in the orders Helotiales and Chaetothyriales also displayed variation in their association specificity and many of them were shared among plant species as major symbionts. These results suggest that the entire structure of belowground plant–fungal associations is described neither by the random sharing of hosts/symbionts nor by complete compartmentalization by mycorrhizal type. Rather, the colonization of multiple types of mycorrhizal fungi on the same plant species and the prevalence of diverse root‐endophytic fungi may be important features of belowground linkage between plant and fungal communities.  相似文献   

19.
A survey was conducted in root-knot nematode-infested plastic houses to determine the diversity and frequency of occurrence of fungi associated with the nematode. The relationships between percentage fungal parasitism and physicochemical properties of soil were also investigated. Fifty-nine plastic houses were sampled in southeastern Spain, 42 treated with nematicides and 17 left untreated. Eleven fungal genera and unidentified fungi were isolated from nematode eggs or juveniles. Fungal parasitism occurred more frequently in untreated (82.4%) than treated (50%) soils. The species richness in untreated soils ranged from 0 to 5, the Shannon–Wiener diversity index (a measurement of how many different fungi there are in site taking into account how evenly they are distributed among the site) from 0 to 2.01, and the evenness index from 0.46 to 0.99. In treated soils, species richness ranged from 0 to 4, the Shannon–Wiener diversity index from 0 to 1.61, and the evenness index from 0.81 to 1. Of the sites with nematophagous fungi, Arthrobotrys dactyloides (34%), Cylindrocarpon sp., Neosartoria hiratsukae (17%), and Fusarium solani (14%) were the fungi most frequently found. Physicochemical properties of soil were similar in nematicide treated and untreated soils. Percent fungal parasitism in untreated soils correlated positively with lime, silt and carbonate content of soil.  相似文献   

20.
Despite increasing knowledge on host‐associated microbiomes, little is known about mechanisms underlying fungus‐microbiome interactions. This study aimed to examine the relative importance of host genetic, geographic and environmental variations in structuring fungus‐associated microbiomes. We analyzed the taxonomic composition and function of microbiomes inhabiting fungal fruiting‐bodies in relation to host genetic variation, soil pH and geographic distance between samples. For this, we sequenced the metagenomes of 40 fruiting‐bodies collected from six fairy rings (i.e., genets) of a saprotrophic fungus Marasmius oreades. Our analyses revealed that fine genetic variations between host fungi could strongly affect their associated microbiome, explaining, respectively, 25% and 37% of the variation in microbiome structure and function, whereas geographic distance and soil pH remained of secondary importance. These results, together with the smaller genome size of fungi compared to other eukaryotes, suggest that fruiting‐bodies are suitable for further genome‐centric studies on host–microbiome interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号