首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
对全球大洋氮循环的研究发现,大洋输入和输出的氮存在严重的不平衡,所固定的氮中有相当一部分被还原为N2或N2O从大洋中流失,而海洋最小含氧带(OMZ)被认为是发生氮流失的最主要区域,通过反硝化作用和厌氧氨氧化作用,固定氮在OMZ海区内损失量可达40~450 Tg·a-1.对不同海区OMZ内固定氮损失的两种主要作用总结发现,异养反硝化作用在热带太平洋东部、阿拉伯海的OMZ内以及海洋沉积物内占有显著优势,在智利、秘鲁沿岸海域及阿拉伯海域也已发现自养反硝化作用的存在;而在黑海、非洲西南部的本格拉上升流、智利北部沿岸等地,厌氧氨氧化作用强烈,且其在陆架区的作用强度和面积要大于大洋区.OMZ氮的流失除受氮流失过程自身影响外,固氮作用、硝化作用、硝酸盐异化还原作用等都可能对OMZ海区内氮收支不平衡造成影响.其中固氮作用的影响最不能忽视,其在全球OMZ内固定的氮的总量可达15~40 Tg·a-1,是对OMZ氮流失量的重要补充.区分反硝化作用和厌氧氨氧化作用对OMZ氮流失的相对贡献,明确氮流失的另一产物N2O的形成机制和定量评估方法是当前OMZ氮流失研究中存在的最主要问题.本文针对存在问题提出了相应的研究设想,以期为海洋最小含氧带的研究提供参考.  相似文献   

2.
The Humboldt Current System (HCS) sustains the world′s largest small pelagic fishery. While a cooling of this system has been observed during recent decades, there is debate about the potential impacts of rising atmospheric CO2 concentrations on upwelling dynamics and productivity. Recent studies suggest that under increased atmospheric CO2 scenarios the oceanic stratification may strongly increase and upwelling‐favorable winds may remain nearly constant off Peru and increase off Chile. Here we investigate the impact of such climatic conditions on egg and larval dispersal phases, a key stage of small pelagic fish reproduction. We used larval retention rate in a predefined nursery area to provide a proxy for the recruitment level. Numerical experiments are based on hydrodynamics downscaled to the HCS from global simulations forced by pre‐industrial (PI), 2 × CO2 and 4 × CO2 scenarios. A biogeochemical model is applied to the PI and 4 × CO2 scenarios to define a time‐variable nursery area where larval survival is optimum. We test two distinct values of the oxycline depth that limits larval vertical distribution: One corresponding to the present‐day situation and the other corresponding to a shallower oxycline potentially produced by climate change. It appeared that larval retention over the continental shelf increases with enhanced stratification due to regional warming. However, this increase in retention is largely compensated for by a decrease of the nursery area and the shoaling of the oxycline. The underlying dynamics are explained by a combination of stratification effects and mesoscale activity changes. Our results therefore show that future climate change may significantly reduce fish capacity in the HCS with strong ecological, economic and social consequences.  相似文献   

3.
4.
A massive beaching and mortality of fishes occurred in Coliumo Bay, a shallow bay located along the coast of the eastern South Pacific Ocean on 3 January 2008. This stranding was a consequence of an abrupt decrease in the dissolved oxygen concentration throughout the whole water column, due to the effect of intense upwelling along the coast off central‐southern Chile. The main objectives of this study were: (1) to characterize taxonomically and biologically the fish species assemblage present in this beaching; (2) to evaluate several physiological indicators for the condition of the beached species at the time of their death; and (3) to assess the possible cause–effect mechanisms involved in the fishes death and the changes that took place in the fish community throughout the time. In this beaching, 26 fish species were identified: 23 teleosts, one myxiniform and two elasmobranchs. Most beached specimens were juveniles. Haematological and histological evidence indicate that severe hypoxia that lasted for at least 48 h was the most plausible cause of death. The main conclusion of this study is that the presence of oxygen‐poor equatorial sub‐surface water in the shallow coastal zone due to intense regional‐scale upwelling caused the fish stranding. Although the effect of the hypoxic event was severe for the fish assemblage of Coliumo Bay, the rapid recuperation observed suggests that hypoxic events at the local spatial scale can be buffered by migration processes from the fish community inhabiting close by areas non‐affected by low oxygen conditions. The effect that severe hypoxic events may have on larger spatial scales remains unknown.  相似文献   

5.
The macrozoobenthos of Mejillones Bay (23°S; Humboldt Current) was quantitatively investigated over a 7-year period from austral summer 1995/1996 to winter 2002. About 78 van Veen grab samples taken at six stations (5, 10, 20 m depth) provided the basis for the analysis of the distribution of 60 species and 28 families of benthic invertebrates, as well as of their abundance and biomass. Mean abundance (2,119 individuals m?2) was in the same order compared to a previous investigation; mean biomass (966 g formalin wet mass m?2), however, exceeded prior estimations mainly due to the dominance of the bivalve Aulacomya ater. About 43% of the taxa inhabited the complete depth range. Mean taxonomic Shannon diversity (H′, Log e) was 1.54 ± 0.58 with a maximum at 20 m (1.95 ± 0.33); evenness increased with depth. The fauna was numerically dominated by carnivorous gastropods, polychaetes and crustaceans (48%). About 15% of the species were suspensivorous, 13% sedimentivorous, 11% detritivorous, 7% omnivorous and 6% herbivorous. Cluster analyses showed a significant difference between the shallow and the deeper stations. Gammarid amphipods and the polychaete family Nephtyidae characterized the 5-m-zone, the molluscs Aulacomya ater, Mitrella unifasciata and gammarids the intermediate zone, while the gastropod Nassarius gayi and the polychaete family Nereidae were most prominent at the deeper stations. The communities of the three depth zones did not appear to be limited by hypoxia during non-El Niño conditions. Therefore, no typical change in community structure occurred during El Niño 1997–1998, in contrast to what was observed for deeper faunal assemblages and hypoxic bays elsewhere in the coastal Humboldt Current system.  相似文献   

6.
Population density, nitrate turnover, and oxygen respiration of benthic foraminiferans were investigated in the oxygen minimum zone (OMZ) off the Chilean coast. Live foraminiferans were found predominantly in the upper 3 mm of the sediment, and the nitrate accumulating species Nonionella cf. stella and Stainforthia sp. dominated with a combined standing stock of 2.0 × 106 Rose Bengal stained specimens m− 2. The rate of denitrification in cells of N. cf. stella analyzed with nitrous oxide microsensors during acetylene inhibition was 84 ± 33 pmol C individual− 1 d− 1. Multiplied with the standing stock of N. cf. stella and Stainforthia sp. this yielded a minimum benthic denitrification rate of 173 µmol N m− 2 d− 1 by foraminiferans. Foraminiferal denitrification, which seemed to account for almost all benthic denitrification at the investigated site will be overlooked by most conventional methods measuring benthic denitrification. Compared to the denitrification rates, the potential rates of nitrate accumulation and oxygen respiration by N. cf. stella were an order of magnitude higher (864 pmol N individual− 1 d− 1 and 760 ± 87 pmol C individual− 1 d− 1, respectively), which seems an adaptation to the infrequent availability of nitrate and oxygen in the sediment surface.  相似文献   

7.
Climate‐driven range shifts are ongoing in pelagic marine environments, and ecosystems must respond to combined effects of altered species distributions and environmental drivers. Hypoxic oxygen minimum zones (OMZs) in midwater environments are shoaling globally; this can affect distributions of species both geographically and vertically along with predator–prey dynamics. Humboldt (jumbo) squid (Dosidicus gigas) are highly migratory predators adapted to hypoxic conditions that may be deleterious to their competitors and predators. Consequently, OMZ shoaling may preferentially facilitate foraging opportunities for Humboldt squid. With two separate modeling approaches using unique, long‐term data based on in situ observations of predator, prey, and environmental variables, our analyses suggest that Humboldt squid are indirectly affected by OMZ shoaling through effects on a primary food source, myctophid fishes. Our results suggest that this indirect linkage between hypoxia and foraging is an important driver of the ongoing range expansion of Humboldt squid in the northeastern Pacific Ocean.  相似文献   

8.
Recent studies of the effects of hypoxia on human growth and adult size have focused mainly on the variability of single measurements. In this paper we explore changes with altitude and ethnicity (Spanish-Aymara ancestry) in body proportions of permanent residents of an altitudinal gradient (0–4000 meters) in northern Chile. Body proportion or shape is assessed by anthropometric indices and principal components of 14 bone measurements. Ethnicity independent of altitude had its major effect on proportions and a lesser effect on size. Aymara had larger relative sitting heights, broader builds and prominent facial development as compared to non-Aymara (Spanish). Altitude also affected head and chest proportions during growth. On the whole, the effects of altitude and Aymara ancestry on the measurements and indices were independent (not necessarily of similar direction or magnitude), in spite of a correlation of ethnicity and altitude in Andean populations.  相似文献   

9.
Abstract. Question: What are the relative influences of human impact, macroclimate, geographic location and habitat related environmental differences on species composition of boreal epiphytic macrolichen communities? Location: Troms county in northern Norway. Methods: Detrended Correspondence Analysis revealed the main gradient structure in lists of epiphytic macrolichen species from deciduous forests. By Canonical Correspondence Analysis with variance partitioning, the relative amount of variance in macrolichen species composition attributable to human impact, macroclimate, spatial context and environmental differences was quantified. Results: There was no significant effect of human impact on species composition of epiphytic macrolichens of deciduous forests. Macroclimate was the most important factor determining epiphytic macrolichen communities, which were also strongly influenced by ecological differences such as forest stand properties. Conclusions: Epiphytic macrolichen communities are determined by a macroclimatic gradient from the coastline to the interior of central north Norway. In marked contrast, the species composition of epiphytic macrolichen communities seems to be unaffected by human impact in the study area, where air pollution was marginal.  相似文献   

10.
Ammonia-oxidizing archaea (AOA) and anaerobic ammonia-oxidizing (anammox) bacteria have emerged as significant factors in the marine nitrogen cycle and are responsible for the oxidation of ammonium to nitrite and dinitrogen gas, respectively. Potential for an interaction between these groups exists; however, their distributions are rarely determined in tandem. Here we have examined the vertical distribution of AOA and anammox bacteria through the Arabian Sea oxygen minimum zone (OMZ), one of the most intense and vertically exaggerated OMZs in the global ocean, using a unique combination of intact polar lipid (IPL) and gene-based analyses, at both DNA and RNA levels. To screen for AOA-specific IPLs, we developed a high-performance liquid chromatography/mass spectrometry/mass spectrometry method targeting hexose-phosphohexose (HPH) crenarchaeol, a common IPL of cultivated AOA. HPH-crenarchaeol showed highest abundances in the upper OMZ transition zone at oxygen concentrations of ca. 5 μ, coincident with peaks in both thaumarchaeotal 16S rDNA and amoA gene abundances and gene expression. In contrast, concentrations of anammox-specific IPLs peaked within the core of the OMZ at 600 m, where oxygen reached the lowest concentrations, and coincided with peak anammox 16S rDNA and the hydrazine oxidoreductase (hzo) gene abundances and their expression. Taken together, the data reveal a unique depth distribution of abundant AOA and anammox bacteria and the segregation of their respective niches by >400 m, suggesting no direct coupling of their metabolisms at the time and site of sampling in the Arabian Sea OMZ.  相似文献   

11.
The Humboldt Current System (HCS) has the highest production of forage fish in the world, although it is highly variable and the future of the primary component, anchovy, is uncertain in the context of global warming. Paradigms based on late 20th century observations suggest that large‐scale forcing controls decadal‐scale fluctuations of anchovy and sardine across different boundary currents of the Pacific. We develop records of anchovy and sardine fluctuations since 1860 AD using fish scales from multiple sites containing laminated sediments and compare them with Pacific basin‐scale and regional indices of ocean climate variability. Our records reveal two main anchovy and sardine phases with a timescale that is not consistent with previously proposed periodicities. Rather, the regime shifts in the HCS are related to 3D habitat changes driven by changes in upwelling intensity from both regional and large‐scale forcing. Moreover, we show that a long‐term increase in coastal upwelling translates via a bottom‐up mechanism to top predators suggesting that the warming climate, at least up to the start of the 21st century, was favorable for fishery productivity in the HCS.  相似文献   

12.
In the present study we compared vegetative and spore‐based propagation for Chondracanthus chamissoi (C. Agardh) Kützing. Monthly field observations were made over a 1‐year period at Puerto Aldea, Tongoy Bay, Chile. Data were collected both outside and within a bed of C. chamissoi. Vegetative propagation was assessed via attachment of drifting fronds to shell‐encrusted concrete blocks at both sites. Germination of spores was recorded on the same shell substrates. Substrate re‐adhesion varied seasonally between sectors. Highest averages occurred within the algal bed between January 1997 and March 1997. The number of sporelings showed two peaks of maximal recruitment in spring and summer months (January‐March 1997 and September 1997‐January 1998). Spore‐based propagation is an important mechanism of seasonal regeneration of biomass in the C. chamissoi bed; however, re‐attachment of fronds may have been important in maintaining production of the bed during the period of maximum biomass accumulation.  相似文献   

13.
Nitrogen fixation, the biological reduction of dinitrogen gas (N2) to ammonium (NH4+), is quantitatively the most important external source of new nitrogen (N) to the open ocean. Classically, the ecological niche of oceanic N2 fixers (diazotrophs) is ascribed to tropical oligotrophic surface waters, often depleted in fixed N, with a diazotrophic community dominated by cyanobacteria. Although this applies for large areas of the ocean, biogeochemical models and phylogenetic studies suggest that the oceanic diazotrophic niche may be much broader than previously considered, resulting in major implications for the global N-budget. Here, we report on the composition, distribution and abundance of nifH, the functional gene marker for N2 fixation. Our results show the presence of eight clades of diazotrophs in the oxygen minimum zone (OMZ) off Peru. Although proteobacterial clades dominated overall, two clusters affiliated to spirochaeta and archaea were identified. N2 fixation was detected within OMZ waters and was stimulated by the addition of organic carbon sources supporting the view that non-phototrophic diazotrophs were actively fixing dinitrogen. The observed co-occurrence of key functional genes for N2 fixation, nitrification, anammox and denitrification suggests that a close spatial coupling of N-input and N-loss processes exists in the OMZ off Peru. The wide distribution of diazotrophs throughout the water column adds to the emerging view that the habitat of marine diazotrophs can be extended to low oxygen/high nitrate areas. Furthermore, our statistical analysis suggests that NO2 and PO43− are the major factors affecting diazotrophic distribution throughout the OMZ. In view of the predicted increase in ocean deoxygenation resulting from global warming, our findings indicate that the importance of OMZs as niches for N2 fixation may increase in the future.  相似文献   

14.
The effects of vertebrate predation have been monitored since 1989 on 16 replicated 0.56 ha study plots in a semiarid thorn scrub community in north-central Chile. Using fences of different heights with and without holes and suspended game netting to alter principal predator (foxes and raptors) and large rodent herbivore (Octodon degus) access, four grids each have been assigned to the following treatments: 1) low fencing and holes allowing free access of predators and small mammals; 2) low fencing without holes to exclude degus only; 3) high fencing and netting with holes to exclude predators only; and 4) high fencing and netting without holes to exclude predators and degus. Small mammal population censuses are conducted monthly using mark-recapture techniques. Degu population trends during 1989 and 1990 showed strongly but nonsignificantly lower numbers in control plots during months when densities were characteristically low (September–November) for this seasonally reproductive species; since March 1991, differences have become persistent and increasingly significant. Predators appear to have greater numerical effects when their prey populations are low. Survival times of degus, particularly established adults, were significantly longer in predator exclusion grids during the 2 1/2 years of observation; thus, predation also affects prey population structure.  相似文献   

15.
Abstract Aim To describe the zoogeography of the algae‐associated peracarid crustaceans from exposed rocky shores along the SE‐Pacific. Location Chile, 18° S to 42° S. Methods A standardized sampling programme was used at all sites. Samples of macroalgae were taken at twenty sites distributed along the entire study area. Quantitative samples (n = 6 replicates of 8 cm?2 surface area each) of calcareous and non‐calcareous red algae were taken in the low intertidal, preserved immediately in 4%‐formalin and washed over a 0.2‐mm mesh before sorting. All peracarid individuals were sorted, identified to the species level and then categorized in separate functional groups according to their feeding habits. Graphical representations of species replacement within each functional group along the latitudinal gradient are provided. A classification analysis employing the unweighted paired group method using arithmetic average (UPGMA) was conducted in order to reveal the main zoogeographical zones. Results A total of forty epifaunal peracarid species was found. A gradual replacement of species within different functional groups (grazing and suspension‐feeding species) was observed in the central region (c. 26° S?37° S). In this central region, species with northern and those with southern distribution overlapped, while other species were only found here, resulting in high species richness. The number of species/site/algal species in the northern (north of c. 25.5° S) and southern region (south of c. 38.5° S) was considerably lower than in the central region. The distribution of most grazing peracarids showed a more continuous pattern than that of suspension‐feeding amphipods. The distribution of the remaining species (predators, scavengers, deposit‐feeders, unknowns) was scattered along the examined sites. The cluster analysis for the epifaunal peracarid assemblage confirmed the separation of a northern and southern zone connected by a central (transitional) zone between c. 26° S and c. 37° S. Similar zonation patterns have been found by most other studies on the zoogeography of the Chilean coast, although little agreement exists about the exact limits of this transitional zone. It is discussed that the distribution limits of algae‐associated peracarids (and other macroinvertebrates) – particularly in the transitional zone – may show interannual variations as a result of varying oceanographic conditions. The large affinity of the algae‐associated peracarid fauna from the central and southern Chilean coast to those of other regions indicates that dispersal may be facilitated by rafting with floating algae transported in the Antarctic Circumpolar Current. Main conclusions The zoogeographical analysis of algae‐associated peracarids confirms the existence of a northern and a southern zone connected by an extensive transitional zone. General biology, habitat use and the abundant presence of dispersal vectors such as floating macroalgae may affect the zoogeography of species living in transitional zones with strong interannual variations in current regimes. In these areas, species associated with substrata of high dispersal potential may show different distribution patterns than species inhabiting other substrata.  相似文献   

16.
Using an extensive database compiled by scientific observers aboard commercial fishing operations between 1984 and 2014, we describe the maturity and size structures of white warehou Seriolella caerulea and silver warehou Seriolella punctata from by-catch of the trawling industrial fisheries operating in the austral zone off Chile. Macroscopic maturity stages and gonadosomatic (IGS) index show mature females throughout the year and a pronounced spawning period in both austral autumn and winter seasons, with an IGS peak in July for S. punctata and August for S. caerulea. Reproductive patterns in both species show an extended spawning season (July to September) across the area between 43 and 47° S. Length–mass relationships showed significant differences between sexes in both species, where females reach a larger size. Fork length at 50% maturity was 43.5 cm for S. caerulea and 37.2 cm for S. punctata. Female catch composition is dominated by adult fish (96% for S. caerulea and 86% for S. punctata). Currently, both species are exploited with no assessment and management-decision framework. Therefore, information regarding reproductive biology and demographic traits becomes an important baseline to ensure adequate fisheries management for both species.  相似文献   

17.
The thalassinidean shrimp Callichirus seilacheri is a common species in the intertidal zone of the South American Pacific coast. However, our knowledge of its reproductive ecology is rather limited. The present study was carried out between January and December 2003 at Las Machas, northern Chile. Although ovigerous females were encountered almost throughout the study period, they were particularly abundant between May and September when water temperatures were lowest and sediment coverage of the burrow entrances was highest. Females of C. seilacheri produced numerous (17,450 ± 3,796 eggs) and small (0.884 ± 0.080 mm; 0.262 ± 0.054 mm3) eggs when compared to other thalassinidean shrimps for which such information is available. Fecundity was positively correlated with female size; however, correlations were allometric, which might be related to the elasticity of the abdomen. Egg volume increased by 41.2% during embryogenesis, and egg loss during the incubation period was on average 8%. Females inverted on average 14.9% of their dry weight into egg production.  相似文献   

18.
We examined the thermoregulatory behaviour (TRB) of roosting Humboldt penguins (Spheniscus humboldti) in north central Chile during summer and winter, when ambient temperatures (Ta) are most extreme. Each body posture was considered to represent a particular TRB, which was ranked in a sequence that reflected different degrees of thermal load and was assigned an arbitrary thermoregulatory score. During summer, birds exhibited eight different TRBs, mainly oriented to heat dissipation, and experienced a wide range of Ta (from 14 to 31°C), occasionally above their thermoneutral zone (TNZ, from 2 to 30°C), this being evident by observations of extreme thermoregulatory responses such as panting. In winter, birds exhibited only three TRBs, mainly oriented to heat retention, and experienced a smaller range of Ta (from 11 to 18°C), always within the TNZ, even at night. The components of behavioural responses increased directly with the heat load which explains the broader behavioural repertoire observed in summer. Since penguins are primarily adapted in morphology and physiology to cope with low water temperatures, our results suggest that behavioural thermoregulation may be important in the maintenance of the thermal balance in Humboldt penguins while on land.  相似文献   

19.
A combination of stable isotopes (15N) and molecular ecological approaches was used to investigate the vertical distribution and mechanisms of biological N2 production along a transect from the Omani coast to the central–northeastern (NE) Arabian Sea. The Arabian Sea harbors the thickest oxygen minimum zone (OMZ) in the world''s oceans, and is considered to be a major site of oceanic nitrogen (N) loss. Short (<48 h) anoxic incubations with 15N-labeled substrates and functional gene expression analyses showed that the anammox process was highly active, whereas denitrification was hardly detectable in the OMZ over the Omani shelf at least at the time of our sampling. Anammox was coupled with dissimilatory nitrite reduction to ammonium (DNRA), resulting in the production of double-15N-labeled N2 from 15NO2, a signal often taken as the lone evidence for denitrification in the past. Although the central–NE Arabian Sea has conventionally been regarded as the primary N-loss region, low potential N-loss rates at sporadic depths were detected at best. N-loss activities in this region likely experience high spatiotemporal variabilities as linked to the availability of organic matter. Our finding of greater N-loss associated with the more productive Omani upwelling region is consistent with results from other major OMZs. The close reliance of anammox on DNRA also highlights the need to take into account the effects of coupling N-transformations on oceanic N-loss and subsequent N-balance estimates.  相似文献   

20.
Trophic interactions and community structure in the upwelling system off Central Chile (USCCh) (33-39°S) are analyzed using biological and ecological data concerning the main trophic groups and the Ecopath with Ecosim software version 5.0 (EwE). The model encompasses the fisheries, cetaceans, sea lion, marine birds, cephalopods, large-sized pelagic fish (sword fish), medium-sized pelagic fish (horse mackerel, hoki), small-sized pelagic fish (anchovy, common sardine), demersal fish (e.g. Chilean hake, black conger-eel), benthic invertebrates (red squat lobster, yellow squat lobster) and other groups such as zooplankton, phytoplankton and detritus. Input data was gathered from published and unpublished reports and our own estimates. Trophic interactions, system indicators and food web attributes are calculated using network analysis routines included in EwE. Results indicate that trophic groups are aligned around four trophic levels (TL) with phytoplankton and detritus at the TL=1, while large-sized pelagic fish and cetaceans are top predators (TL>4.0). The fishery is located at an intermediate to low trophic level (TL=2.97), removing about 15% of the calculated system primary production. The pelagic realm dominates the system, with medium-sized pelagic fish as the main fish component in biomass, while small-sized pelagic fish dominate total landings. Chilean hake is by far the main demersal fish component in both, biomass and yield. Predators consume the greater part of the production of the most important fishery resources, particularly juvenile stages of Chilean hake. Consequently, mortality by predation is an important component of total mortality. However, fishery also removes a large fraction of common sardine, anchovy, horse mackerel, and Chilean hake. The analysis of direct and indirect trophic impacts reveals that Chilean hake is a highly cannibalistic species. Chilean hake is also an important predator on anchovy, common sardine, benthic invertebrates, and demersal fish. The fisheries heavily impact on Chilean hake, common sardine, anchovy, and horse mackerel. Total system biomass (B=476 t km−2 year−1) and throughput (T=89454 t km−2 year−1) estimated in the USCCh model are in accordance with models of comparable systems. Considering system attributes derived from network analysis, the USCCh can be characterized as an immature system, with short trophic chains and low trophic transfer efficiency. Finally, we suggest that trophic interactions should be considered in stock assessment and management programs in USCCh. In addition, future research programs should be carried out in order to understand the ecosystem effects of fishing and trophic control in this highly productive food web.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号