首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elevated water temperatures, a decrease in ocean pH, and an increasing prevalence of severe storms have lead to bleaching and death of the hard corals that underpin coral reef ecosystems. As coral cover declines, fish diversity and abundance declines. How degradation of coral reefs affects behavior of reef inhabitants is unknown. Here, we demonstrate that risk assessment behaviors of prey are severely affected by coral degradation. Juvenile damselfish were exposed to visual and olfactory indicators of predation risk in healthy live, thermally bleached, and dead coral in a series of laboratory and field experiments. While fish still responded to visual cues in all habitats, they did not respond to olfactory indicators of risk in dead coral habitats, likely as a result of alteration or degradation of chemical cues. These cues are critical for learning and avoiding predators, and a failure to respond can have dramatic repercussions for survival and recruitment.  相似文献   

2.
The use of chemical information in assessment of predation risk is pervasive across animal taxa. However, by its very nature, chemical information can be temporally unreliable. Chemical cues persist for some period of time after they are released into the environment. Yet, we know surprisingly little about the rate of degradation of chemical cues under natural conditions and hence little about how they function in temporal risk assessment under natural conditions. Here, we conducted an experiment to identify a concentration of fresh alarm cues that evoke a strong antipredator response in coral reef damselfish, Pomacentrus ambonensis. We then tested the rate at which these alarm cues degraded under natural conditions in ocean water, paying attention to whether the rate of degradation varied throughout the day and whether the temporal pattern correlated with physicochemical factors that could influence the rate of degradation. Fresh alarm cues released into ocean water evoke strong avoidance responses in juvenile fish, while those aged for 30 min no longer evoke antipredator responses. Fish exposed to cues aged for 10 or 20 min show intermediate avoidance responses. We found a marked temporal pattern of response throughout the day, with much faster degradation in early to mid‐afternoon, the time of day when solar radiation, temperature, dissolved oxygen, and pH are nearing their peak. Ecologists have spent considerable effort elucidating the role of chemical information in mediating predator–prey interactions, yet we know almost nothing about the temporal dynamics of risk assessment using chemical information. We are in dire need of additional comparative field experiments on the rate of breakdown of chemical cues, particularly given that global change in UV radiation, temperature, and water chemistry could be altering the rates of degradation and the potential use of this information in risk assessment.  相似文献   

3.
Influence of habitat degradation on fish replenishment   总被引:1,自引:0,他引:1  
Temperature-induced coral bleaching is a major threat to the biodiversity of coral reef ecosystems. While reductions in species diversity and abundance of fish communities have been documented following coral bleaching, the mechanisms that underlie these changes are poorly understood. The present study examined the impacts of coral bleaching on the early life-history processes of coral reef fishes. Daily monitoring of fish settlement patterns found that ten times as many fish settled to healthy coral than sub-lethally bleached coral. Species diversity of settling fishes was least on bleached coral and greatest on dead coral, with healthy coral having intermediate levels of diversity. Laboratory experiments using light-trap caught juveniles showed that different damselfish species chose among healthy, bleached and dead coral habitats using different combinations of visual and olfactory cues. The live coral specialist, Pomacentrus moluccensis, preferred live coral and avoided bleached and dead coral, using mostly visual cues to inform their habitat choice. The habitat generalist, Pomacentrus amboinensis, also preferred live coral and avoided bleached and dead coral but selected these habitats using both visual and olfactory cues. Trials with another habitat generalist, Dischistodus sp., suggested that vision played a significant role. A 20 days field experiment that manipulated densities of P. moluccensis on healthy and bleached coral heads found an influence of fish density on juvenile weight and growth, but no significant influence of habitat quality. These results suggests that coral bleaching will affect settlement patterns and species distributions by influencing the visual and olfactory cues that reef fish larvae use to make settlement choices. Furthermore, increased fish density within the remaining healthy coral habitats could play an important role in influencing population dynamics.  相似文献   

4.
The speed with which individuals can learn to identify and react appropriately to predation threats when transitioning to new life history stages and habitats will influence their survival. This study investigated the role of chemical alarm cues in both anti-predator responses and predator identification during a transitional period in a newly settled coral reef damselfish, Pomacentrus amboinensis. Individuals were tested for changes in seven behavioural traits in response to conspecific and heterospecific skin extracts. Additionally, we tested whether fish could learn to associate a previously novel chemical cue (i.e. simulated predator scent) with danger, after previously being exposed to a paired cue combining the conspecific skin extract with the novel scent. Fish exposed to conspecific skin extracts were found to significantly decreased their feeding rate whilst those exposed to heterospecific and control cues showed no change. Individuals were also able to associate a previously novel scent with danger after only a single previous exposure to the paired conspecific skin extract/novel scent cue. Our results indicate that chemical alarm cues play a large role in both threat detection and learned predator recognition during the early post-settlement period in coral reef fishes.  相似文献   

5.
For over 40 years, management of the Great Barrier Reef Marine Park (GBRMP) in Australia has focused on limiting human‐use impacts to facilitate natural resilience and recovery. Compounding acute disturbances and chronic stressors have resulted in degradation of coral reef habitats in many areas of the Marine Park. Given current trends and predictions of escalating climate‐driven disturbances, it is increasingly evident that effective management of the GBRMP requires adaptive and novel approaches to protect and restore coral reef health. Here, we provide an overview of the logistical requirements and early‐stage ecological benefits of repositioning 400 tonnes of moderately sized (1–3 m diameter) Porites spp. coral colonies (bommies) that were displaced by cyclone‐generated swells that impacted reefs in the Whitsunday Islands during March 2017. An ecological survey conducted 16 months after the bommie repositioning revealed that several genera of hard coral had settled onto the bommies and that a range of reef fish species were associating with the restored habitat. Early findings suggest that the repositioning of the displaced bommies has assisted in restoring reef habitat structure and settlement habitat for juvenile corals, while improving natural aesthetics, vessel access and tourist experiences at Manta Ray Bay.  相似文献   

6.
The structural complexity of coral reefs is important for their function as shelter and feeding habitats for coral reef fishes, but physical disturbance by human activities often reduce complexity of the reefs by selectively destroying fragile and more complex coral species. The damselfish Springer's demoiselle Chrysiptera springeri primarily utilize complex coral heads for shelter and are hence vulnerable to human disturbance. In order to evaluate the potential effect of habitat degradation on juvenile fish growth, coral reef cover, fish age at settling and otolith growth, juvenile Springer's demoiselle was investigated on a protected and non‐protected coral reef in Darvel Bay, Borneo. The protected reef had higher coverage of complex branching corals and exhibited a more complex 3‐dimensional structure than the non‐protected reef. Springer's demoiselle settled at the same age on non‐protected and protected reefs. The growth rates of the otoliths from Springer's demoiselle were similar during the pre‐settlement period on the two reefs (manova , P > 0.05), but from age 20 to 48 days (post‐settlement period) the otolith growth rate of juveniles on the non‐protected reef was reduced compared to those from the protected reef (manova , P = 0.017). However, the differences in the otolith size, and by inference, fish size, after 48 days were small. The small effect of habitat degradation on growth is likely related to the fact that the Springer's demoiselles collected on the non‐protected reef were associated with the few remaining complex coral heads. Increased foraging‐predation tradeoffs on the non‐protected reef may decrease food intake and growth of juvenile Springer's demoiselle, but the main effect of habitat degradation on their abundance is likely to be related to lack of suitable shelter, and consequently reduced carrying capacity, on disturbed reefs.  相似文献   

7.
Nonreef habitats such as mangroves, seagrass, and macroalgal beds are important for foraging, spawning, and as nursery habitat for some coral reef fishes. The spatial configuration of nonreef habitats adjacent to coral reefs can therefore have a substantial influence on the distribution and composition of reef fish. We investigate how different habitats in a tropical seascape in the Philippines influence the presence, density, and biomass of coral reef fishes to understand the relative importance of different habitats across various spatial scales. A detailed seascape map generated from satellite imagery was combined with field surveys of fish and benthic habitat on coral reefs. We then compared the relative importance of local reef (within coral reef) and adjacent habitat (habitats in the surrounding seascape) variables for coral reef fishes. Overall, adjacent habitat variables were as important as local reef variables in explaining reef fish density and biomass, despite being fewer in number in final models. For adult and juvenile wrasses (Labridae), and juveniles of some parrotfish taxa (Chlorurus), adjacent habitat was more important in explaining fish density and biomass. Notably, wrasses were positively influenced by the amount of sand and macroalgae in the adjacent seascape. Adjacent habitat metrics with the highest relative importance were sand (positive), macroalgae (positive), and mangrove habitats (negative), and fish responses to these metrics were consistent across fish groups evaluated. The 500‐m spatial scale was selected most often in models for seascape variables. Local coral reef variables with the greatest importance were percent cover of live coral (positive), sand (negative), and macroalgae (mixed). Incorporating spatial metrics that describe the surrounding seascape will capture more holistic patterns of fish–habitat relationships on reefs. This is important in regions where protection of reef fish habitat is an integral part of fisheries management but where protection of nonreef habitats is often overlooked.  相似文献   

8.
Coral restoration is widely used around the world to address dramatic declines in coral cover; however, very few studies have looked specifically at the temporal response of fish assemblages (i.e. abundance and diversity) to coral restoration. Several critical reef functions and processes are driven by fishes, thereby making their recovery and responses around restoration structures key indicators of success. This study evaluates fish abundance and community composition on restoration plots following 8–12 years of restoration activity, in four locations (two Caribbean and two Indo‐Pacific). Responses were very complex with region‐, site‐, and body size‐specific patterns. Overall, fish abundance only increased in Indo‐Pacific sites where damselfish responded positively to increased coral cover and topographic complexity. Restoration effects on other fish families and particularly on larger bodied reef fish were negative or neutral at all locations. If restoration initiatives are going to substantively improve the condition and recovery of degraded reef fish communities, restoration efforts need to be planned, designed, and monitored based on fish‐specific habitat requirements and locally specific community dynamics.  相似文献   

9.
Global climate change is altering community composition across many ecosystems due to nonrandom species turnover, typically characterized by the loss of specialist species and increasing similarity of biological communities across spatial scales. As anthropogenic disturbances continue to alter species composition globally, there is a growing need to identify how species responses influence the establishment of distinct assemblages, such that management actions may be appropriately assigned. Here, we use trait‐based analyses to compare temporal changes in five complementary indices of reef fish assemblage structure among six taxonomically distinct coral reef habitats exposed to a system‐wide thermal stress event. Our results revealed increased taxonomic and functional similarity of previously distinct reef fish assemblages following mass coral bleaching, with changes characterized by subtle, but significant, shifts toward predominance of small‐bodied, algal‐farming habitat generalists. Furthermore, while the taxonomic or functional richness of fish assemblages did not change across all habitats, an increase in functional originality indicated an overall loss of functional redundancy. We also found that prebleaching coral composition better predicted changes in fish assemblage structure than the magnitude of coral loss. These results emphasize how measures of alpha diversity can mask important changes in the structure and functioning of ecosystems as assemblages reorganize. Our findings also highlight the role of coral species composition in structuring communities and influencing the diversity of responses of reef fishes to disturbance. As new coral species configurations emerge, their desirability will hinge upon the composition of associated species and their capacity to maintain key ecological processes in spite of ongoing disturbances.  相似文献   

10.
Understanding the degree of connectivity between coastal and island landscapes and nearby coral reefs is vital to the integrated management of terrestrial and marine environments in the tropics. Coral reef fish are capable of navigating appropriate settlement habitats following their pelagic larval phase, but the mechanisms by which they do this are unclear. The importance of olfactory cues in settlement site selection has been demonstrated, and there is increasing evidence that chemical cues from terrestrial sources may be important for some species. Here, we test the olfactory preferences of eight island-associated coral reef fish recruits and one generalist species to discern the capacity for terrestrial cue recognition that may aid in settlement site selection. A series of pairwise choice experiments were used to evaluate the potential role that terrestrial, water-borne olfactory cues play in island-reef recognition. Olfactory stimuli tested included near-shore water, terrestrial rainforest leaf litter, and olfactory cues collected from different reef types (reefs surrounding vegetated islands, and reefs with no islands present). All eight island-associated species demonstrated high levels of olfactory discrimination and responded positively toward olfactory cues indicating the presence of a vegetated island. We hypothesize that although these fish use a suite of cues for settlement site recognition, one mechanism in locating their island/reef habitat is through the olfactory cues produced by vegetated islands. This research highlights the role terrestrial olfactory cues play in large-scale settlement site selection and suggests a high degree of ecosystem connectivity.  相似文献   

11.
Determining how prey learn the identity of predators and match their vigilance with current levels of threat is central to understanding the dynamics of predator–prey systems and the determinants of fitness. Our study explores how feeding history influences the relative importance of olfactory and visual sensory modes of learning, and how the experience gained through these sensory modes influences behaviour and survival in the field for a juvenile coral reef damselfish. We collected young fish immediately prior to their settlement to benthic habitats. In the laboratory, these predator-naïve fish were exposed to a high- or low-food ration and then conditioned to recognize the olfactory cues (odours) and/or visual cues from two common benthic predators. Fish were then allowed to settle on reefs in the field, and their behaviour and survival over 70 h were recorded. Feeding history strongly influenced their willingness to take risks in the natural environment. Conditioning in the laboratory with visual, olfactory or both cues from predators led fish in the field to display risk-averse behaviour compared with fish conditioned with sea water alone. Well-fed fish that were conditioned with visual, chemical or a combination of predator cues survived eight times better over the first 48 h on reefs than those with no experience of benthic predator cues. This experiment highlights the importance of a flexible and rapid mechanism of learning the identity of predators for survival of young fish during the critical life-history transition between pelagic and benthic habitats.  相似文献   

12.
Environmental cues like sound, magnetic field, oceanic currents, water chemistry or habitat structure are believed to play an important role in the orientation of reef fish towards their settlement habitat. Some species of coral reef fish are known to use seagrass beds and mangroves as juvenile habitats. Once oceanic larvae of these fish have located a coral reef from the open ocean, they still have to find embayments or lagoons harbouring these juvenile habitats. The sensory mechanisms that are used for this are still unknown. In the present study, experiments were conducted to investigate if recruits of the French grunt (Haemulon flavolineatum) respond to habitat differences in water type, as mangrove/seagrass water may differ in biotic and abiotic compounds from coral reef water. Our results show that post-larvae of a reef fish that is highly associated with mangroves and seagrass beds during its juvenile life stage, choose significantly more often for water from mangroves and seagrass beds than for water from the coral reef. These results provide a more detailed insight in the mechanisms that play a role in the detection of these juvenile habitats.  相似文献   

13.
The global degradation of coral reefs is having profound effects on the structure and species richness of associated reef fish assemblages. Historically, variation in the composition of fish communities has largely been attributed to factors affecting settlement of reef fish larvae. However, the mechanisms that determine how fish settlers respond to different stages of coral stress and the extent of coral loss on fish settlement are poorly understood. Here, we examined the effects of habitat degradation on fish settlement using a two-stage experimental approach. First, we employed laboratory choice experiments to test how settlers responded to early and terminal stages of coral degradation. We then quantified the settlement response of the whole reef fish assemblage in a field perturbation experiment. The laboratory choice experiments tested how juveniles from nine common Indo-Pacific fishes chose among live colonies, partially degraded colonies, and dead colonies with recent algal growth. Many species did not distinguish between live and partially degraded colonies, suggesting settlement patterns are resilient to the early stages of declining coral health. Several species preferred live or degraded corals, and none preferred to associate with dead, algal-covered colonies. In the field experiment, fish recruitment to coral colonies was monitored before and after the introduction of a coral predator (the crown-of-thorns starfish) and compared with undisturbed control colonies. Starfish reduced live coral cover by 95–100%, causing persistent negative effects on the recruitment of coral-associated fishes. Rapid reductions in new recruit abundance, greater numbers of unoccupied colonies and a shift in the recruit community structure from one dominated by coral-associated fishes before degradation to one predominantly composed of algal-associated fish species were observed. Our results suggest that while resistant to coral stress, coral death alters the process of replenishment of coral reef fish communities.  相似文献   

14.
Predation is an important but often fluctuating selection factor for prey animals. Accordingly, individuals plastically adopt antipredator strategies in response to current predation risk. Recently, it was proposed that predation risk also plastically induces neophobia (an antipredator response towards novel cues). Previous studies, however, do not allow a differentiation between general neophobia and sensory channel-specific neophobic responses. Therefore, we tested the neophobia hypothesis focusing on adjustment in shoaling behavior in response to a novel cue addressing a different sensory channel than the one from which predation risk was initially perceived. From hatching onwards, juveniles of the cichlid Pelvicachromis taeniatus were exposed to different chemical cues in a split-clutch design: conspecific alarm cues which signal predation risk and heterospecific alarm cues or distilled water as controls. At 2 months of age, their shoaling behavior was examined prior and subsequent to a tactical disturbance cue. We found that fish previously exposed to predation risk formed more compact shoals relative to the control groups in response to the novel disturbance cue. Moreover, the relationship between shoal density and shoal homogeneity was also affected by experienced predation risk. Our findings indicate predator-induced, increased cross-sensory sensitivity towards novel cues making neophobia an effective antipredator mechanism.  相似文献   

15.
In recent decades, the Florida reef tract has lost over 95% of its coral cover. Although isolated coral assemblages persist, coral restoration programs are attempting to recover local coral populations. Listed as threatened under the Endangered Species Act, Acropora cervicornis is the most widely targeted coral species for restoration in Florida. Yet strategies are still maturing to enhance the survival of nursery‐reared outplants of A. cervicornis colonies on natural reefs. This study examined the survival of 22,634 A. cervicornis colonies raised in nurseries along the Florida reef tract and outplanted to six reef habitats in seven geographical subregions between 2012 and 2018. A Cox proportional hazards regression was used within a Bayesian framework to examine the effects of seven variables: (1) coral‐colony size at outplanting, (2) coral‐colony attachment method, (3) genotypic diversity of outplanted A. cervicornis clusters, (4) reef habitat, (5) geographical subregion, (6) latitude, and (7) the year of monitoring. The best models included coral‐colony size at outplanting, reef habitat, geographical subregion, and the year of monitoring. Survival was highest when colonies were larger than 15 cm (total linear extension), when outplanted to back‐reef and fore‐reef habitats, and when outplanted in Biscayne Bay and Broward–Miami subregions, in the higher latitudes of the Florida reef tract. This study points to several variables that influence the survival of outplanted A. cervicornis colonies and highlights a need to refine restoration strategies to help restore their population along the Florida reef tract.  相似文献   

16.
The distribution and abundance of reef fishes in relation to habitat structure were studied within Bar Reef Marine Sanctuary (BRMS) and on an adjacent reef, disturbed by destructive fishing techniques, in north-western Sri Lanka, by visually censusing 135 species groups using fifty metre belt-transects. Two types of continental shelf patch-reefs are found in the study area: coral reefs and sandstone reefs, which are divided into distinct habitats, four for the coral reef (shallow reef flat, shallow patch reef, deep reef flat and Porites domes) and two for the sandstone reef (structured sandstone-reef and flat sandstone-reef). Fish assemblages varied in structure between reef types and among habitats within reef types. Functional aspects of habitat structure and composition, such as available food and shelter, seemed to be important factors influencing distribution patterns. The strongest separation in the organisation of fish assemblages in BRMS was between reef types: 19% of all species were confined to the coral-reef patches while 22% were restricted to the sandstone reef patches and 59% were represented on both reef types. In terms of distribution among habitats, 21% of all species were restricted to one habitat while only 1.5% were present in all. The highest density of fish was in the coral reef habitats while highest species diversity was found in the most structurally complex habitat: the structured sandstone-reef. This habitat also had the highest proportion of species with restricted distribution. Planktivores were the most abundant trophic group in BRMS, and the species composition of the group varied among habitats. The comparison of the disturbed reef with BRMS suggested that habitat alteration caused by destructive fishing methods has strongly influenced the fish community. Within the fished area the structure of the fish assemblages was more heterogeneous, fish abundance was lower by an order of magnitude and species numbers were lower than in BRMS.  相似文献   

17.
While it is generally assumed that specialist species are more vulnerable to disturbance compared with generalist counterparts, this has rarely been tested in coastal marine ecosystems, which are increasingly subject to a wide range of natural and anthropogenic disturbances. Habitat specialists are expected to be more vulnerable to habitat loss because habitat availability exerts a greater limitation on population size, but it is also possible that specialist species may escape effects of disturbance if they use habitats that are generally resilient to disturbance. This study quantified specificity in use of different coral species by six coral‐dwelling damselfishes (Chromis viridis, C. atripectoralis, Dascyllus aruanus, D. reticulatus, Pomacentrus moluccensis, and P. amboinensis) and related habitat specialization to proportional declines in their abundance following habitat degradation caused by outbreaks of the coral eating starfish, Acanthaster planci. The coral species preferred by most coral‐dwelling damselfishes (e.g., Pocillopora damicornis) were frequently consumed by coral eating crown‐of‐thorns starfish, such that highly specialized damselfishes were disproportionately affected by coral depletion, despite using a narrower range of different coral species. Vulnerability of damselfishes to this disturbance was strongly correlated with both their reliance on corals and their degree of habitat specialization. Ongoing disturbances to coral reef ecosystems are expected, therefore, to lead to fundamental shifts in the community structure of fish communities where generalists are favored over highly specialist species.  相似文献   

18.
The swimming behaviour of coral‐reef fish larvae from 20 species of 10 different families was tested under natural and artificial sound conditions. Underwater sounds from reef habitats (barrier reef, fringing reef and mangrove) as well as a white noise were broadcasted in a choice chamber experiment. Sixteen of the 20 species tested significantly reacted to at least one of the habitat playback conditions, and a range of responses was observed: fishes were (1) attracted by a single sound but repelled by none (e.g. white‐banded triggerfish Rhinecanthus aculeatus was attracted by the barrier‐reef sound), (2) repelled by one or more sounds but attracted by none (e.g. bridled cardinalfish Pristiapogon fraenatus was repelled by the mangrove and the bay sounds), (3) attracted by all sounds (e.g. striated surgeonfish Ctenochaetus striatus), (4) attracted and repelled by several sounds (e.g. whitetail dascyllus Dascyllus aruanus was attracted by the barrier‐reef sound and repelled by the mangrove sound) and (5) not influenced by any sound (e.g. convict surgeonfish Acanthurus triostegus). Overall, these results highlight two settlement strategies: a direct selection of habitats using sound (45% of the species), or a by‐default selection by avoidance of certain sound habitats (35%). These results also clearly demonstrated the need to analyse the influence of sounds at the species‐specific level since congeneric and confamilial species can express different behaviours when exposed to the same sounds.  相似文献   

19.
Topographic complexity is a key component of habitats that influences communities by modulating the interactions among individuals that drive population processes such as recruitment, competition, and predation. A broad range of disturbance agents affect biological communities indirectly through their modifications to habitat complexity. Individuals that best judge the threat of predation within their environment and can trade‐off vigilance against behaviors that promote growth will be rewarded with the highest fitness. This study experimentally examined whether topographic habitat complexity affected the way a damselfish assessed predation risk using olfactory, visual, or combined cues. Fish had higher feeding rates in the low complexity environment. In a low complexity environment, damage‐released olfactory cues and visual cues of predators complemented each other in the prey's assessment of risk. However, where complexity was high and visual cues obscured, prey had lower feeding rates and relied more heavily on olfactory cues for risk assessment. Overall, fish appear to be more conservative in the high complexity treatment. Low complexity promoted extremes of behavior, with higher foraging activity but a greater response to predation threats compared with the high complexity treatment. The degree of flexibility that individuals and species have in their ability to adjust the balance of senses used in risk assessment will determine the extent to which organisms will tolerate modifications to their habitat through disturbance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号