首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Environmental and social factors have important effects on aggressive behaviors. We examined the effect of reproductive experience on aggression in a biparental species of mouse, Peromyscus californicus. Estrogens are important in mediating aggressive behavior so we also examined estrogen receptor expression and c-fos for insights into possible mechanisms of regulation. Parental males were significantly more aggressive than virgin males, but no significant differences in estrogen receptor alpha or beta expression were detected. Patterns of c-fos following aggression tests suggested possible parallels with maternal aggression. Parental males had more c-fos positive cells in the medial amygdala, and medial preoptic area relative to virgin males. The medial preoptic area is generally considered to be relatively less important for male-male aggression in rodents, but is known to have increased activity in the context of maternal aggression. We also demonstrated through habituation-dishabituation tests that parental males show exaggerated investigation responses to chemical cues from a male intruder, suggesting that heightened sensory responses may contribute to increased parental aggression. These data suggest that, in biparental species, reproductive experience leads to the onset of paternal aggression that may be analogous to maternal aggression.  相似文献   

2.
We recently developed a conditioned place preference (CPP) procedure, commonly used to study rewarding drug effects, to demonstrate that dominant sexually‐experienced CD‐1 male mice form CPP to contexts previously associated with defeating subordinate male C57BL/6J mice. Here we further characterized conditioned and unconditioned aggression behavior in CD‐1 mice. In Exp. 1 we used CD‐1 mice that displayed a variable spectrum of unconditioned aggressive behavior toward younger subordinate C57BL/6J intruder mice. We then trained the CD‐1 mice in the CPP procedure where one context was intruder‐paired, while a different context was not. We then tested for aggression CPP 1 day after training. In Exp. 2, we tested CD‐1 mice for aggression CPP 1 day and 18 days after training. In Exp. 3–4, we trained the CD‐1 mice to lever‐press for palatable food and tested them for footshock punishment‐induced suppression of food‐reinforced responding. In Exp. 5, we characterized unconditioned aggression in hybrid CD‐1 × C57BL/6J D1‐Cre or D2‐Cre F1 generation crosses. Persistent aggression CPP was observed in CD‐1 mice that either immediately attacked C57BL/6J mice during all screening sessions or mice that gradually developed aggressive behavior during the screening phase. In contrast, CD‐1 mice that did not attack the C57BL/6J mice during screening did not develop CPP to contexts previously paired with C57BL/6J mice. The aggressive phenotype did not predict resistance to punishment‐induced suppression of food‐reinforced responding. CD‐1 × D1‐Cre or D2‐Cre F1 transgenic mice showed strong unconditioned aggression. Our study demonstrates that aggression experience causes persistent CPP and introduces transgenic mice for circuit studies of aggression.  相似文献   

3.
Sex steroid hormones coordinate neurotransmitter systems in the male brain to facilitate sexual behavior. Although neurotransmitter release in the male brain has been well documented, little is known about how androgens orchestrate changes in gene expression of neurotransmitter receptors. We used male whiptail lizards (Cnemidophorus inornatus) to investigate how androgens alter neurotransmitter‐related gene expression in brain regions involved in social decision making. We focused on three neurotransmitter systems involved in male‐typical sexual behavior, including the N‐methyl‐d ‐aspartate (NMDA) glutamate receptor, nitric oxide and dopamine receptors. Here, we show that in androgen‐treated males, there are coordinated changes in neurotransmitter‐related gene expression. In androgen‐implanted castrates compared with blank‐implanted castrates (control group), we found associated increases in neuronal nitric oxide synthase gene expression in the nucleus accumbens (NAcc), preoptic area and ventromedial hypothalamus, a decrease of NR1 gene expression (obligate subunit of NMDA receptors) in the medial amygdaloid area and NAcc and a decrease in D1 and D2 dopamine receptor gene expression in the NAcc. Our results support and expand the current model of androgen‐mediated gene expression changes of neurotransmitter‐related systems that facilitate sexual behavior in males. This also suggests that the proposed evolutionarily ancient reward system that reinforces sexual behavior in amniote vertebrates extends to reptiles.  相似文献   

4.
Across taxa, individuals must respond to a dynamic social environment of challenges and opportunities on multiple biological levels, including behavior, hormone profiles, and gene expression. We investigated the response to a complex social environment including both territorial challenges and reproductive opportunities in the African cichlid fish Astatotilapia burtoni (Burton's mouthbrooder), a species well-known for its phenotypic plasticity. Male A. burtoni are either socially dominant or subordinate and can transition between the two phenotypes. We used this transition to simultaneously study changes in aggression, reproductive behavior, testosterone and estradiol levels, gonadal histology, and testes expression of three genes involved in testosterone synthesis. We have found that males immediately become aggressive and increase testosterone levels when they become dominant in this paradigm of challenge and opportunity. Reproductive behavior and estradiol increase slightly later but are also up-regulated within 24h. Increases in steroid hormone levels are accompanied by an increase in expression of steroidogenic acute regulatory protein (StAR), the rate-limiting enzyme during testosterone synthesis, as well as an increase in testis maturation as measured by histological organization. Reproductive behavior was found to correlate with female gravidity, suggesting that males were able to perceive reproductive opportunity. Our study demonstrates the rapid plasticity at multiple levels of biological organization that animals can display in response to changes in their complex social environment.  相似文献   

5.
Different forms of aggression have traditionally been treated separately according to function or context (e.g. aggression towards a conspecific versus a predator). However, recent work on individual consistency in behavior predicts that different forms of aggression may be correlated across contexts, suggesting a lack of independence. For nesting birds, aggression towards both conspecifics and nest predators can affect reproductive success, yet the relationship between these behaviors, especially in females, is not known. Here we examine free-living female dark-eyed juncos (Junco hyemalis) and compare their aggressive responses towards three types of simulated intruders near the nest: a same-sex conspecific, an opposite-sex conspecific, and a nest predator. We also examine differences in the strength of response that might relate to the immediacy of the perceived threat the intruder poses for the female or her offspring. We found greater aggression directed towards a predator than a same-sex intruder, and towards a same-sex than an opposite-sex intruder, consistent with a predator being a more immediate threat than a same-sex intruder, followed by an opposite-sex intruder. We also found positive relationships across individuals between responses to a same-sex intruder and a simulated predator, and between responses to a same-sex and an opposite-sex intruder, indicating that individual females are consistent in their relative level of aggression across contexts. If correlated behaviors are mediated by related mechanisms, then different forms of aggression may be expressions of the same behavioral tendency and constrained from evolving independently.  相似文献   

6.
7.
Understanding the effects of male and female age on reproductive success is vital to explain the evolution of life history traits and sex‐specific aging. A general prediction is that pre‐/postmeiotic aging processes will lead to a decline in the pre‐ and postcopulatory abilities of both males and females. However, in as much the sexes have different strategies to optimize their fitness, the decline of reproductive success late in life can be modulated by social context, such as sex ratio, in a sex‐specific manner. In this study, we used Drosophila melanogaster to investigate whether sex ratio at mating modulates age effects on male and female reproductive success. As expected, male and female age caused a decrease in reproductive success across male‐biased and female‐biased social contexts but, contrary to previous findings, social context did not modulate age‐related fitness decline in either of the two sexes. We discuss these results in the light of how sex ratio might modulate pre‐/postcopulatory abilities and the opportunity for inter‐ and intrasexual competition in D. melanogaster, and generally suggest that social context effects on these processes are likely to be species specific.  相似文献   

8.
9.
Parents influence offspring aggression through genetic and non‐genetic mechanisms, although the latter are less well understood. To examine potential non‐genetic effects of parents on offspring, we cross‐fostered the highly aggressive and biparental California mouse (Peromyscus californicus) and the less aggressive, less parental white‐footed mouse (Peromyscus leucopus). In‐fostered animals within each species were used as controls. We examined associations between the foster parents’ behavior and aggression of the fostered male offspring in resident–intruder (R–I) and neutral arena aggression tests. When both species and fostering groups were combined, R–I aggression of offspring was positively associated with paternal time spent retrieving pups. In contrast, aggression in a neutral arena was negatively associated with a composite score of maternal behavior. We discuss how our findings regarding paternal retrievals may explain previously reported effects of cross‐fostering on male aggression.  相似文献   

10.
Lactating female rodents protect their pups by expressing fierce aggression, termed maternal aggression, toward intruders. Mice lacking the neuronal nitric oxide synthase gene (nNOS-/-) exhibit significantly impaired maternal aggression, but increased male aggression, suggesting that nitric oxide (NO) produced by nNOS has opposite actions in maternal and male aggression. In contrast, mice lacking the endothelial nitric oxide synthase gene (eNOS-/-) exhibit almost no male aggression, suggesting that NO produced by eNOS facilitates male aggression. In the present study, maternal aggression in eNOS-/- mice was examined and found to be normal relative to wild-type (WT) mice in terms of the percentage displaying aggression, the average number of attacks against a male intruder, and the total amount of time spent attacking the male intruder. The eNOS-/- females also displayed normal pup retrieval behavior. Because a significant elevation of citrulline, an indirect marker of NO synthesis, occurs in neurons of the hypothalamus of lactating WT mice in association with maternal aggression, we examined the brains of eNOS-/- females for citrulline immunoreactivity following an aggressive encounter. The aggressive eNOS-/- females exhibited a significant elevation of citrulline in the medial preoptic nucleus and the subparaventricular zone of the hypothalamus relative to unstimulated lactating eNOS-/- females. Taken together, these results suggest that NO produced by eNOS neither facilitates nor inhibits maternal aggression and that NO produced by eNOS has a different role in maternal and male aggression.  相似文献   

11.
Impairments in social behavior characterize many neurodevelopmental psychiatric disorders. In fact, the temporal emergence and trajectory of these deficits can define the disorder, specify their treatment and signal their prognosis. The sophistication of mouse models with neurobiological endophenotypes of many aspects of psychiatric diseases has increased in recent years, with the necessity to evaluate social behavior in these models. We adapted an assay for the multimodal characterization of social behavior at different development time points (juvenile, adolescent and adult) in control mice in different social contexts (specifically, different sex pairings). Although social context did not affect social behavior in juvenile mice, it did have an effect on the quantity and type of social interaction as well as ultrasonic vocalizations in both adolescence and adulthood. We compared social development in control mice to a transgenic mouse model of the increase in postsynaptic striatal D2R activity observed in patients with schizophrenia (D2R‐OE mice). Genotypic differences in social interactions emerged in adolescence and appeared to become more pronounced in adulthood. That vocalizations emitted from dyads with a D2R‐OE subject were negatively correlated with active social behavior while vocalizations from control dyads were positively correlated with both active and passive social behavior also suggest social deficits. These data show that striatal dopamine dysfunction plays an important role in the development of social behavior and mouse models such as the one studied here provide an opportunity for screening potential therapeutics at different developmental time points.  相似文献   

12.
Although 90 % of all bird species are monogamous, many species practice alternative reproductive strategies as extra-pair copulations, intra-specific brood parasitism, and quasi-parasitism. In territorial monogamous species, both partners hold and defend the territory from intruders. Often, the intruders are males and usually the local male banishes the intruders. Indeed, many studies focused on the response of the local male toward intruder males. However, the benefits and costs associated with the responses of the local male toward intruder females have been largely overlooked. Focusing mainly on alternative reproductive strategies, we developed a model to predict the aggression a monogamous male may demonstrate toward an intruder female during the pre-egg laying stage of his local female partner. This model demonstrates that the intensity of aggression that the local male shows toward an intruder female depends on the extra-pair copulations that his local female partner may perform. Further, the aggression also depends upon intra-specific brood parasitism and quasi-parasitism that might be carried out by the intruder female. Our approach suggests that when considering mating strategies, there is a need to assess how these three alternative reproductive strategies may affect the local male's aggression toward intruder females.  相似文献   

13.
Paternal behavior is not innate but arises through social experience. After mating and becoming fathers, male mice change their behavior toward pups from infanticide to paternal care. However, the precise brain areas and circuit mechanisms connecting these social behaviors are largely unknown. Here we demonstrated that the c‐Fos expression pattern in the four nuclei of the preoptic‐bed nuclei of stria terminalis (BST) region could robustly discriminate five kinds of previous social behavior of male mice (parenting, infanticide, mating, inter‐male aggression, solitary control). Specifically, neuronal activation in the central part of the medial preoptic area (cMPOA) and rhomboid nucleus of the BST (BSTrh) retroactively detected paternal and infanticidal motivation with more than 95% accuracy. Moreover, cMPOA lesions switched behavior in fathers from paternal to infanticidal, while BSTrh lesions inhibited infanticide in virgin males. The projections from cMPOA to BSTrh were largely GABAergic. Optogenetic or pharmacogenetic activation of cMPOA attenuated infanticide in virgin males. Taken together, this study identifies the preoptic‐BST nuclei underlying social motivations in male mice and reveals unexpected complexity in the circuit connecting these nuclei.  相似文献   

14.
Conflict is risky, but mechanisms that allow animals to assess dominance status without aggression can reduce such costs. Two different mechanisms of competitor assessment are expected to evolve in different contexts: badges of status are expected in larger, anonymous groups, whereas individual recognition is feasible in small, stable groups. However, both mechanisms may be important when social interactions occur both within and across stable social groups. We manipulated plumage in golden‐crowned sparrows (Zonotrichia atricapilla) and found that two known badges of status – gold and black head plumage patch sizes – independently affect dominance among strangers but manipulations had no effect on dominance among familiar flockmates. Moreover, familiar flockmates showed less aggression and increased foraging relative to strangers. Our study provides clear experimental evidence that social recognition affects badge function, and suggests that variation in social contexts maintains coexistence and context‐dependent use of these two dominance resolution mechanisms.  相似文献   

15.
The neural mechanisms by which steroid hormones regulate aggression are unclear. Although testosterone and its metabolites are involved in both the regulation of aggression and the maintenance of neural morphology, it is unknown whether these changes are functionally related. We addressed the hypothesis that parallel changes in steroid levels and brain volumes are involved in the regulation of adult aggression. We examined the relationships between seasonal hormone changes, aggressive behavior, and the volumes of limbic brain regions in free-living male and female tree lizards (Urosaurus ornatus). The brain nuclei that we examined included the lateral septum (LS), preoptic area (POA), amygdala (AMY), and ventromedial hypothalamus (VMH). We showed that the volumes of the POA and AMY in males and the POA in females vary with season. However, reproductive state (and thus hormonal state) was incompletely predictive of these seasonal changes in males and completely unrelated to changes in females. We also detected male-biased dimorphisms in volume of the POA, AMY, and a dorsolateral subnucleus of the VMH but did not detect a dimorphism between alternate male morphological phenotypes. Finally, we showed that circulating testosterone levels were higher in males exhibiting higher frequency and intensity of aggressive display to a conspecific, though brain nucleus volumes were unrelated to behavior. Our findings fail to support our hypothesis and suggest instead that plasma testosterone level covaries with aggression level and in a limited capacity with brain nucleus volumes but that these are largely unrelated relationships.  相似文献   

16.
Several social and reproductive behaviors are under the influence of the vomeronasal (VN) organ; VN neurons detect odorous molecules emitted by individuals of the same species. There are two types of VN neurons, and these differ in their expression of chemosensory receptors and G protein subunits. The significance of this dichotomy is largely unknown. VN neurons express high levels of either G alpha i2 or G alpha o. A mouse line carrying a targeted disruption of the G alpha i2 gene offered the opportunity for studying the effects of a lack of receptor signaling through the heterotrimeric Gi2 protein in one VN cell type. As a consequence of this deficiency, the number of VN neurons that normally express G alpha i2 is decreased by half. These residual neurons are defective in eliciting a response in their target neurons in the accessory olfactory bulb. Moreover, G alpha i2 mutant mice show alterations in behaviors for which an intact VN organ is known to be important. Display of maternal aggressive behavior is severely blunted, and male mice show significantly less aggression toward an intruder. However, male mice show unaltered sexual-partner preference. This suggests that the two types of VN neurons may have separate functions in mediating behavioral changes in response to chemosensory information.  相似文献   

17.
Competitive interactions can have striking and enduring effects on behavior, but the mechanisms underlying this experience-induced plasticity are unclear, particularly in females. Naked mole-rat (NMR) colonies are characterized by the strictest social and reproductive hierarchy among mammals, and represent an ideal system for studies of social competition. In large matriarchal colonies, breeding is monopolized by one female and 1–3 males, with other colony members being socially subordinate and reproductively suppressed. To date, competition for breeding status has been examined in-colony, with female, but not male, aggression observed following the death/removal of established queens. To determine whether this sex difference extends to colony-founding contexts, and clarify neural and endocrine mechanisms underlying behavioral change in females competing for status, we examined neurogenesis and steroid hormone concentrations in colony-housed subordinates, and NMRs given the opportunity to transition status via pair-housing. To this end, Ki-67 and doublecortin immunoreactivity were compared in the hippocampal dentate gyrus (DG) and basolateral amygdala (BLA) of colony-housed subordinates, and subordinates housed with a same-sex (SS) or opposite-sex (OS) conspecific. Results suggest that OS pairing in eusocial mammals promotes cooperation and enhances hippocampal plasticity, while SS pairing is stressful, resulting in enhanced HPA activation and muted hippocampal neurogenesis relative to OS pairs. Data further indicate that competition for status is confined to females, with female-female housing exerting contrasting effects on hippocampal and amygdalar neurogenesis. These findings advance understanding of social stress effects on neuroplasticity and behavior, and highlight the importance of including female-dominated species in research on aggression and intrasexual competition.  相似文献   

18.
19.
Social competence - the ability of animals to dynamically adjust their social behavior dependent on the current social context – is fundamental to the successful establishment and maintenance of social relationships in group-living species. The social opportunity paradigm, where animals rapidly ascend a social hierarchy following the removal of more dominant individuals, is a well-established approach for studying the neural and neuroendocrine mechanisms underlying socially competent behavior. In the current study, we demonstrate that this paradigm can be successfully adapted for studying socially competent behavior in laboratory mice. Replicating our previous reports, we show that male laboratory mice housed in a semi-natural environment form stable linear social hierarchies. Novel to the current study, we find that subdominant male mice immediately respond to the removal of the alpha male from a hierarchy by initiating a dramatic increase in aggressive behavior towards more subordinate individuals. Consequently, subdominants assume the role of the alpha male. Analysis of brain gene expression in individuals 1 h following social ascent indicates elevated gonadotropin-releasing hormone (GnRH) mRNA levels in the medial preoptic area (mPOA) of the hypothalamus compared to individuals that do not experience a social opportunity. Moreover, hormonal analyses indicate that subdominant individuals have increased circulating plasma testosterone levels compared to subordinate individuals. Our findings demonstrate that male mice are able to dynamically and rapidly adjust both behavior and neuroendocrine function in response to changes in social context. Further, we establish the social opportunity paradigm as an ethologically relevant approach for studying social competence and behavioral plasticity in mammals.  相似文献   

20.
The genome of the white‐throated sparrow (Zonotrichia albicollis) contains an inversion polymorphism on chromosome 2 that is linked to predictable variation in a suite of phenotypic traits including plumage color, aggression and parental behavior. Differences in gene expression between the two color morphs, which represent the two common inversion genotypes (ZAL2/ZAL2 and ZAL2/ZAL2m), may therefore advance our understanding of the molecular underpinnings of these phenotypes. To identify genes that are differentially expressed between the two morphs and correlated with behavior, we quantified gene expression and terrirorial aggression, including song, in a population of free‐living white‐throated sparrows. We analyzed gene expression in two brain regions, the medial amygdala (MeA) and hypothalamus. Both regions are part of a ‘social behavior network’, which is rich in steroid hormone receptors and previously linked with territorial behavior. Using weighted gene co‐expression network analyses, we identified modules of genes that were correlated with both morph and singing behavior. The majority of these genes were located within the inversion, showing the profound effect of the inversion on the expression of genes captured by the rearrangement. These modules were enriched with genes related to retinoic acid signaling and basic cellular functioning. In the MeA, the most prominent pathways were those related to steroid hormone receptor activity. Within these pathways, the only gene encoding such a receptor was ESR1 (estrogen receptor 1), a gene previously shown to predict song rate in this species. The set of candidate genes we identified may mediate the effects of a chromosomal inversion on territorial behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号