首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the aftermath of the end‐Permian mass extinction, Early Triassic sediments record some of the largest Phanerozoic carbon isotopic excursions. Among them, a global Smithian‐negative carbonate carbon isotope excursion has been identified, followed by an abrupt increase across the Smithian–Spathian boundary (SSB; ~250.8 Myr ago). This chemostratigraphic evolution is associated with palaeontological evidence that indicate a major collapse of terrestrial and marine ecosystems during the Late Smithian. It is commonly assumed that Smithian and Spathian isotopic variations are intimately linked to major perturbations in the exogenic carbon reservoir. We present paired carbon isotopes measurements from the Thaynes Group (Utah, USA) to evaluate the extent to which the Early Triassic isotopic perturbations reflect changes in the exogenic carbon cycle. The δ13Ccarb variations obtained here reproduce the known Smithian δ13Ccarb‐negative excursion. However, the δ13C signal of the bulk organic matter is invariant across the SSB and variations in the δ34S signal of sedimentary sulphides are interpreted here to reflect the intensity of sediment remobilization. We argue that Middle to Late Smithian δ13Ccarb signal in the shallow marine environments of the Thaynes Group does not reflect secular evolution of the exogenic carbon cycle but rather physicochemical conditions at the sediment–water interface leading to authigenic carbonate formation during early diagenetic processes.  相似文献   

2.
The largest recorded carbon isotopic excursion in Earth history is observed globally in carbonate rocks of middle Ediacaran age. Known from the Sultanate of Oman as the ‘Shuram excursion’, this event records a dramatic, systematic shift in δ13Ccarbonate values to ca. ?12‰. Attempts to explain the nature, magnitude and origin of this excursion include (i) a primary signal resulting from the protracted oxidation of a large dissolved organic carbon reservoir in seawater, release of methane from sediment‐hosted clathrates, or water column stratification; and (ii) a secondary signal from diagenetic processes. The compositions and isotope ratios of organic carbon phases during the excursion are critical to evaluating these ideas; however, previous work has focused on localities that are low in organic carbon, hindering straightforward interpretation of the observed time‐series trends. We report carbon isotope data from bulk organic carbon, extracted bitumen and kerogen, in addition to lipid biomarker data, from a subsurface well drilled on the eastern flank of the South Oman Salt Basin, Sultanate of Oman. This section captures Nafun Group strata through the Ediacaran–Cambrian boundary in the Ara Group and includes an organic‐rich, deeper‐water facies of the Shuram Formation. Despite the high organic matter contents, the carbon isotopic compositions of carbonates – which record a negative δ13C isotope excursion similar in shape and magnitude to sections elsewhere in Oman – do not covary with those of organic phases (bulk TOC, bitumen and kerogen). Paired inorganic and organic δ13C data only display coupled behaviour during the latter part of the excursion's recovery. Furthermore, lipid biomarker data reveal that organic matter composition and source inputs varied stratigraphically, reflecting biological community shifts in non‐migrated, syngenetic organic matter deposited during this interval.  相似文献   

3.
Records of the Ediacaran carbon cycle (635–541 million years ago) include the Shuram excursion (SE), the largest negative carbonate carbon isotope excursion in Earth history (down to ?12‰). The nature of this excursion remains enigmatic given the difficulties of interpreting a perceived extreme global decrease in the δ13C of seawater dissolved inorganic carbon. Here, we present carbonate and organic carbon isotope (δ13Ccarb and δ13Corg) records from the Ediacaran Doushantuo Formation along a proximal‐to‐distal transect across the Yangtze Platform of South China as a test of the spatial variation of the SE. Contrary to expectations, our results show that the magnitude and morphology of this excursion and its relationship with coexisting δ13Corg are highly heterogeneous across the platform. Integrated geochemical, mineralogical, petrographic, and stratigraphic evidence indicates that the SE is a primary marine signature. Data compilations demonstrate that the SE was also accompanied globally by parallel negative shifts of δ34S of carbonate‐associated sulfate (CAS) and increased 87Sr/86Sr ratio and coastal CAS concentration, suggesting elevated continental weathering and coastal marine sulfate concentration during the SE. In light of these observations, we propose a heterogeneous oxidation model to explain the high spatial heterogeneity of the SE and coexisting δ13Corg records of the Doushantuo, with likely relevance to the SE in other regions. In this model, we infer continued marine redox stratification through the SE but with increased availability of oxidants (e.g., O2 and sulfate) limited to marginal near‐surface marine environments. Oxidation of limited spatiotemporal extent provides a mechanism to drive heterogeneous oxidation of subsurface reduced carbon mostly in shelf areas. Regardless of the mechanism driving the SE, future models must consider the evidence for spatial heterogeneity in δ13C presented in this study.  相似文献   

4.
The Neoproterozoic carbonate record contains multiple carbon isotope anomalies, which are the subject of intense debate. The largest of these anomalies, the Shuram excursion (SE), occurred in the mid-Ediacaran (~574–567 Ma). Accurately reconstructing marine redox landscape is a clear path toward making sense of the mechanism that drives this δ13C anomaly. Here, we report new uranium isotopic data from the shallow-marine carbonates of the Wonoka Formation, Flinders Ranges, South Australia, where the SE is well preserved. Our data indicate that the δ238U trend during the SE is highly reproducible across globally disparate sections from different depositional settings. Previously, it was proposed that the positive shift of δ238U values during the SE suggests an extensive, near-modern level of marine oxygenation. However, recent publications suggest that the fractionation of uranium isotopes in ferruginous and anoxic conditions is comparable, opening up the possibility of non-unique interpretations of the carbonate uranium isotopic record. Here, we build on this idea by investigating the SE in conjunction with additional geochemical proxies. Using a revised uranium isotope mass balance model and an inverse stochastic carbon cycle model, we reevaluate models for δ13C and δ238U trends during the SE. We suggest that global seawater δ238U values during the SE could be explained by an expansion of ferruginous conditions and do not require a near-modern level of oxygenation during the mid-Ediacaran.  相似文献   

5.
Photosynthetic activity in carbonate‐rich benthic microbial mats located in saline, alkaline lakes on the Cariboo Plateau, B.C. resulted in pCO2 below equilibrium and δ13CDIC values up to +6.0‰ above predicted carbon dioxide (CO2) equilibrium values, representing a biosignature of photosynthesis. Mat‐associated δ13Ccarb values ranged from ~4 to 8‰ within any individual lake, with observations of both enrichments (up to 3.8‰) and depletions (up to 11.6‰) relative to the concurrent dissolved inorganic carbon (DIC). Seasonal and annual variations in δ13C values reflected the balance between photosynthetic 13C‐enrichment and heterotrophic inputs of 13C‐depleted DIC. Mat microelectrode profiles identified oxic zones where δ13Ccarb was within 0.2‰ of surface DIC overlying anoxic zones associated with sulphate reduction where δ13Ccarb was depleted by up to 5‰ relative to surface DIC reflecting inputs of 13C‐depleted DIC. δ13C values of sulphate reducing bacteria biomarker phospholipid fatty acids (PLFA) were depleted relative to the bulk organic matter by ~4‰, consistent with heterotrophic synthesis, while the majority of PLFA had larger offsets consistent with autotrophy. Mean δ13Corg values ranged from ?18.7 ± 0.1 to ?25.3 ± 1.0‰ with mean Δ13Cinorg‐org values ranging from 21.1 to 24.2‰, consistent with non‐CO2‐limited photosynthesis, suggesting that Precambrian δ13Corg values of ~?26‰ do not necessitate higher atmospheric CO2 concentrations. Rather, it is likely that the high DIC and carbonate content of these systems provide a non‐limiting carbon source allowing for expression of large photosynthetic offsets, in contrast to the smaller offsets observed in saline, organic‐rich and hot spring microbial mats.  相似文献   

6.
The Devonian–Carboniferous (D–C) transition coincides with the Hangenberg Crisis, carbon isotope anomalies, and the enhanced preservation of organic matter associated with marine redox fluctuations. The proposed driving factors for the biotic extinction include variations in the eustatic sea level, paleoclimate fluctuation, climatic conditions, redox conditions, and the configuration of ocean basins. To investigate this phenomenon and obtain information on the paleo-ocean environment of different depositional facies, we studied a shallow-water carbonate section developed in the periplatform slope facies on the southern margin of South China, which includes a well-preserved succession spanning the D–C boundary. The integrated chemostratigraphic trends reveal distinct excursions in the isotopic compositions of bulk nitrogen, carbonate carbon, organic carbon, and total sulfur. A distinct negative δ15N excursion (~−3.1‰) is recorded throughout the Middle Si. praesulcata Zone and the Upper Si. praesulcata Zone, when the Hangenberg mass extinction occurred. We attribute the nitrogen cycle anomaly to enhanced microbial nitrogen fixation, which was likely a consequence of intensified seawater anoxia associated with increased denitrification, as well as upwelling of anoxic ammonium-bearing waters. Negative excursions in the δ13Ccarb and δ13Corg values were identified in the Middle Si. praesulcata Zone and likely resulted from intense deep ocean upwelling that amplified nutrient fluxes and delivered 13C-depleted anoxic water masses. Decreased δ34S values during the Middle Si. praesulcata Zone suggests an increasing contribution of water-column sulfate reduction under euxinic conditions. Contributions of organic matter produced by anaerobic metabolisms to the deposition of shallow carbonate in the Upper Si. praesulcata Zone is recorded by the nadir of δ13Corg values associated with maximal △13C. The integrated δ15N-δ13C-δ34S data suggest that significant ocean-redox variation was recorded in South China during the D–C transition; and that this prominent fluctuation was likely associated with intense upwelling of deep anoxic waters. The temporal synchrony between the development of euxinia/anoxia and the Hangenberg Event indicates that the redox oscillation was a key factor triggering manifestations of the biodiversity crisis.  相似文献   

7.
The Ludfordian (Upper Silurian) succession in Podolia, western Ukraine, represents a Silurian carbonate platform developed in an epicontinental sea on the shelf of the paleocontinent of Baltica. Coeval deposits throughout this basin record a positive stable carbon isotope excursion known as the Lau excursion. The record of this excursion in Podolia exhibits an unusual amplitude from highly positive (+6.9 ‰) to highly negative (?5.0 ‰) δ13Ccarb values. In order to link δ13Ccarb development with facies, five sections in the Zbruch River Valley were examined, providing microfacies characterization and revised definitions of the Isakivtsy, Prygorodok, and Varnytsya Formations. The Isakivtsy Fm. is developed as dolosparite replacing originally bioclastic limestone. The Prygorodok Fm., recording strongly depleted (down to ?10.53 ‰) to near zero (0.12 ‰) δ13Ccarb values is developed as laminated, organic-rich dolomicrite with metabentonite and quartz siltstone beds. The Varnytsya Fm. is characterized by peritidal deposition with consistent, slightly negative δ13Ccarb values (?0.57 to ?3.20 ‰). It is proposed that dolomitization of the Isakivtsy Fm. is associated with a sequence boundary and erosional surface. The overlying Prygorodok Fm. represents the proximal part of a TST deposited in restricted and laterally extremely variable environments dominated by microbial carbonate production. The transition to the overlying Varnytsya Fm. facies is marked by a maximum flooding surface. The SB and MFS are potentially correlative within the basin and support a global rapid sea-level fall previously proposed for this interval. The interpretation of the Prygorodok Fm. as coastal lake deposits may explain the unusual δ13Ccarb values and constitute one of the few records of this type of environment identified in the early Paleozoic.  相似文献   

8.
Holocene stromatolites characterized by unusually positive inorganic δ13CPDB values (i.e. up to +16‰) are present in Lagoa Salgada, a seasonally brackish to hypersaline lagoon near Rio de Janeiro (Brazil). Such positive values cannot be explained by phototrophic fixation of CO2 alone, and they suggest that methanogenesis was a dominating process during the growth of the stromatolites. Indeed, up to 5 mm methane was measured in the porewater. The archaeal membrane lipid archaeol showing δ13C values between ?15 and 0‰ suggests that archaea are present and producing methane in the modern lagoon sediment. Moreover, 13C‐depleted hopanoids diplopterol and 3β‐methylated C32 17β(H),21β(H)hopanoic acid (both ?40‰) are preserved in lagoon sediments and are most likely derived from aerobic methanotrophic bacteria thriving in the methane‐enriched water column. Loss of isotopically light methane through the water column would explain the residual 13C‐enriched pool of dissolved inorganic carbon from where the carbonate constituting the stromatolites precipitated. The predominance of methanogenic archaea in the lagoon is most likely a result of sulphate limitation, suppressing the activity of sulphate‐reducing bacteria under brackish conditions in a seasonally humid tropical environment. Indeed, sulphate‐reduction activity is very low in the modern sediments. In absence of an efficient carbonate‐inducing metabolic process, we propose that stromatolite formation in Lagoa Salgada was abiotically induced, while the 13C‐enriched organic and inorganic carbon pools are due to methanogenesis. Unusually, 13C‐enriched stromatolitic deposits also appear in the geological record of prolonged periods in the Palaeo‐ and Neoproterozoic. Lagoa Salgada represents a possible modern analogue to conditions that may have been widespread in the Proterozoic, at times when low sulphate concentrations in sea water allowed methanogens to prevail over sulphate‐reducing bacteria.  相似文献   

9.
The negative shift in δ13C values of carbonate carbon at the Permian/Triassic boundary is one of the better documented geochemical signatures of a mass extinction event. The similar negative shift in δ13C values in organic carbon from Permian/Triassic boundary marine sediments in Austria and Canada is shown to occur also in marine and non‐marine sediments from Australian sedimentary basins. This negative shift in δ13C values is used to calibrate Australian sections lacking diagnostic faunal elements identifying the Permian/Triassic boundary. The minimum in the carbonate 87Sr/86Sr seawater curve from carbonates across the Guadalupian/Ochoan Stage boundary, mainly from North America, is shown to occur also in brachiopod calcite mainly from the Bowen Basin of eastern Australia, hence providing a second calibration point in the Australian sedimentary record. These two geochemical events support a model of a runaway greenhouse developing about the Permian/Triassic boundary; this is inferred to have contributed to the end‐Permian mass extinction.  相似文献   

10.
Microbial mats that inhabit gypsum deposits in ponds at Guerrero Negro, Baja California Sur, Mexico, developed distinct pigmented horizons that provided an opportunity to examine the fixation and flow of carbon through a trophic structure and, in conjunction with previous phylogenetic analyses, to assess the diagenetic fates of molecular δ13C biosignatures. The δ13C values of individual biomarker lipids, total carbon, and total organic carbon (TOC) were determined for each of the following horizons: tan‐orange (TO) at the surface, green (G), purple (P), and olive‐black (OB) at the bottom. δ13C of individual fatty acids from intact polar lipids (IPFA) in TO were similar to δ13C of dissolved inorganic carbon (DIC) in the overlying water column, indicating limited discrimination by cyanobacteria during CO2 fixation. δ13CTOC of the underlying G was 3‰ greater than that of TO. The most δ13C‐depleted acetogenic lipids in the upper horizons were the cyanobacterial biomarkers C17 n‐alkanes and polyunsaturated fatty acids. Bishomohopanol was 4 to 7‰ enriched, relative to alkanes and intact polar fatty acids (IPFA), respectively. Acyclic C20 isoprenoids were depleted by 14‰ relative to bishomohopanol. Significantly, ?[δ13CTOC ? δ13C∑IPFA] increased from 6.9‰ in TO to 14.7‰ in OB. This major trend might indicate that 13C‐enriched residual organic matter accumulated at depth. The permanently anoxic P horizon was dominated by anoxygenic phototrophs and sulfate‐reducing bacteria. P hosted an active sulfur‐dependent microbial community. IPFA and bishomohopanol were 13C‐depleted relative to upper crust by 7 and 4‰, respectively, and C20 isoprenoids were somewhat 13C‐enriched. Synthesis of alkanes in P was evidenced only by 13C‐depleted n‐octadecane and 8‐methylhexadecane. In OB, the marked increase of total inorganic carbon δ13C (δ13CTIC) of >6‰ perhaps indicated terminal mineralization. This δ13CTIC increase is consistent with degradation of the osmolyte glycine betaine by methylotrophic methanogens and loss of 13C‐depleted methane from the mat.  相似文献   

11.
The Late Cretaceous (Campanian) Tepee Buttes represent a series of conical, fossiliferous limestone deposits embedded in marine shales that deposited in the Western Interior Seaway. The previously suggested origin of the Tepee Buttes at methane-seeps was confirmed by this study. δ13C values as low as ?50‰ of early diagenetic carbonate phases of two Tepee Buttes near Pueblo (Colorado) reveal that methane was the major carbon source. Molecular fossils released from a methane-seep limestone contain abundant 13C-depleted archaeal lipids (PMI, biphytane; δ 13C: ?118 and ?102‰), derived from anaerobic methanotrophs. A suite of 13C-depleted bacterial biomarkers (branched fatty acids; ?73 to ?51‰) reflects the former presence of sulfate-reducing bacteria, corroborating that a syntrophic consortium of archaea and bacteria mediating anaerobic oxidation of methane already existed in Cretaceous times. Molecular fossils also suggest that methane was not exclusively oxidized in an anaerobic process. A series of unusual C34/C35-8,14-secohexahydrobenzohopanes with low δ13C values (?110 and ?107‰) points to the presence of aerobic methanotrophic bacteria at the ancient seep site.  相似文献   

12.
Analysis of a Cryogenian interglacial platform margin in the Adelaide Geosyncline reveals a strong carbonate δ13C-facies relationship. Detailed chronostratigraphic correlation between sections ranging from shallow platform facies to deep basinal facies indicates the presence of a carbon isotopic gradient of between 8 and 11‰ in time-equivalent strata. Shallow-water back-reef facies have δ13C values up to 8.2‰, while equivalent basinal sediments have δ13C values between ? 3 and 0‰. Allochthonous blocks that have been transported from the platform margin into basinal environments retain their heavy δ13C values (4–9‰) and are surrounded by basinal calcareous shales with light δ13C values (ave. 0.8‰). The regional and stratigraphic consistency of these δ13C trends suggests a primary marine origin.We interpret this δ13C-facies correlation to be the result of ocean stratification/stagnation that significantly reduced the rate of deep-ocean ventilation and produced a large deep-water, organically derived carbon reservoir. We suggest that stratification may have been a persistent feature of the global ocean throughout much of Neoproterozoic time. Ocean stratification may explain many of the unusual features that characterise the sedimentary record of this era, including large-scale δ13C variation, extreme climatic fluctuations, and the presence of cap carbonates. A highly variable climatic regime would be expected with the development of a large deep-water carbon reservoir. Small changes in ocean circulation could rapidly transfer or remove large volumes of carbon to and from the surface-ocean and atmospheric reservoirs, leading to intense greenhouse or icehouse conditions respectively.  相似文献   

13.
Organic carbon rich rocks in the c. 2.0 Ga Zaonega Formation (ZF), Karelia, Russia, preserve isotopic characteristics of a Paleoproterozoic ecosystem and record some of the oldest known oil generation and migration. Isotopic data derived from drill core material from the ZF show a shift in δ13Corg from c. ?25‰ in the lower part of the succession to c. ?40‰ in the upper part. This stratigraphic shift is a primary feature and cannot be explained by oil migration, maturation effects, or metamorphic overprints. The shift toward 13C‐depleted organic matter (δ13Corg < ?25‰) broadly coincides with lithological evidence for the generation of oil and gas in the underlying sediments and seepage onto the sea floor. We propose that the availability of thermogenic CH4 triggered the activity of methanotrophic organisms, resulting in the production of anomalously 13C‐depleted biomass. The stratigraphic shift in δ13Corg records the change from CO2‐fixing autotrophic biomass to biomass containing a significant contribution from methanotrophy. It has been suggested recently that this shift in δ13Corg reflects global forcing and progressive oxidation of the Earth. However, the lithologic indication for local thermogenic CH4, sourced within the oil field, is consistent with basinal methanotrophy. This indicates that regional/basinal processes can also explain the δ13Corg negative isotopic shift observed in the ZF.  相似文献   

14.
Tooth enamel apatite carbonate carbon and oxygen isotope ratios of modern kangaroos (Macropus spp.) collected on a 900-km latitudinal transect spanning a C3–C4 transition zone were analysed to create a reference set for palaeoenvironmental reconstruction in southern Australia. The carbon isotope composition of enamel carbonate reflects the proportional intake of C3 and C4 vegetation, and its oxygen isotope composition reflects that of ingested water. Tooth enamel forms incrementally, recording dietary and environmental changes during mineralisation. Analyses show only weak correlations between climate records and latitudinal changes in δ13C and δ18O. No species achieved the δ13C values (~?1.0 ‰) expected for 100 % C4 grazing diets; kangaroos at low latitudes that are classified as feeding primarily on C4 grasses (grazers) have δ13C of up to ?3.5 ‰. In these areas, δ13C below ?12 ‰ suggests a 100 % C3 grass and/or leafy plant (browse) diet while animals from higher latitude have lower δ13C. Animals from semi-arid areas have δ18O of 34–40 ‰, while grazers from temperate areas have lower values (~28–30 ‰). Three patterns with implications for palaeoenvironmental reconstruction emerge: (1) all species in semi-arid areas regularly browse to supplement limited grass resources; (2) all species within an environmental zone have similar carbon and oxygen isotope compositions, meaning data from different kangaroo species can be pooled for palaeoenvironmental investigations; (3) relatively small regional environmental differences can be distinguished when δ13C and δ18O data are used together. These data demonstrate that diet–isotope and climate–isotope relationships should be evaluated in modern ecosystems before application to the regional fossil record.  相似文献   

15.
The late Wenlock is characterized by two global regressive‐transgressive eustatic cycles in association with a double‐peaked positive carbon isotope excursion. The onset of the excursion coincides with an extinction event affecting graptolites (the lundgreni event) and proposed to affect conodonts (the Mulde Event) and proliferation of non‐skeletal carbonates. In order to test the hypothesized relationships between eustatic and ecological changes, the tropical carbonate Homerian succession in Podolia has been examined with respect to conodont, sequence and δ13C stratigraphy. Four depositional sequences (DS) have been identified. The onset of the δ13C excursion occurs at the boundary between DS1 and DS2, corresponding to a forced regression of proposed glacioeustatic origin. The following rapid eustatic transgression associated with the highest δ13C values of 5.2‰ includes a higher‐order shallowing episode recorded in Podolia as normal regression and a boundary between DS2 and DS3. This interval is distinguished by the presence of oncoids and thrombolitic buildups. The latest Wenlock eustatic fall and the corresponding second peak of the δ13C excursion corresponds in Podolia to a stratigraphic gap. The first δ13C peak (top of DS1 and DS2) corresponds to the O. bohemica longa conodont Zone, the interval between the two peaks (DS3) – to K. ortus absidata and C. murchisoni zones, and DS4 is tentatively placed in the lowermost Ludlow Series. The record of relative sea‐level changes in Podolia is consistent with reconstructions based on successions in England and Sweden. The moderate drop in conodont taxonomic richness may reflect the primary depositional control over their proposed extinction.  相似文献   

16.
Kuechler, R.R., Birgel, D, Kiel, S, Freiwald, A, Goedert, J.L., Thiel, V & Peckmann, J. 2011: Miocene methane‐derived carbonates from southwestern Washington, USA and a model for silicification at seeps. Lethaia, Vol. 45, pp. 259–273. Exotic limestone masses with silicified fossils, enclosed within deep‐water marine siliciclastic sediments of the Early to Middle Miocene Astoria Formation, are exposed along the north shore of the Columbia River in southwestern Washington, USA. Samples from four localities were studied to clarify the origin and diagenesis of these limestone deposits. The bioturbated and reworked limestones contain a faunal assemblage resembling that of modern and Cenozoic deep‐water methane‐seeps. Five phases make up the paragenetic sequence: (1) micrite and microspar; (2) fibrous, banded and botryoidal aragonite cement, partially replaced by silica or recrystallized to calcite; (3) yellow calcite; (4) quartz replacing carbonate phases and quartz cement; and (5) equant calcite spar and pseudospar. Layers of pyrite frequently separate different carbonate phases and generations, indicating periods of corrosion. Negative δ13Ccarbonate values as low as ?37.6‰ V‐PDB reveal an uptake of methane‐derived carbon. In other cases, δ13Ccarbonate values as high as 7.1‰ point to a residual, 13C‐enriched carbon pool affected by methanogenesis. Lipid biomarkers include 13C‐depleted, archaeal 2,6,10,15,19‐pentamethylicosane (PMI; δ13C: ?128‰), crocetane and phytane, as well as various iso‐ and anteiso‐carbon chains, most likely derived from sulphate‐reducing bacteria. The biomarker inventory proves that the majority of the carbonates formed as a consequence of sulphate‐dependent anaerobic oxidation of methane. Silicification of fossils and early diagenetic carbonate cements as well as the precipitation of quartz cement – also observed in other methane‐seep limestones enclosed in sediments with abundant diatoms or radiolarians – is a consequence of a preceding increase of alkalinity due to anaerobic oxidation of methane, inducing the dissolution of silica skeletons. Once anaerobic oxidation of methane has ceased, the pH drops again and silica phases can precipitate. □Biomarkers, carbonates, isotopes, methane, Miocene, silicification, Washington.  相似文献   

17.
Biogenic calcretes associated with a regional Cretaceous to Paleogene subaerial unconformity and an intraformational composite (polygenic) surface in Upper Cretaceous intra-platform peritidal successions in central Dalmatia and eastern Istria, Croatia (Adriatic-Dinaridic Carbonate Platform), were analyzed for their δ13C and δ18O signatures in order to provide insight into the conditions of subaerial exposure and calcrete development. The distinctly negative δ13C signatures of biogenic calcretes marking the regional subaerial unconformity differ considerably from the δ13C values of the host marine limestones. This indicates carbon isotope exchange of primary marine CaCO3 with CO2 released by root and rhizomicrobial respiration and subsequent precipitation of pedogenic calcrete. The range of δ13C (from ?13.1 to ?8.2 ‰ Vienna PeeDee Belemnite standard, VPDB) and δ18O (from ?10.1 to ?6.1 ‰ VPDB) values of calcretes are similar to those reported from calcretes elsewhere, and the δ13C values of biogenic calcretes with typical Microcodium aggregates (?13.1 to ?12.3 ‰ VPDB) at the ?ibenik locality are very close to, or at the lower limit of, values for soil carbonates formed in isotopic equilibrium with soil CO2. These values are expected for authigenic pedogenic carbonates formed under the influence of C3 plant communities, without influence from heavier carbon from pre-existing carbonate and lack of input of atmospheric CO2. Such low δ13C values support the interpretation of Microcodium aggregates as being precipitated under a direct biological control within the soil, although the relationship between formation mechanisms and stable isotope signatures of Microcodium needs further investigation. The δ13C values (?4.4 to ?3.6 ‰ VPDB) of rhizogenic calcretes formed inside firmground Thalassinoides burrows of the composite surface at the ?ibenik locality are more negative than the δ13C values of the host marine limestones, which confirms that the composite surface went through a phase of meteoric pedo(dia)genesis. However, the overall δ13C values of calcretes are less negative than expected, which might reflect contamination from associated primary marine carbonate. This study represents the first detailed stable isotope investigation of calcretes from carbonate successions of the External Dinarides, and the results may be applied to discontinuities present in other shallow-water carbonate rock successions.  相似文献   

18.
《Palaeoworld》2022,31(2):249-257
The early–middle Frasnian boundary interval of the northern part of the East European Platform (northwest of Russia) corresponding to the transitans-punctata isotope event is revealed by biostratigraphically constrained conodont carbon stable isotope data (δ13Ccon). The dynamics of δ13Ccon demonstrate a three-fold pattern with positive peaks at the onset of the main phase of the transitans-punctata isotope event (upper part of Montagne Noire 4 conodont Zone, MN4; up to -22.5‰ VPDB), and during the late part of the event (lower and middle parts of MN6 Zone; up to -24.0‰ VPDB and -22.1‰ VPDB). The stratigraphic level near the MN5 and MN6 boundary is marked by a prominent negative excursion in δ13Ccon (down to -31.8‰ VPDB) that resembles the negative excursion in the terminal phase of the transitans-punctata isotope event worldwide. The δ13Ccon variations in different taxa are generally consistent but demonstrate some differences in values and amplitudes. It is assumed that variations in the carbon isotopic compositions of conodonts were mainly controlled by changes in the isotope composition of the planktons as the main food source for conodonts.  相似文献   

19.
Mixing of sediments by moving animals becomes apparent in the trace fossil record from about 550 million years ago (Ma), loosely overlapping with the tail end of the extreme carbonate carbon isotope δ13Ccarbonate fluctuations that qualitatively distinguish the Proterozoic geochemical record from that of the Phanerozoic. These Precambrian‐scale fluctuations in δ13Ccarbonate (PSF‐δ13Ccarbonate) remain enigmatic, due to their high amplitude and inclusion of global‐scale negative δ13Ccarbonate values, below anything attributable to mantle input. Here, we note that different biogeochemical‐model scenarios plausibly explaining globally synchronous PSF‐δ13Ccarbonate converge: via mechanistic requirements for extensive anoxia in marine sediments to support sedimentary build‐up of 13C‐depleted carbon. We hypothesize that bioturbation qualitatively reduced marine sediment anoxia by exposing sediments to oxygenated overlying waters, which ultimately contributed to decreasing the carbon cycle's subsequent susceptibility to PSF‐ δ13Ccarbonate. Bioturbation may also have reduced the quantity of (isotopically light) organic‐derived carbon available to contribute to PSF‐ δ13Ccarbonate via ocean crust carbonatization at depth. We conduct a comparative modelling exercise in which we introduce bioturbation to existing model scenarios for PSF‐ δ13Ccarbonate: expressing both the anoxic proportion of marine sediments, and the global organic carbon burial efficiency, as a decreasing function of bioturbation. We find that bioturbation's oxygenating impact on sediments has the capacity to prevent PSF‐ δ13Ccarbonate caused by authigenic carbonate precipitation or methanogenesis. Bioturbation's impact on the f‐ratio via remineralization is partially offset by liberation of organic phosphate, some of which feeds back into new production. We emphasize that this study is semiquantitative, exploratory and intended merely to provide a qualitative theoretical framework within which bioturbation's impact on long‐term, first‐order δ13Ccarbonate can be assessed (and it is hoped quantified in more detail by future work). With this proviso, we conclude that it is entirely plausible that bioturbation made a decisive contribution to the enigmatic directionality in the δ13Ccarbonate record, from the Neoproterozoic–Cambrian boundary onwards.  相似文献   

20.
Sub-fossil wood is often affected by the decaying process that introduces uncertainties in the measurement of oxygen and carbon stable isotope composition in cellulose. Although the cellulose stable isotopes are widely used as climatic proxies, our understanding of processes controlling their behavior is very limited. We present here a comparative study of stable oxygen and carbon isotope ratios in tree ring cellulose in decayed and non-decayed wood samples of Swiss stone pine (Pinus cembra) trees. The intra-ring stable isotope variability (around the circumference of a single ring) was between 0.1 and 0.5‰ for δ18O values and between 0.5 and 1.6‰ for δ13C values for both decayed and non-decayed wood. Observed intra-tree δ18O variability is less than that reported in the literature (0.5–1.5‰), however, for δ13C it is larger than the reported values (0.7–1.2‰). The inter-tree variability for non-decayed wood ranges between 1.1 and 2.3‰ for δ18O values, and between 2 and 4.7‰ for δ13C values. The inter-tree differences for δ18O values are similar to those reported in the literature (1–2‰ for oxygen and 1–3‰ for carbon) but are larger for δ13C values. We have found that the differences for δ18O and δ13C values between decayed and non-decayed wood are smaller than the variation among different trees from the same site, suggesting that the decayed wood can be used for isotopic paleoclimate research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号