首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The worry of potential residual renal cancer cells in donor kidney after resection of small renal cancer impedes the extensive use of such controversial donor source. To explore the impacts of organ preservation process on the survival of renal cancer cells, we detected cell proliferation and viability of benign and malignant renal cell lines and clinical renal samples after treated with simulated organ preservation process. It was found that the viability and proliferation of malignant renal cells are inhibited much more than that of benign renal cells during prolonged organ preservation. The inhibition of proliferation in benign renal cells is fully reversible, while in malignant renal cancer cells is not fully reversible after a certain time. So potential residual renal cancer cells could be partly inhibited and eliminated by organ preservation process.  相似文献   

2.
Cold perfusion through the renal arteries during renal ischemia has been suggested to diminish postoperative renal damage after juxtarenal aortic aneurysm repair. As the kidneys play a key role in dimethylarginine metabolism, which in turn is associated with renal hemodynamics, we hypothesized that the protective effect of cold perfusion is associated with a preserved renal extraction of dimethylarginines. Renal ischemia was induced in three groups of anesthetized Wistar rats (n = 7/group), which underwent suprarenal aortic clamping (45 min) with no perfusion (group 1), renal perfusion with 37°C saline (group 2), or renal perfusion with 4°C saline (group 3), respectively, followed by 90 min of renal reperfusion in all groups. The sham group had no clamping. In group 3 (renal ischemia with cold perfusion), postoperative serum creatinine levels as well as the presence of luminal lipocalin-2 and its associated brush-border damage were lower compared with groups 1 and 2 (P < 0.05). Also, renal extraction of asymmetrical (ADMA) and symmetrical (SDMA) dimethylarginine as well as the arginine/ADMA ratio, which defines the bioavailability of nitric oxide, remained intact in group 3 only (P < 0.04). The arginine/ADMA ratio correlated with cortical flow, lipocalin-2, and creatinine rises. Warm and cold renal perfusion (groups 2 and 3) during ischemia were similarly effective in lowering protein nitrosylation levels, renal leukocyte accumulation, neutrophil gelatinase-associated lipocalin (NGAL) expression in distal tubules, and urine NGAL (P < 0.05). These data support the use of cold renal perfusion during renal ischemia in situations where renal ischemia is inevitable, as it reduces tubular damage and preserves renal extraction of dimethylarginines. Renal perfusion with saline per se during renal ischemia is effective in diminishing renal leukocyte accumulation and oxidative stress.  相似文献   

3.
A case of a renal artery stenosis and ipsilateral renal cell carcinoma with long term results is reported. A 65-year-old man with renovascular hypertension, renal insufficiency, and nephrotic range proteinuria presented with an incidental renal cell carcinoma. Concomitant in situ left partial nephrectomy and splenorenal arterial bypass was achieved. The patient is doing well without evidence of malignancy, stable renal function, markedly improved proteinuria and stable blood pressure more than three years later. The techniques of this procedure are detailed and underscore the possibility of successful removal of a renal cell carcinoma with preservation of renal function despite renal artery stenosis.  相似文献   

4.
In congestive heart failure, renal blood flow is decreased and renal vascular resistance is increased in a setting of increased activity of both the sympathetic nervous and renin-angiotensin systems. The renal vasoconstrictor response to renal nerve stimulation is enhanced. This is associated with an abnormality in the low-pass filter function of the renal vasculature wherein higher frequencies (> or =0.01 Hz) within renal sympathetic nerve activity are not normally attenuated and are passed into the renal blood flow signal. This study tested the hypothesis that excess angiotensin II action mediates the abnormal frequency response characteristics of the renal vasculature in congestive heart failure. In anesthetized rats, the renal vasoconstrictor response to graded frequency renal nerve stimulation was significantly greater in congestive heart failure than in control rats. Losartan attenuated the renal vasoconstrictor response to a significantly greater degree in congestive heart failure than in control rats. In control rats, the frequency response of the renal vasculature was that of a first order (-20 dB/frequency decade) low-pass filter with a corner frequency (-3 dB, 30% attenuation) of 0.002 Hz and 97% attenuation (-30 dB) at > or =0.1 Hz. In congestive heart failure rats, attenuation did not exceed 45% (-5 dB) over the frequency range of 0.001-0.6 Hz. The frequency response of the renal vasculature was not affected by losartan treatment in control rats but was completely restored to normal by losartan treatment in congestive heart failure rats. The enhanced renal vasoconstrictor response to renal nerve stimulation and the associated abnormality in the frequency response characteristics of the renal vasculature seen in congestive heart failure are mediated by the action of angiotensin II on renal angiotensin II AT1 receptors.  相似文献   

5.
Although obstructive uropathies are frequently correctable through surgery, the potential for permanent renal injury remains even following the successful correction of obstructions. Little is known about the intrinsic mechanisms that determine the reversibility of renal injuries. We and others found that exogenous bone morphogenic protein 7 (BMP-7) inhibits the pathogenesis of renal injury. Here, we examine the role of endogenous BMP-7 in the outcome of renal recovery following the correction of obstructive uropathies using a reversible murine model of ureteral obstruction. The role of BMP-7 was determined by examining the regulation of BMP-7 during renal recovery and by treating with either BMP-7-neutralizing antibodies or exogenous BMP-7. While BMP-7 is upregulated following the correction of obstructions that lead to reversible renal injury, the upregulation of BMP-7 is diminished following the correction of prolonged obstructions that lead to irreversible renal injury. The activation of the BMP-7 pathway is required for several processes that contribute to renal recovery including the suppression of transforming growth factor-β-dependent profibrotic pathways, the restoration of renal architecture, and the resolution of fibrotic changes in the kidney. Importantly, the therapeutic restoration of BMP-7 enhances renal recovery following the correction of prolonged obstructions that typically lead to irreversible renal injury. Together, these findings show that, while BMP-7 plays a critical role in the repair of obstruction-induced renal injuries, the potential for renal recovery from prolonged obstruction is diminished, in part, due to the dysregulation of BMP-7. Accordingly, renal recovery from obstructive uropathies may be optimized through timely intervention and adjuvant approaches to restore BMP-7 activity.  相似文献   

6.
We showed that renal calpain 10, a mitochondrial and cytosolic Ca(2+)-regulated cysteine protease, is specifically decreased in kidneys of diabetic rats and mice, and is associated with diabetic nephropathy. The goals of this study were to examine renal calpain 10 and mitochondrial dysfunction in streptozotocin-induced hyperglycemic rats and determine the effects of siRNA-mediated knock down of renal calpain 10 on mitochondrial function. Four weeks after streptozotocin injection, calpain 10 protein and mRNA were decreased and calpain 10 substrates accumulated. We detected increased state 2 respiration in isolated renal mitochondria and increased markers of mitochondrial fission and mitophagy. All changes were prevented by daily insulin injection. Compared to scrambled siRNA, calpain 10 siRNA resulted in a marked decrease in renal calpain 10 at 2, 5 and 7 days. In concert with the loss of renal calpain 10, calpain 10 substrates accumulated, mitochondrial fusion decreased, mitochondrial fission and mitophagy increased. In summary, insulin-sensitive hyperglycemia induced loss of renal calpain 10 is correlated with renal mitochondrial dysfunction, fission and mitophagy, and specific depletion of renal calpain 10 produces similar mitochondrial defects. These results provide evidence that diabetes-induced renal mitochondrial dysfunction and renal injury may directly result from the loss of renal calpain 10.  相似文献   

7.
Tubulointerstitial fibrosis is a hallmark feature of chronic renal injury. Specific therapies to control the progression of renal fibrosis towards end-stage renal failure are still limited. Transforming growth factor-beta1 (TGF-beta1) has been identified as a major mediator of renal fibrosis. Recent reports have suggested that Bone Morphogenic Protein-7 (BMP-7), another member of the TGF-beta superfamily, accelerates repair of acute renal injury and ameliorates progression of chronic renal fibrosis in a variety of animal models. Interestingly, BMP-7, an endogenous molecule which is present in the normal kidney, vastly decreases its expression during renal injury. Although, the mechanism of BMP-7 action in the kidney is not yet fully understood, the idea of an endogenous molecule with reno-protective function is intriguing.  相似文献   

8.
Renal expression of the klotho gene is markedly suppressed in chronic kidney disease (CKD). Since renal fibrosis is the final common pathology of CKD, we tested whether decreased Klotho expression is a cause and/or a result of renal fibrosis in mice and cultured renal cell lines. We induced renal fibrosis by unilateral ureteral obstruction (UUO) in mice with reduced Klotho expression (kl/+ mice) and compared them with wild-type mice. The UUO kidneys from kl/+ mice expressed significantly higher levels of fibrosis markers such as α-smooth muscle actin (α-SMA), fibronectin, and transforming growth factor-β(1) (TGF-β(1)) than those from wild-type mice. In addition, in cultured renal fibroblast cells (NRK49F), the levels of α-SMA and PAI1 expression were significantly suppressed by addition of recombinant Klotho protein to the medium. The similar effects were observed by a TGF-β(1) receptor inhibitor (ALK5 inhibitor). These observations suggest that low renal Klotho expression enhances TGF-β(1) activity and is a cause of renal fibrosis. On the other hand, TGF-β(1) reduced Klotho expression in renal cultured epithelial cells (inner medullary collecting duct and human renal proximal tubular epithelium), suggesting that low renal Klotho expression is a result of renal fibrosis. Taken together, renal fibrosis can trigger a deterioration spiral of Klotho expression, which may be involved in the pathophysiology of CKD progression.  相似文献   

9.
Renal injury due to ischemia-reperfusion (I/R) is the major cause of acute kidney injury. Whether enhanced susceptibility to renal injury due to I/R can be programmed during fetal life is unknown. Epidemiological studies indicate that low birth weight (LBW) individuals are more susceptible to renal injury than normal birth weight (NBW) individuals. Thus, the aim of this study was to test the hypothesis that LBW is associated with an increased susceptibility to renal injury induced by mild renal I/R (15-min ischemia). Systemic and renal hemodynamic parameters were determined in NBW and LBW adult male rats after mild renal I/R; renal superoxide production and tubular injury were also assessed. A subgroup was pretreated with tempol, a superoxide dismutase mimetic, initiated 15 min before ischemia. Mild renal I/R did not alter renal hemodynamic parameters, induce tubular injury, or induce superoxide production in NBW rats. However, renal hemodynamic parameters declined, superoxide production increased, and histological indicators of tubular injury were present following mild renal I/R in LBW rats. Acute treatment with tempol prevented these alterations in LBW rats subjected to mild renal I/R. Thus, these findings suggest that adverse conditions during fetal life can compromise the renal response to subtle insults leading to an increased susceptibility to renal injury, suggesting that LBW individuals may be an "at risk" population for renal disease. Additionally, the outcome of tempol treatment proposes a possible mechanistic pathway involved in mediating enhanced susceptibility to renal injury programmed during fetal life.  相似文献   

10.
U C Kopp 《Federation proceedings》1985,44(13):2834-2839
Evidence supporting the existence of renorenal reflexes is reviewed. Renal mechanoreceptors (MR) and afferent renal nerve fibers are localized in the corticomedullary region and in the wall of the renal pelvis. Stimulating renal MR by increased ureteral pressure (increases UP) or increased renal venous pressure (increases RVP) and renal chemoreceptors (CR) by retrograde ureteropelvic perfusion with 0.9 M NaCl results in increased ipsilateral afferent renal nerve activity (ARNA) in a variety of species. However, renorenal reflex responses to renal MR and CR differ among species. In the dog, stimulating renal MR results in a modest contralateral excitatory renorenal reflex response with contralateral renal vasoconstriction that is integrated at the supraspinal level. Renal CR stimulation is without effect on systemic and renal function. However, in the rat the responses to renal MR and CR stimulation are opposite to those of the dog. Increased ureteral pressure, renal venous pressure, or retrograde ureteropelvic perfusion with 0.9 M NaCl each results in a receptor-specific contralateral inhibitory renorenal reflex response. The afferent limb consists of increased ipsilateral ARNA and the efferent limb of decreased contralateral efferent RNA with contralateral diuresis and natriuresis. The renorenal reflex responses to MR and CR stimulation are integrated at the supraspinal level.  相似文献   

11.
Normal human renal function is characterized by a large renal reserve. Recruitment of this reserve is a compensatory and pathological response to renal injury. This study was designed to assess the renal reserve and central hemodynamics of young female baboons and, in doing so, the appropriateness of the use of these animals in a model of human renal disease. Eight female baboons completed the protocol. PAH and inulin clearances were measured before and after an amino acid infusion. Central hemodynamics were measured with arterial and pulmonary artery catheters. Effective renal plasma flow and glomerular filtration rate increased by 42% after amino acid infusion (P = .025). Expansion of renal function was not consistent among individual baboons; two of the eight animals did not demonstrate renal reserve. Central hemodynamics were unaffected by the protocol.  相似文献   

12.
Renal ischaemia reperfusion injury (IRI) is a common cause of acute kidney injury (AKI) in patients and occlusion of renal blood flow is unavoidable during renal transplantation. Experimental models that accurately and reproducibly recapitulate renal IRI are crucial in dissecting the pathophysiology of AKI and the development of novel therapeutic agents. Presented here is a mouse model of renal IRI that results in reproducible AKI. This is achieved by a midline laparotomy approach for the surgery with one incision allowing both a right nephrectomy that provides control tissue and clamping of the left renal pedicle to induce ischaemia of the left kidney. By careful monitoring of the clamp position and body temperature during the period of ischaemia this model achieves reproducible functional and structural injury. Mice sacrificed 24 hr following surgery demonstrate loss of renal function with elevation of the serum or plasma creatinine level as well as structural kidney damage with acute tubular necrosis evident. Renal function improves and the acute tissue injury resolves during the course of 7 days following renal IRI such that this model may be used to study renal regeneration. This model of renal IRI has been utilized to study the molecular and cellular pathophysiology of AKI as well as analysis of the subsequent renal regeneration.  相似文献   

13.
In rats, stimulation of renal mechanoreceptors by increasing ureteral pressure results in a contralateral inhibitory renorenal reflex response consisting of increases in ipsilateral afferent renal nerve activity, decreases in contralateral efferent renal nerve activity, and increases in contralateral urine flow rate and urinary sodium excretion. Mean arterial pressure is unchanged. To study possible functional central interaction among the afferent renal nerves and the aortic and carotid sinus nerves, the responses to renal mechanoreceptor stimulation were compared in sinoaortic denervated rats and sham-denervated rats before and after vagotomy. In contrast to sham-denervated rats, there was an increase in mean arterial pressure in response to renal mechanoreceptor stimulation in sinoaortic-denervated rats. However, there were no differences in the renorenal reflex responses among the groups. Thus, our data failed to support a functional central interaction among the renal, carotid sinus, and aortic afferent nerves in the renorenal reflex response to renal mechanoreceptor stimulation. Studies to examine peripheral interaction between efferent and afferent renal nerves showed that marked reduction in efferent renal nerve activity produced by spinal cord section at T6, ganglionic blockade, volume expansion, or stretch of the junction of superior vena cava and right atrium abolished the responses in afferent renal nerve activity and contralateral renal function to renal mechanoreceptor stimulation. Conversely, increases in efferent renal nerve activity caused by thermal cutaneous stimulation increased basal afferent renal nerve activity and its responses to renal mechanoreceptor stimulation. These data suggest a facilitatory role of efferent renal nerves on renal sensory receptors.  相似文献   

14.
15.
Symptomatic anemia is a common complication of chronic renal failure. Treatment is now possible with the availability of recombinant human erythropoietin (epoetin alfa). Previous experimental studies have suggested that correcting the anemia of chronic renal failure may be harmful in that renal failure may be accelerated. Although experience with this drug has been primarily restricted to its use in patients with end-stage renal disease, several recent trials have been reported in patients with varying degrees of chronic renal failure. We review these studies with particular reference to the progression of renal failure and the drug''s reported side effects. We conclude that the use of epoetin is beneficial and well tolerated and that there is no compelling evidence for the acceleration of renal failure associated with its use in patients.  相似文献   

16.
Emerging evidence supports the pivotal role of renal microvascular disease as a determinant of tubulo-interstitial and glomerular fibrosis in chronic kidney disease. An intact microcirculation is vital to restore blood flow to the injured tissues, which is a crucial step to achieve a successful repair response. The purpose of this review is to discuss the impact and mechanisms of the functional and structural changes of the renal microvascular network, as well as the role of these changes in the progression and irreversibility of renal injury. Damage of the renal microcirculation and deterioration of the angiogenic response may constitute early steps in the complex pathways involved in progressive renal injury. There is limited but provocative evidence that stimulation of vascular proliferation and repair may stabilize renal function and slow the progression of renal disease. The feasibility of novel potential therapeutic interventions for stabilizing the renal microvasculature is also discussed. Targeted interventions to enhance endogenous renoprotective mechanisms focused on the microcirculation, such as cell-based therapy or the use of angiogenic cytokines have shown promising results in some experimental and clinical settings.  相似文献   

17.
In a study of renal function in multiple myeloma seven patients presented with renal failure and three developed it 16-106 months after diagnosis. All were dialysed. Infection with dehydration was a precipitating factor in all seven cases of acute or acute on chronic renal failure. Of these, two patients recovered normal renal function and one other was left with permanent renal impairment but no longer required dialysis. Results from the seven patients with acute renal failure and for the three with more chronic features support the practice of dialysis for all patients who present with renal failure. Dialysis is not indicated for those patients with progressive myelomatous disease. The study showed no evidence that chemotherapy permitted recovery from established renal failure. The prognosis in this elderly group is heavily dependent on the presence of cardiovascular or other degenerative disease.  相似文献   

18.
Orthostatic renal arteriography has served to provide better delineation of the renal arteries, to better define stenotic lesions of these vessels and to point to a possible relationship between excessive renal mobility and the development of mural hyperplasias of the renal artery. It is suggested that where facilities permit, orthostatic renal arteriography be employed as a method of obtaining a better understanding of renal artery architecture and function in patients who are being studied for secondary hypertension.  相似文献   

19.
Activation of renal mechanosensory nerves is enhanced by high and suppressed by low sodium dietary intake. Afferent renal denervation results in salt-sensitive hypertension, suggesting that activation of the afferent renal nerves contributes to water and sodium balance. Another model of salt-sensitive hypertension is the endothelin B receptor (ETBR)-deficient rat. ET and its receptors are present in sensory nerves. Therefore, we examined whether ET receptor blockade altered the responsiveness of the renal sensory nerves. In anesthetized rats fed high-sodium diet, renal pelvic administration of the ETBR antagonist BQ-788 reduced the afferent renal nerve activity (ARNA) response to increasing renal pelvic pressure 7.5 mmHg from 26+/-3 to 9+/-3% and the PGE2-mediated renal pelvic release of substance P from 9+/-1 to 3+/-1 pg/min. Conversely, in rats fed low-sodium diet, renal pelvic administration of the ETAR antagonist BQ-123 enhanced the ARNA response to increased renal pelvic pressure from 9+/-2 to 23+/-6% and the PGE2-mediated renal pelvic release of substance P from 0+/-0 to 6+/-1 pg/min. Adding the ETAR antagonist to ETBR-blocked renal pelvises restored the responsiveness of renal sensory nerves in rats fed a high-sodium diet. Adding the ETBR antagonist to ETAR-blocked pelvises suppressed the responsiveness of the renal sensory nerves in rats fed a low-sodium diet. In conclusion, activation of ETBR and ETAR contributes to the enhanced and suppressed responsiveness of renal sensory nerves in conditions of high- and low-sodium dietary intake, respectively. Impaired renorenal reflexes may contribute to the salt-sensitive hypertension in the ETBR-deficient rat.  相似文献   

20.
慢性肾脏疾病患者的肾功能会随时间的推移而进行性恶化,肾实质细胞进行性丧失及细胞外基质蛋白过度沉积将导致肾纤维化形成,肾纤维化进行性发展将最终走向终末期肾衰竭。肝细胞生长因子(HGF)及其受体c-Met对肾发育和急性肾损伤后的肾脏再生修复具有重要作用,在慢性肾衰竭及肾纤维化时,HGF还具有营养肾脏及抗肾纤维化的作用。简要综述了HGF抑制肾纤维化形成的细胞分子机制的研究进展,提示HGF在治疗肾纤维化方面所具有的前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号