首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Bile acids are considered as extremely toxic at the high concentrations reached during bile duct obstruction, but each acid displays variable cytotoxic properties. This study investigates how biliary obstruction and restoration of bile flow interferes with urinary and circulating levels of 17 common bile acids. Bile acids (conjugated and unconjugated) were quantified by liquid chromatography coupled with tandem mass spectrometry in serum and urine samples from 17 patients (8 men and 9 women) with biliary obstruction, before and after biliary stenting. Results were compared with serum concentrations measured in 40 age- and sex-paired control donors (20 men and 20 women). The total circulating bile acid concentration increases from 2.7 μM in control donors to 156.9 μM in untreated patients with biliary stenosis. Serum taurocholic and glycocholic acids exhibit 304- and 241-fold accumulations in patients with biliary obstruction compared to controls. The enrichment in chenodeoxycholic acid species reached a maximum of only 39-fold, while all secondary and 6α-hydroxylated species--except taurolithocholic acids--were either unchanged or significantly reduced. Stenting was efficient in restoring an almost normal circulating profile and in reducing urinary bile acids. Conclusion: These results demonstrate that biliary obstruction affects differentially the circulating and/or urinary levels of the various bile acids. The observation that the most drastically affected acids correspond to the less toxic species supports the activation of self-protecting mechanisms aimed at limiting the inherent toxicity of bile acids in face of biliary obstruction.  相似文献   

2.
A reversed phase high pressure liquid chromatography (HPLC) system capable of simultaneously separating four lithocholyl species (sulfated and unsulfated forms of lithocholylglycine and lithocholyltaurine) as well as the eight other major conjugated bile acids present in human bile is described. The system uses a C18 octadecylsilane column and isocratic elution with methanol phosphate buffer, pH 5.35. Relative bile acid concentration is determined by absorbance at 200 nm. Retention times relative to chenodeoxycholylglycine are reported for the four lithocholic acid forms, the glycine and taurine amidate of the four major bile acids present in human bile (cholic, chenodeoxycholic, ursodeoxycholic, and deoxycholic), and for their corresponding unconjugated forms. Retention times are also reported for the glycine and taurine amidates as well as the unconjugated form of the C23 norderivatives of these bile acids. Maximal absorbance of bile acid amidates is at 200 nm and is very similar for the (unsulfated) glycine and taurine amidates. Sulfated lithocholyl amidates exhibit molar absorptivities at 200 nm which are 1.4 times greater than that of non-sulfated lithocholyl amidates. Unconjugated bile acid absorbance at 200 nm or 210 nm is 20 to 30 times less than that of corresponding peptide conjugates. The method has been applied to samples of gallbladder bile obtained from 14 healthy subjects to define the pattern of conjugated bile acids present in human bile.  相似文献   

3.
Bile acid structure and bile formation in the guinea pig   总被引:2,自引:0,他引:2  
The effects of intravenous infusions (1-4 mumol/min/kg) of 14 bile acids, cholic, deoxycholic, ursodeoxycholic, chenodeoxycholic, dehydrocholic, and their glycine and taurine conjugates, on bile flow and composition and on the biliary permeation of inert carbohydrates have been studied in the guinea pig bile fistula. Hydroxy bile acids were eliminated in bile without major transformation, except for conjugation (over 90%) when unconjugated bile acids were infused. During infusion of dehydrocholate and taurodehydrocholate, 77-100% of the administered dose was recovered in bile as 3-hydroxy bile acids, thus indicating that reduction of the keto group in position 3 was virtually complete. All bile acids produced choleresis at the doses employed: the strongest choleretic was deoxycholate (81.78 microliters/mumol), the weakest was taurodehydrocholate (10.2 microliters/mumol). Choleretic activity was directly and linearly related to bile acid hydrophobicity, as inferred by HPLC, both for similarly conjugated bile acids, and for bile acids having the same number, position, or configuration of the hydroxyl groups. In all instances, the rank ordering was: deoxycholate greater than chenodeoxycholate greater than cholate greater than ursodeoxycholate. During choleresis produced by any of the bile acids tested, bicarbonate concentration in bile slightly declined, but the calculated concentration in bile-acid-stimulated bile (45-57 mmol/l) was always higher than that measured in plasma (23-26 mmol/l). Biliary concentrations of cholesterol (20-68 mumol/l) and phospholipid (14-63 mumol/l) were very low during spontaneous secretion, and declined even further following bile acid choleresis. None of the infused bile acids consistently modified biliary excretion of cholesterol and phospholipid. Consistent with a previous observation from this laboratory, all hydroxy bile acids reversibly diminished [14C]erythritol and [14C]mannitol biliary entry during choleresis, while they increased or failed to modify that of [3H]sucrose and [3H]inulin. The rank ordering for the inhibitory effect on [14C]erythritol and [14C]mannitol permeation was: 3 alpha,7 alpha,12 alpha-trihydroxy greater than 3 alpha,7 alpha-dihydroxy greater than 3 alpha,7 beta-dihydroxy greater than 3 alpha,12 alpha-dihydroxy bile acids.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Identification of unconjugated bile acids in human bile   总被引:1,自引:0,他引:1  
Unconjugated bile acids in the bile of healthy and diseased humans were determined qualitatively and quantitatively by means of gas-liquid chromatography and gas-liquid chromatography-mass spectrometry, after their isolation by ion-exchange chromatography. In a healthy person and three patients with cholelithiasis, unconjugated bile acids comprised 0.1-0.4% of total biliary bile acids. The bile acid composition of the unconjugated fraction was quite different from that of the glycine- or taurine-conjugate fraction, in that it contained a relatively large proportion of unusual bile acids including C23 and C27 bile acids. In two patients with cerebrotendinous xanthomatosis, C22 and C23 bile acids were the major constituents of the biliary unconjugated bile acids, and comprised about 0.8% of total bile acids; no detectable amounts of C27 bile acids were found in their bile. The analysis of biliary unconjugated bile acids may be useful for the diagnosis of metabolic diseases concerning bile acids, particularly the accumulation or disappearance of unusual bile acids.  相似文献   

5.
Y Siow  A Schurr  G C Vitale 《Life sciences》1991,49(18):1301-1308
The distribution of glycine and taurine conjugated bile acids in bile from streptozotocin-induced diabetic rats were determined by high performance liquid chromatography (HPLC). Biliary bile acid output in diabetic rats was significantly greater compared to control (p less than 0.001). The increase is not a generalized effect of diabetes, but is the preferential increased production of taurochenodeoxycholic acid. These observed changes in bile acid composition may represent greater capacity of bile from diabetic rats to solubilize cholesterol. In the absence of a gallbladder, however, rat bile undergo continuous enterohepatic circulation, and consequently is not subjected to modifications by gallbladder epithelial cells that would potentiate cholesterol precipitation.  相似文献   

6.
In this study, we compared in vitro calcium binding by the taurine and glycine conjugates of the major bile acids in human bile: cholic (CA), chenodeoxycholic (CDCA) and deoxycholic (DCA) acids, together with the cholelitholytic bile acids ursodeoxycholic (UDCA) and ursocholic (UCA) acids. At physiological total calcium (CaTOT) (1-15 mM) and bile acid (BA) (10-50 mM) concentrations, all the bile acids caused concentration-dependent falls in [Ca2+], suggesting calcium binding. Except for glycine-conjugated CDCA, all the other calcium-bile acid complexes were soluble in 150 mM NaCl. The calcium binding affinities followed the pattern: dihydroxy (CDCA, UDCA and DCA) greater than trihydroxy (CA and UCA) bile acids, and glycine conjugates greater than taurine conjugates. The glycine conjugate of UDCA, which increases during UDCA treatment, had the highest calcium binding affinity. Ten-20 mM phospholipid modestly increased calcium binding by CA conjugates, but not by CDCA, UDCA, and DCA conjugates. Phospholipid also prevented the precipitation of glyco-CDCA in the presence of calcium. Bile acid-calcium biding was pH-independent over the range 6.5-8.5. The different calcium binding affinities of the major biliary bile acids may partly explain their varying effects on biliary calcium secretion. The results also suggest that neither precipitation of calcium-bile acid complexes nor impaired calcium binding by bile acids is important in the pathogenesis of human calcium gallstone formation.  相似文献   

7.
The effects of 10 differently structured bile acids on bile flow and composition were studied in anesthetized, bile duct-cannulated guinea pigs. At the infusion rates of 2 and 4 mumole/min/kg, all bile acids produced choleresis. The most potent was chenodeoxycholate, which increased bile flow by an average of 31.25 microliters/mumole of bile acids excreted in bile. The weakest choleretic was tauroursodeoxycholate (11.02 mu/mumole). When the choleretic activity was plotted against bile acid hydrophobicity (high-performance liquid chromatography retention factor, obtained from the literature), linearity was observed with similarly conjugated bile acids. The order of potency was deoxycholate greater than chenodeoxycholate greater than cholate greater than ursodeoxycholate, both for the glycine and taurine conjugates, and for the unconjugated bile acids as well. Conjugation was also important, and the rank ordering for the choleretic activity (unconjugated bile acids greater than glycine-conjugates greater than taurine-conjugates) was the same as that for the hydrophobicity. When the choleretic activity was plotted against bile acid micellar aggregation number (in 0.15 M NaCl at 36 degrees C, obtained from the literature), a linear, direct relationship was observed. All bile acids produced similar effects on bile electrolyte concentrations: both bicarbonate and chloride slightly declined during choleresis, whereas bile acid concentrations increased. These studies suggest that, in the guinea pig the differing choleretic activities of differently structured bile acids are not due to their forming micelles in bile of different sizes; either the more hydrophobic bile acids form vesicles, whereas the more hydrophilic form micelles; or bile acids produce choleresis, in part or exclusively, by stimulating an additional secretory mechanism, possibly an inorganic ion pump; or both.  相似文献   

8.
The conjugate pattern of biliary [14C]bile acids was investigated in isolated perfused rat livers, which were infused with either [24-14C]cholic acid or [24-14C]chenodeoxycholic acid (40 mumol/h) together with or without taurine or cysteine (80 mumol/h). [14C]Bile acids were chromatographed on a thin-layer plate and the distribution of radioactivity on the plate was measured by radioscanning. The biliary excretion of [14C]bile acids was greater in the infusion with [14C]cholic acid than in the infusion with [14C]chenodeoxycholic acid. Biliary unconjugated [14C]bile acids amounted to about 50% of the total after the infusion with [14C]cholic acid, while only about 10% with [14C]chenodeoxycholic acid. In the initial period of infusion, biliary conjugated [14C]bile acids consisted mostly of the taurine conjugate, which decreased with time and the glycine conjugate increased complementarily. When taurine was simultaneously infused, the decrease in the taurine conjugate was suppressed to some extent. Cysteine infused in place of taurine had a similar influence but was less effective than taurine. The taurine content of liver after the infusion with either of the [14C]bile acids decreased greatly compared with that before the infusion, even when taurine or cysteine was infused simultaneously. The glycine content also decreased after the infusion, but the decrease in glycine was smaller than that in taurine. The results suggest that the conjugate pattern of biliary bile acids in rats depends mainly on the amount of taurine which is supplied to hepatic cells either exogenously from plasma or endogenously within themselves.  相似文献   

9.
Although it has been assumed that the secondary bile acid deoxycholic acid is not rehydroxylated by the human liver, little direct evidence is available to support this assumption. To investigate the metabolism of deoxycholic acid in man, deoxycholic acid-(14)C was given intravenously to two patients with complete external bile fistulas. After hydrolysis of the bile salts and chromatographic separation of bile acids, more than 94% of the radioactivity was found in deoxycholic acid and the remainder was scattered in several small unidentified peaks, none of which was cholic acid. Approximately 85% of deoxycholate was excreted as glycine conjugates and 13% as taurine conjugates in this experiment. No detectable sulfate esters were found. These results indicate that the metabolism of deoxycholic acid in man involves only the reconjugation with glycine and taurine without rehydroxylation to cholic acid or sulfation.  相似文献   

10.
Human bile contains a considerable amount of endogenous beta-glucuronidase. The effects of pH and bile acids on its activity have been studied in regard to its role in the pathogenesis of cholelithiasis. beta-Glucuronidase, purified from human liver to homogeneity, was structurally stable between pH 4 and 10, but was active only over a much narrower range of pH, with a pH optimum of 5.2. The inactivation below pH 4 was due to its irreversible denaturation, whereas the inactivation at higher pH was due to a true reversible pH effect on the enzyme velocity. Kinetic studies revealed that hydrogen ion acted as a substrate-directed activator of the free enzyme, but not the enzyme-substrate complex, with a molecular dissociation constant of 4 X 10(-6). The enzyme activity was not affected by unconjugated bile acids, primarily due to their extremely low water solubility. Conjugated bile acids, on the other hand, exerted heterogeneous and pH-dependent effects on the enzyme. At pH 5.2, taurocholic acid and glycocholic acid were substrate-directed activators of the enzyme; taurochenodeoxycholic acid and taurodeoxycholic acid, competitive inhibitors; and glycochenodeoxycholic acid and glycodeoxycholic acid, mixed inhibitors. At pH 7.0 all taurine and glycine conjugates behaved as substrate-directed activators. Though beta-glucuronidase activity at pH 7 was only 23% of its maximal activity at pH 5.2, conjugated bile acids tended to restore its activity to a certain extent at pH 7. Thus, endogenous beta-glucuronidase could play a significant role in pigment cholelithiasis.  相似文献   

11.
A detailed study of the qualitative and quantitative composition of bile acids in human fetal gallbladder bile is described. Bile was collected during early gestation (weeks 16-19) and analyzed by gas chromatography and mass spectrometry, fast atom bombardment ionization mass spectrometry, and high performance liquid chromatography. Bile acids were separated into different conjugate groups by chromatography on the lipophilic anion exchange gel, diethylaminohydroxypropyl Sephadex LH-20. Quantitatively more than 80% of the bile acids were secreted into bile conjugated to taurine. Unconjugated bile acids and glycine conjugates accounted for 5-10% of the total biliary bile acids. Bile acid sulfates were present only in trace amounts indicating that quantitatively sulfation is not an important pathway in bile acid metabolism during development. Total biliary bile acid concentrations were low (0.1-0.4 mM) when compared to reported values for adult bile (greater than 10 mM). Chenodeoxycholic acid was the major biliary bile acid and exceeded cholic acid concentrations by 1.43-fold indicating either a relative immaturity in 12 alpha-hydroxylase activity during early life or a dominance of alternative pathways for chenodeoxycholic acid synthesis. A relatively large proportion of the biliary bile acids comprised metabolites not found in adult bile. The presence of relatively high proportions of hyocholic acid (often greater than cholic acid) and several 1 beta-hydroxycholanoic acid isomers indicates that C-1 and C-6 hydroxylation are important pathways in bile acid synthesis during development. We describe, for the first time, evidence for the existence of a C-4 hydroxylation pathway in the metabolism of bile acids, which may be unique to early human development. Mass spectrometry was used to confirm the identification of 3 alpha,4 beta,7 alpha-trihydroxy-5 beta-cholanoic and 3 alpha,4 beta-dihydroxy-5 beta-cholanoic acids. Quantitatively, these C-4 hydroxylated bile acids accounted for 5-15% of the total biliary bile acids of the fetus, suggesting that C-4 hydroxylation is quantitatively an important pathway in the bile acid metabolism during early life.  相似文献   

12.
A method is described for the gas-liquid chromatographic (GLC) analysis of intact glycine conjugates of the major bile acids present in human plasma. It is, therefore, now possible to analyze glycine-conjugated and unconjugated bile acids together on a single GLC column without the necessity for a hydrolytic step. A large number of derivatives of bile acid glycine conjugates were examined, but only acetate- and silyl ether-derivatives of carboxylic acid methyl esters were found initially to be suitable. It was not possible to make acetates consistently, and trimethylsilyl ethers did not allow resolution of the glycine conjugates of cholic and chenodeoxycholic acids. Dimethylethylsilyl ether methyl ester derivatives were subsequently found to give the best results. Chromatographic conditions for successful analysis of these derivatives were examined and it was found to be necessary to use wall-coated capillary columns of thin film thickness (0.12 micron) and very high carrier gas flow rates (ca. 20 ml/min hydrogen). Using acetonitrile and Bond Elut extraction, fractionation on Sep-Pak SIL cartridges, and derivatization as dimethylethylsilyl ether methyl esters, the capillary gas-liquid chromatography of intact glycine-conjugated bile acids from human plasma was demonstrated for the first time.  相似文献   

13.
Effects of bile acids on actin polymerization in vitro   总被引:1,自引:0,他引:1  
Bile acids are major determinants of canalicular bile secretion, and there are indications that choleretic bile acids increase bile canalicular contractions, in isolated rat hepatocytes. Therefore, we examined the influence of various bile acids on the rate of actin polymerization in vitro. The free forms of cholic acid, ursodeoxycholic acid, and chenodeoxycholic acid, as well as their taurine and glycine conjugates, were incubated with purified muscle actin, at a concentration of 100-300 nmoles/mg actin. The rate of actin polymerization was measured by viscometry and the fluorescence of the pyrene probe, linked to actin. Results showed that all bile acids slow the rate of polymerization, and that the effect was dose-dependent. However, the reduction by chenodeoxycholic acid was greater than that caused by the other bile acids. The results indicate that bile acids, particularly in high concentrations interact with actin, a finding that may be related to the increased bile canalicular contractility, and altered canalicular membrane morphology, induced by choleretic bile acids.  相似文献   

14.
The effect of daily ingestion for 7 days of ethinyloestradiol (30 micrograms) plus DL-norgestrel [0.5 mg] (Eugynon-30) on the lipid composition of duodenal bile in 8 healthy young women was investigated from the fifth day after onset of menstrual bleeding. This treatment did not significantly affect the concentrations of cholesterol, phospholipid and total bile acids expressed as mmol/l, nor the mean molar percentage of phospholipid. However, the treatment caused a significant increase in the mean molar percentage of cholesterol which was accompanied by a significant decrease in the mean molar percentage of total bile acids. The cholesterol saturation index of the bile of 7 subjects was elevated after treatment while both serum cholesterol and testosterone were significantly reduced. The results show that administration to healthy young women, not previously exposed to oral contraceptives, with a low oestrogen-progestin preparation for only 7 days produces a more lithogenic bile, accompanied by a decrease in serum cholesterol and plasma testosterone concentrations.  相似文献   

15.
Infection of the biliferous system in patients with cholelithiasis was shown to be the most frequent when the levels of cholic acid in bile were low. Physiological concentrations of cholic and deoxycholic acids have antimicrobial activity against organisms not adapted to the presence in bile. Outer drainage of the bile ducts was accompanied by an increase in the levels of cholic acid when at the background of outer decompression bacteria were eliminated from the biliferous system. In vitro studies revealed a synergistic antibacterial effect of cholic and deoxycholic acid combinations with cefazolin.  相似文献   

16.
A simple, sensitive, and specific liquid chromatography-electrospray tandem mass spectrometry (LC-MS/MS) method for the determination of bile acids in human bile has been developed. The bile acids were extracted with a C(18) (octadecyl) reversed-phase column and identified and quantified by simultaneous monitoring of their parent and daughter ions, using the multiple reaction monitoring mode. Identification and quantification of conjugated bile acids in bile was achieved in 5 min. The detection limit was 1 ng, and the determination was linear for concentrations up to 100 ng. The percent recovery of standards made of single conjugated (glycine and taurine) bile acid or of mixture of glycine- or taurine-conjugated cholic acid, chenodeoxycholic acid, deoxycholic acid, ursodeoxycholic acid, and lithocholic acid averaged 71.73% to 95.92%. The percent recovery of the same standard bile acids was also determined by gas chromatography-mass spectrometry (GC-MS), using the selected ion monitoring mode, and averaged 66% to 96%. A biliary bile acid profile of human gallbladder bile was obtained by LC-MS/MS and GC-MS.The results showed a good correlation between the two techniques and no significant differences between the two methods were observed. The LC-MS/MS method was also used for the analysis of serum, urine, and fecal bile acids. In conclusion, LC-MS/MS is a simple, sensitive, and rapid technique for the analysis of conjugated bile acids in bile and other biological samples. - Perwaiz, S., B. Tuchweber, D. Mignault, T. Gilat, and I. M. Yousef. Determination of bile acids in biological fluids by liquid chromatography-electrospray tandem mass spectrometry. J. Lipid Res. 2001. 42: 114;-119.  相似文献   

17.
It is postulated that the six conjugated bile acids of most common occurrence in human bile could be analyzed by three enzymic and one chemical assay without any prior chromatographic separation of the bile acids. In health, all bile acids in liver or gall bladder bile are conjugated with either glycine or taurine and have an a-hydroxyl group at the 3 position. In addition, the trihydroxy bile acid, cholic (C) has a 7α- and a 12α-hydroxy group while the dihydroxy bile acids either have a second hydroxyl group at the 7α-position (chenodeoxycholic acid, CDC) or at the 12α-position (deoxycholic acid, DC). Hydroxysteroid dehydrogenases (HSDH) specific for oxido-reductase activity at the 3α-, 7α- and 12α-positions would directly quantify these 3α-, 7α- and 12α-hydroxyl groups in a sample of bile or bile extract. Subsequent data would be used to solve three simultaneous equations yielding solutions for the overall concentrations of conjugated C, conjugated CDC and conjugated DC on the assumption that the overall concentration of lithocholic acid is negligible (< 2 %). A suitable assay for the sulphonate group containing taurine conjugates, such as that described by Christie, Macdonald & Williams, 1975, along with the total bile acid measurement would readily facilitate the estimation of the glycine/taurine (GT) ratio. This ratio applied to the enzymatically derived estimates for conjugated DC, CDC and C would approximate the glycodeoxycholate (GDC), glycochenodeoxycholate (GCDC), glycocholate (GC), taurodeoxycholate (TDC), taurochenodeoxycholate (TCDC) and taurocholate (TC) concentrations. Figures for these concentrations would be based on the assumption that the GT ratio is approximately the same for each bile acid and that all the bile acids are conjugated.  相似文献   

18.
Separation and quantitation of glycine and taurine conjugates of commonly occurring bile acids in bile, i.e. lithocholic, deoxycholic, chenodeoxycholic, ursodeoxycholic and cholic acids in their naturally occurring states have been successfully accomplished using high-performance liquid chromatography. No preliminary purification of bile acids is required except ethanol extraction of bile. A μ Bondapak C18 column and acetonitrile—methanol—phosphate buffer and ultraviolet detector at 200 nm were used. Detection limit was 0.05 μg and linearity was observed in the range up to 16 μg. Bile acid composition of ten randomly chosen normal human gallbladder bile samples is given. A large difference in bile acid composition between glycine and taurine conjugates was found to be present.  相似文献   

19.
Studies were made of a) the relationship of bile acid structure and analytical recoveries (measured by 3-hydroxysteroid oxidoreductase) following vigorous alkaline hydrolysis of bile acid conjugates and b) the relationship of structure and hydrolysis time of taurine- and glycine bile acid conjugates in a reaction catalyzed by glycocholic acid hydrolase. Alkaline hydrolysis resulted in good recoveries of hydroxy and 7 and 12- oxo-bile acids but poor recoveries of 3-oxo-bile acids. Borohydride reduction of the 3-oxo-acids prevented these losses. Complete enzymatic hydrolysis of glycine conjugated bile acids was about five times more rapid than that of taurine conjugates. Hydrolysis of conjugates containing oxo groups was slow. Borohydride reduction of oxoacids corrected this and did not inhibit enzymatic hydrolysis. It was concluded that both vigorous alkaline and enzymatic hydrolysis are satisfactory in bile acid assays if borohydride reduction is instituted before the hydrolytic step. However, due to the presence of possible enzyme inhibitors and solubility difficulties, strong alkaline hydrolysis is preferable to enzymatic hydrolysis in fecal bile acid determinations at this time.  相似文献   

20.
The mutagenicity of bile acids using a fluctuation test   总被引:1,自引:0,他引:1  
The mutagenicity of bile acids was detected by a fluctuation test using Salmonella typhimurium TA100 and TA98 as tester strains. Cholic acid, chenodeoxycholic acid, deoxycholic acid and ursodeoxycholic acid were mutagenic in this test while lithocholic acid was not. The mutagenicity of the bile acids on a molar basis was roughly one-fourth that of methyl methanesulfonate, a moderately potent mutagen. Epidemiological studies have shown a high correlation between levels of bile acids excreted and colon cancer. However, no evidence has previously been reported showing that bile acids are mutagenic. Our results suggest that bile acids may be important in the etiology of colon cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号