共查询到20条相似文献,搜索用时 15 毫秒
1.
滨海湿地生态系统微生物驱动的氮循环研究进展 总被引:5,自引:0,他引:5
滨海湿地生态系统介于陆地生态系统和海洋生态系统之间,其类型多种多样,环境差异极大,微生物种类丰富。近年来,随着人为氮源的大量输入,造成滨海湿地生态系统富营养化污染问题日趋严重。本文主要总结了滨海湿地生态系统微生物驱动的固氮、硝化、反硝化、厌氧氨氧化、NO_3~-还原成铵等主要氮循环过程,并综述了通过功能基因(如nifH、amoA、hzo、nirS、nirK、nrfA)检测微生物群落多样性及其环境影响因素的相关研究,旨在更好理解微生物驱动氮循环过程以去除氮,以期为减轻富营养化和危害性藻类爆发提供科学依据。 相似文献
2.
细菌硝酸盐异化还原成铵过程及其在河口生态系统中的潜在地位与影响 总被引:8,自引:0,他引:8
细菌硝酸盐异化还原成铵(DNRA)过程能够将河口沉积物中的硝氮转化为氨氮,是河口生态系统中潜在的重要氮循环过程之一。本文介绍DNRA机理与分类,综述河口生态系统中DNRA的地位与影响,并总结河口生态系统中几种重要生态因子对DNRA过程的调控与影响。目前DNRA的机理还有待完善。深入研究各类河口生态系统中环境因子对DNRA的调控与影响机制,并研发新的研究方法,将为我国河口地区的水资源保护和生态治理提供科学依据。 相似文献
3.
海洋氮循环过程及基于基因组代谢网络模型的预测 总被引:1,自引:0,他引:1
海洋氮循环在地球元素循环中充当着必不可少的角色。海洋氮循环是由一系列氧化还原反应构成的生物化学过程。固氮作用和氮同化作用为生态系统提供了生物可用氮(铵盐)。硝化作用可进一步将铵盐氧化为硝酸盐,硝酸盐又可以通过反硝化作用转化为氮气。整个氮循环实现了海洋中不同含氮无机盐间的转换。微生物是海洋氮循环的重要驱动者,海洋氮循环的研究可以帮助理解海洋生物与地球环境相互作用及协同演化的机制,从而更好地保护地球生态环境。随着氮循环关键微生物基因组尺度代谢网络模型的发表,研究者可以利用代谢网络模型来研究不同氮循环过程的效率、环境因子对氮循环过程的影响以及解析氮循环及生物网络的内在机理等,从而帮助人们更深入地研究海洋氮转化机制。本文主要综述了海洋氮循环过程中各个转化过程的主要微生物,以及基因组尺度代谢网络模型在分析氮循环中的应用。 相似文献
4.
【目的】通过对酸性矿山环境中嗜酸硫杆菌属(Acidithiobacillus)、脱硫弧菌属(Desulfovibrio)、钩端螺旋菌属(Leptospirillum)、硫化杆菌属(Sulfobacillus)、酸原体属(Acidiplasma)和铁质菌属(Ferroplasma)的100株冶金微生物基因组中CRISPR-Cas系统的结构特征和同源关系进行生物信息学分析,在基因组水平上解析冶金微生物基于CRISPR系统对极端环境的适应性免疫机制。【方法】从NCBI网站下载基因组序列,采用CRISPR Finder定位基因组中潜在的CRISPR簇。分析CRISPR系统的组成结构与功能:利用Clustal Omega对重复序列(repeat)分类;将间隔序列(spacer)分别与nr数据库、质粒数据库和病毒数据库比对,获得注释信息;根据Cas蛋白的种类和同源性对酸性矿山环境微生物的CRISPR-Cas系统分型。【结果】在100株冶金微生物基因组中共鉴定出415个CRISPR簇,在176个c CRISPR簇中共有80种不同的重复序列和4147条间隔序列。对重复序列分类,发现12类重复序列均能形成典型的RNA二级结构,Cluster10中的重复序列在冶金微生物中最具有代表性。间隔序列注释结果表明,这些微生物曾遭受来自细菌质粒与病毒的攻击,并通过不同的防御机制抵抗外源核酸序列的入侵。冶金微生物细菌的大部分CRISPR-Cas系统属于I-C和I-E亚类型,而古菌的CRISPR-Cas系统多为I-D亚类型,两者基于CRISPR-Cas系统的进化过程中存在显著差异。【结论】酸性矿山环境微生物的CRISPR结构可能采用不同免疫机制介导外源核酸序列与Cas蛋白的相互作用,为进一步揭示极端环境微生物的适应性进化机理奠定了基础。 相似文献
5.
Modeling nitrogen cycling in a coastal fresh water sediment 总被引:1,自引:0,他引:1
Increased nitrogen (N) loading to coastal marine and freshwater systems is occurring worldwide as a result of human activities.
Diagenetic processes in sediments can change the N availability in these systems, by supporting removal through denitrification
and burial of organic N (Norg) or by enhancing N recycling. In this study, we use a reactive transport model (RTM) to examine N transformations in a coastal
fresh water sediment and quantify N removal rates. We also assess the response of the sediment N cycle to environmental changes
that may result from increased salinity which is planned to occur at the site as a result of an estuarine restoration project.
Field results show that much of the Norg deposited on the sediment is currently remineralized to ammonium. A rapid removal of nitrate is observed in the sediment
pore water, with the resulting nitrate reduction rate estimated to be 130 μmol N cm−2 yr−1. A model sensitivity study was conducted altering the distribution of nitrate reduction between dissimilatory nitrate reduction
to ammonium (DNRA) and denitrification. These results show a 40% decline in sediment N removal as NO
3
−
reduction shifts from denitrification to DNRA. This decreased N removal leads to a shift in sediment-water exchange flux
of dissolved inorganic nitrogen (DIN) from near zero with denitrification to 133 μmol N cm−2 yr−1 if DNRA is the dominant pathway. The response to salinization includes a short-term release of adsorbed ammonium. Additional
changes expected to result from the estuarine restoration include: lower NO
3
−
concentrations and greater SO
4
2−
concentrations in the bottom water, decreased nitrification rates, and increased sediment mixing. The effect of these changes
on net DIN flux and N removal vary based on the distribution of DNRA versus denitrification, illustrating the need for a better
understanding of factors controlling this competition. 相似文献
6.
Responses of terrestrial nitrogen pools and dynamics to different patterns of freeze‐thaw cycle: A meta‐analysis 下载免费PDF全文
Decai Gao Lei Zhang Jun Liu Bo Peng Zhenzhen Fan Weiwei Dai Ping Jiang Edith Bai 《Global Change Biology》2018,24(6):2377-2389
Altered freeze‐thaw cycle (FTC) patterns due to global climate change may affect nitrogen (N) cycling in terrestrial ecosystems. However, the general responses of soil N pools and fluxes to different FTC patterns are still poorly understood. Here, we compiled data of 1519 observations from 63 studies and conducted a meta‐analysis of the responses of 17 variables involved in terrestrial N pools and fluxes to FTC. Results showed that under FTC treatment, soil NH4+, NO3?, NO3? leaching, and N2O emission significantly increased by 18.5%, 18.3%, 66.9%, and 144.9%, respectively; and soil total N (TN) and microbial biomass N (MBN) significantly decreased by 26.2% and 4.7%, respectively; while net N mineralization or nitrification rates did not change. Temperate and cropland ecosystems with relatively high soil nutrient contents were more responsive to FTC than alpine and arctic tundra ecosystems with rapid microbial acclimation. Therefore, altered FTC patterns (such as increased duration of FTC, temperature of freeze, amplitude of freeze, and frequency of FTC) due to global climate warming would enhance the release of inorganic N and the losses of N via leaching and N2O emissions. Results of this meta‐analysis help better understand the responses of N cycling to FTC and the relationships between FTC patterns and N pools and N fluxes. 相似文献
7.
Eric W. Seabloom Peter Ruggiero Sally D. Hacker Jeremy Mull Phoebe Zarnetske 《Global Change Biology》2013,19(3):824-832
The world's coastal habitats are critical to human well‐being, but are also highly sensitive to human habitat alterations and climate change. In particular, global climate is increasing sea levels and potentially altering storm intensities, which may result in increased risk of flooding in coastal areas. In the Pacific Northwest (USA), coastal dunes that protect the coast from flooding are largely the product of a grass introduced from Europe over a century ago (Ammophila arenaria). An introduced congener (A. breviligulata) is displacing A. arenaria and reducing dune height. Here we quantify the relative exposure to storm‐wave induced dune overtopping posed by the A. breviligulata invasion in the face of projected multi‐decadal changes in sea level and storm intensity. In our models, altered storm intensity was the largest driver of overtopping extent, however the invasion by A. breviligulata tripled the number of areas vulnerable to overtopping and posed a fourfold larger exposure than sea‐level rise over multi‐decadal time scales. Our work demonstrates the importance of a transdisciplinary approach that draws on insights from ecology, geomorphology, and civil engineering to assess the vulnerability of ecosystem services in light of global change. 相似文献
8.
硝态氮异化还原机制及其主导因素研究进展 总被引:12,自引:0,他引:12
硝态氮(NO_3~-)异化还原过程通常包含反硝化和异化还原为铵(DNRA)两个方面,是土壤氮素转化的重要途径,其强度大小直接影响着硝态氮的利用和环境效应(如淋溶和氮氧化物气体排放)。反硝化和DNRA过程在反应条件、产物和影响因素等方面常会呈现出协同与竞争的交互作用机制。综述了反硝化和DNRA过程的研究进展及其二者协同竞争的作用机理,并阐述了在NO_3~-、pH、有效C、氧化还原电位(Eh)等环境条件和土壤微生物对其发生强度和产物的影响,提出了今后应在产生机理、土壤环境因素、微生物学过程以及与其他氮素转化过程耦联作用等方面亟需深入研究,以期增进对氮素循环过程的认识以及为加强氮素管理利用提供依据。 相似文献
9.
Nitrogen (N) deposition from anthropogenic sources is a global problem that can reduce biodiversity and impair ecosystem functioning through effects on soil eutrophication and acidification. While increasing controls on emissions of oxides of nitrogen (NOx) have reduced European N deposition rates from their peak in the late 20th Century, little is known about the legacy effects of N deposition in soils or the reversibility of N‐induced shifts in ecosystem processes. We studied species‐rich limestone and acidic grasslands, located in a highly polluted region that received over 3000 kg N deposition ha?1 throughout the 20th Century, followed by a decline of ~50% in NOx deposition rate in the past two decades. We investigated the effects on seasonal and annual mean concentrations of soil mineral N in experimental plots established in 1990 receiving simulated enhanced N deposition (0–140 kg N ha?1 yr?1) until 2002, both in the final year of treatment, and the subsequent 5 years of ‘recovery’ following cessation of treatments. Winter–summer cycles of N mineralization–immobilization were strongly amplified by simulated N deposition rates through the final year of treatments and into the first year of recovery, with winter concentrations of ammonium‐N in the acidic grassland and nitrate in the limestone grassland enhanced by up to 360% and 450%, respectively. Both the magnitude of the seasonal variations and the residual effects of the treatments on soil mineral N concentrations decreased progressively in the first 5 years after treatments ceased, although dose‐dependent trends remained in the acidic grassland. This study establishes that reducing N deposition rates in species‐rich grasslands can reverse eutrophication, even in soils that have experienced prolonged high rates of deposition. It provides new insight into the rates of recovery following, and effects of, declining N deposition rates with implications for restoration of species‐rich grasslands. 相似文献
10.
1. Leaf‐cutting ants (LCAs) are considered as one of the most important agents of soil disturbances that affect vegetation patterns, but these assertions are based on isolated studies or anecdotal data. In this study, meta‐analysis techniques were used to quantitatively analyse the generality of these effects and determine some of their sources of variation. 2. The results reveal the following: (i) LCA nest sites showed higher levels of soil fertility than control sites, but the key source of these nutrients is the refuse material rather than the nest soil itself; (ii) refuse material from external piles tended to be richer in nutrient content than refuse material from internal refuse chambers; (iii) nest sites from temperate habitats showed higher cation content than those located in tropical/subtropical habitats; and (iv) nest sites showed higher plant growth than adjacent non‐nest sites (especially if plants have access to the refuse) but similar plant density and plant richness. 3. As LCAs improve nutrient availability in nest sites through the accumulation of refuse material, the location of the refuse will have a relevant role affecting vegetation. LCA species with external refuse dumps could benefit herbs, early vegetation stages and short‐living plants, whereas those with internal refuse chambers could benefit long‐living, large trees. However, the positive effect on individual plants does not extend to population and community levels. The foraging preferences of ants and the changes in microclimatic conditions around nests could act as selective ecological filters. 4. As refuse material from external piles and nest sites in temperate habitats tend to show higher fertility than refuse material from internal nest chambers and nest sites in tropical/subtropical habitats, LCA species with external refuse dumps in temperate regions could be of particular relevance for nutrient cycling and vegetation patterns. 相似文献
11.
12.
去除根系和凋落物对滨海沙地3种防护林土壤碳氮库的短期影响 总被引:4,自引:0,他引:4
以福建长乐滨海沙地上3种人工林(尾巨桉、纹荚相思、木麻黄)土壤为研究对象,设置去除凋落物、去除根系和对照3种处理,观测1年后分析改变地上、地下有机质输入对沙地土壤碳氮储量、可溶性有机碳(DOC)氮(DON)和微生物量碳(MBC)氮(MBN)的影响。结果表明:不同树种人工林间土壤碳氮储量无显著差异;不同树种人工林间土壤活性碳氮组分差异显著,木麻黄土壤DOC含量显著高于纹荚相思,纹荚相思土壤DON显著高于木麻黄和尾巨桉,尾巨桉土壤MBN显著高于木麻黄和纹荚相思。改变地上地下有机质输入对滨海沙地土壤碳氮库有显著影响且这种影响随树种而异。去除凋落物后纹荚相思、木麻黄土壤碳储量分别下降38.0%、25.1%,氮储量分别下降12.9%、12.5%;去除凋落物后尾巨桉、纹荚相思、木麻黄土壤DOC分别下降37.5%、30.6%、52.9%,MBC分别下降31.0%、56.9%、29.7%,MBN分别下降50.7%、34.9%、42.2%;去除根系后尾巨桉、纹荚相思土壤MBC分别下降57.7%、15.4%。回归分析显示,滨海沙地土壤DOC、MBC与土壤碳储量呈显著正相关,土壤DOC和MBC分别能够解释土壤碳储量变化的47.7%和57.7%。研究表明:树种通过调控地上、地下输入影响可溶性有机碳氮和微生物量碳氮,进而影响土壤碳氮库。 相似文献
13.
14.
Invasive plants have different effects on trophic structure of green and brown food webs in terrestrial ecosystems: a meta‐analysis 下载免费PDF全文
Although invasive plants are a major source of terrestrial ecosystem degradation worldwide, it remains unclear which trophic levels above the base of the food web are most vulnerable to plant invasions. We performed a meta‐analysis of 38 independent studies from 32 papers to examine how invasive plants alter major groupings of primary and secondary consumers in three globally distributed ecosystems: wetlands, woodlands and grasslands. Within each ecosystem we examined if green (grazing) food webs are more sensitive to plant invasions compared to brown (detrital) food webs. Invasive plants have strong negative effects on primary consumers (detritivores, bacterivores, fungivores, and/or herbivores) in woodlands and wetlands, which become less abundant in both green and brown food webs in woodlands and green webs in wetlands. Plant invasions increased abundances of secondary consumers (predators and/or parasitoids) only in woodland brown food webs and green webs in wetlands. Effects of invasive plants on grazing and detrital food webs clearly differed between ecosystems. Overall, invasive plants had the most pronounced effects on the trophic structure of wetlands and woodlands, but caused no detectable changes to grassland trophic structure. 相似文献
15.
Interactive effects of global change factors on soil respiration and its components: a meta‐analysis 下载免费PDF全文
Lingyan Zhou Xuhui Zhou Junjiong Shao Yuanyuan Nie Yanghui He Liling Jiang Zhuoting Wu Shahla Hosseini Bai 《Global Change Biology》2016,22(9):3157-3169
As the second largest carbon (C) flux between the atmosphere and terrestrial ecosystems, soil respiration (Rs) plays vital roles in regulating atmospheric CO2 concentration ([CO2]) and climatic dynamics in the earth system. Although numerous manipulative studies and a few meta‐analyses have been conducted to determine the responses of Rs and its two components [i.e., autotrophic (Ra) and heterotrophic (Rh) respiration] to single global change factors, the interactive effects of the multiple factors are still unclear. In this study, we performed a meta‐analysis of 150 multiple‐factor (≥2) studies to examine the main and interactive effects of global change factors on Rs and its two components. Our results showed that elevated [CO2] (E), nitrogen addition (N), irrigation (I), and warming (W) induced significant increases in Rs by 28.6%, 8.8%, 9.7%, and 7.1%, respectively. The combined effects of the multiple factors, EN, EW, DE, IE, IN, IW, IEW, and DEW, were also significantly positive on Rs to a greater extent than those of the single‐factor ones. For all the individual studies, the additive interactions were predominant on Rs (90.6%) and its components (≈70.0%) relative to synergistic and antagonistic ones. However, the different combinations of global change factors (e.g., EN, NW, EW, IW) indicated that the three types of interactions were all important, with two combinations for synergistic effects, two for antagonistic, and five for additive when at least eight independent experiments were considered. In addition, the interactions of elevated [CO2] and warming had opposite effects on Ra and Rh, suggesting that different processes may influence their responses to the multifactor interactions. Our study highlights the crucial importance of the interactive effects among the multiple factors on Rs and its components, which could inform regional and global models to assess the climate–biosphere feedbacks and improve predictions of the future states of the ecological and climate systems. 相似文献
16.
We used the ecosystem process model Biome‐BGC to simulate the effects of harvest and residue removal management scenarios on soil carbon (C), available soil nitrogen (N), net primary production (NPP), and net ecosystem production (NEP) in jack pine (Pinus banksiana Lamb.) and sugar maple (Acer saccharum Marsh) ecosystems in northern Wisconsin, USA. To assess harvest effects, we simulated short (50‐year) and long (100‐year) harvest intervals, high (clear‐cut) and low (selective) harvest intensities, and three levels of residue retention (15%, 25%, and 35%) over a 500‐year period. The model simulation of NPP, soil C accumulation, and NEP agreed reasonably well with biometric and eddy‐covariance measurements of these two ecosystems. The more intensive (50‐year rotation clear‐cuts with low residue retention) harvest scenarios tended to have the greatest NEP (420 and 678 t C ha?1 for the 500‐year interval for jack pine and sugar maple, respectively). All the harvest scenarios decreased mineral soil C and available mineral soil N content relative to the no‐harvest scenario for jack pine and sugar maple. The rate of change in mineral soil C decreased the greatest in the most intensive biomass removal scenarios (?0.012 and ?0.072 t C ha?1 yr?1 relative to no‐harvest for jack pine and sugar maple, respectively) and the smallest decrease was observed in the least intensive biomass removal scenarios (?0.002 and ?0.009 t C ha?1 yr?1 relative to no‐harvest for jack pine and sugar maple, respectively). The more intensive biomass removal harvest scenarios in sugar maple significantly decreased peak productivity (NPP) in the simulation period. 相似文献
17.
湿润持续时间对生物土壤结皮固氮活性的影响 总被引:2,自引:0,他引:2
土壤可利用氮是干旱半干旱区生态系统中除水分之外的关键限制因子,研究湿润持续时间和温度变化对温性荒漠藻类结皮和藓类结皮固氮活性的影响,对于深入认识和准确评价全球变化大背景下生物土壤结皮对区域生态系统的氮贡献至关重要。通过野外调查采样,在一次较大降水事件发生后,利用开顶式生长室,采用乙炔还原法连续测定了沙坡头地区人工植被区和天然植被区两类典型生物土壤结皮固氮活性的变化,分析了湿润持续时间和模拟增温对其固氮活性的影响。研究结果表明:在经历31d持续干旱,降水发生后第4天两类结皮的固氮活性达到最大,此后随样品水分含量下降,至第10天其固氮活性将至最低;结皮固氮活性与水分含量之间呈显著的二次函数关系,其固氮活性随水分含量的增加呈先上升后下降的趋势,藻类结皮的固氮活性显著高于藓类结皮;短期模拟增温并不能显著提高其固氮活性,增温主要通过加速结皮水分散失来影响其固氮活性。上述结果反映了水分是控制生物土壤结皮固氮活性的关键因子,而实验前样品所经历的环境条件则决定了降水发生后其到达最大固氮速率的时间,野外长期观测结合控制严格的室内实验才能准确评价生物土壤结皮对区域生态系统的氮贡献。 相似文献
18.
19.
20.
1. Stressful abiotic conditions and mycorrhizal fungi have both been shown to influence plant quality significantly, yet the interactive effects of these factors on relationships among plants, herbivores, and natural enemies remain unclear. 2. In this study, the results of a factorial field experiment are reported in which the effects of plant stress and mycorrhizae on density and parasitism of three herbivores of Baccharis halimifolia L. were examined. 3. Plant stress was increased by adding salt to the soil, and association with mycorrhizal fungi was increased by inoculating plant roots. 4. Inoculation with mycorrhizal fungi resulted in increased density of all three herbivore species, but the effects of mycorrhizae on parasitism varied by species and with soil salinity levels. For the gall maker Neolasioptera lathami Gagne, mycorrhizae decreased parasitism regardless of soil salinity levels. For the leaf miners Amauromyza maculosa Malloch and Liriomyza trifolii Burgess, mycorrhizae effectively negated the decrease in parasitism resulting from increased salinity. 5. The results of this study show that the effects of mycorrhizae on parasitism may be context dependent, and can be positive or negative depending upon species and environmental conditions. 相似文献