首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seed limitation can narrow down the number of coexisting plant species, limit plant community productivity, and also constrain community responses to changing environmental and biotic conditions. In a 10-year full-factorial experiment of seed addition, fertilisation, warming and herbivore exclusion, we tested how seed addition alters community richness and biomass, and how its effects depend on seed origin and biotic and abiotic context. We found that seed addition increased species richness in all treatments, and increased plant community biomass depending on nutrient addition and warming. Novel species, originally absent from the communities, increased biomass the most, especially in fertilised plots and in the absence of herbivores, while adding seeds of local species did not affect biomass. Our results show that seed limitation constrains both community richness and biomass, and highlight the importance of considering trophic interactions and soil nutrients when assessing novel species immigrations and their effects on community biomass.  相似文献   

2.
Biological invasions severely impact native plant communities, causing dramatic shifts in species composition and the restriction of native species to spatially isolated refuges. Competition from resident species and the interaction between resource limitation and competition have been overlooked as mechanisms of community resistance in refugia habitats. We examined the importance of these factors in determining the resistance of California serpentine plant communities to invasion by three common European grasses, Avena barbata, Bromus diandrus, and Hordeum murinum. We added seeds of each of these grasses to plots subjected to six levels of resource addition (N, P, Ca, H2O, all resources together, and a no-addition control) and two levels of competition (with resident community present or removed). Resource limitation and competition had strong effects on the biomass and reproduction of the three invaders. The addition of all resources together combined with the removal of the resident community yielded individual plants that were fourfold to 20-fold larger and sixfold to 20-fold more fecund than plants from control plots. Competitor removal alone yielded invaders that were twofold to sevenfold larger and twofold to ninefold more fecund. N addition alone or in combination with other resources led to a twofold to ninefold increase in the biomass and fecundity of the invaders. No other resource alone significantly affected native or invader performance, suggesting that N was the key limiting resource during our experiment. We found a significant interaction between abiotic and biotic resistance for Bromus, which experienced increased competitive suppression in fertilized plots. The threefold increase in resident biomass with N addition was likely responsible for this result. Our results confirm that serpentine plant communities are severely N limited, which, in combination with competition from resident species, promotes the resistance of these systems to invasions. Our work suggests that better understanding the relative sensitivities of invaders and residents to the physical environment is critical to predicting how abiotic and biotic factors interact to determine community resistance.  相似文献   

3.
Changes in the terrestrial carbon cycle may ameliorate or exacerbate future climatic warming. Research on this topic has focused almost exclusively on abiotic drivers, whereas biotic factors, including trophic interactions, have received comparatively little attention. We quantified the singular and interactive effects of herbivore exclusion and simulated warming on ecosystem CO2 exchange over two consecutive growing seasons in West Greenland. Exclusion of caribou and muskoxen over the past 8 years has led to dramatic increases in shrub cover, leaf area, ecosystem photosynthesis, and a nearly threefold increase in net C uptake. These responses were accentuated by warming, but only in the absence of herbivores. Carbon cycle responses to herbivore exclusion alone and combined with warming were driven by changes in gross ecosystem photosynthesis, as limited differences in ecosystem respiration were observed. Our results show that large herbivores can be of critical importance as mediators of arctic ecosystem responses to climate change.  相似文献   

4.
1. How herbivore plant diversity relationships are shaped by the interplay of biotic and abiotic environmental variables is only partly understood. For instance, plant diversity is commonly assumed to determine abundance and richness of associated specialist herbivores. However, this relationship can be altered when environmental variables such as temperature covary with plant diversity. 2. Using gall‐inducing arthropods as focal organisms, biotic and abiotic environmental variables were tested for their relevance to specialist herbivores and their relationship to host plants. In particular, the hypothesis that abundance and richness of gall‐inducing arthropods increase with plant richness was addressed. Additionally, the study asked whether communities of gall‐inducing arthropods match the communities of their host plants. 3. Neither abundance nor species richness of gall‐inducing arthropods was correlated with plant richness or any other of the tested environmental variables. Instead, the number of gall species found per plant decreased with plant richness. This indicates that processes of associational resistance may explain the specialised plant herbivore relationship in our study. 4. Community composition of gall‐inducing arthropods matched host plant communities. In specialised plant herbivore relationships, the presence of obligate host plant species is a prerequisite for the occurrence of its herbivores. 5. It is concluded that the abiotic environment may only play an indirect role in shaping specialist herbivore communities. Instead, the occurrence of specialist herbivore communities might be best explained by plant species composition. Thus, plant species identity should be considered when aiming to understand the processes that shape diversity patterns of specialist herbivores.  相似文献   

5.
Grasslands are subject to considerable alteration due to human activities globally, including widespread changes in populations and composition of large mammalian herbivores and elevated supply of nutrients. Grassland soils remain important reservoirs of carbon (C) and nitrogen (N). Herbivores may affect both C and N pools and these changes likely interact with increases in soil nutrient availability. Given the scale of grassland soil fluxes, such changes can have striking consequences for atmospheric C concentrations and the climate. Here, we use the Nutrient Network experiment to examine the responses of soil C and N pools to mammalian herbivore exclusion across 22 grasslands, under ambient and elevated nutrient availabilities (fertilized with NPK + micronutrients). We show that the impact of herbivore exclusion on soil C and N pools depends on fertilization. Under ambient nutrient conditions, we observed no effect of herbivore exclusion, but under elevated nutrient supply, pools are smaller upon herbivore exclusion. The highest mean soil C and N pools were found in grazed and fertilized plots. The decrease in soil C and N upon herbivore exclusion in combination with fertilization correlated with a decrease in aboveground plant biomass and microbial activity, indicating a reduced storage of organic matter and microbial residues as soil C and N. The response of soil C and N pools to herbivore exclusion was contingent on temperature – herbivores likely cause losses of C and N in colder sites and increases in warmer sites. Additionally, grasslands that contain mammalian herbivores have the potential to sequester more N under increased temperature variability and nutrient enrichment than ungrazed grasslands. Our study highlights the importance of conserving mammalian herbivore populations in grasslands worldwide. We need to incorporate local‐scale herbivory, and its interaction with nutrient enrichment and climate, within global‐scale models to better predict land–atmosphere interactions under future climate change.  相似文献   

6.
The determinants of local species richness in plant communities have been the subject of much debate. Is species richness the result of stochastic events such as dispersal processes, or do local environmental filters sort species into communities according to their ecological niches? Recent studies suggest that these two processes simultaneously limit species richness, although their relative importance may vary in space and time. Understanding the limiting factors for species richness is especially important in light of the ongoing global warming, as new species establish in resident plant communities as a result of climate‐driven migration. We examined the relative importance of dispersal and environmental filtering during seedling recruitment and plant establishment in an alpine plant community subjected to seed addition and long‐term experimental warming. Seed addition increased species richness during the seedling recruitment stage, but this initial increase was cancelled out by a corresponding decrease in species richness during plant establishment, suggesting that environmental filters limit local species richness in the long term. While initial recruitment success of the sown species was related to both abiotic and biotic factors, long‐term establishment was controlled mainly by biotic factors, indicating an increase in the relative importance of biotic interactions once plants have germinated in a microhabitat with favourable abiotic conditions. The relative importance of biotic interactions also seemed to increase with experimental warming, suggesting that increased competition within the resident vegetation may decrease community invasibility as the climate warms.  相似文献   

7.
Abstract. Insights into the ecology of historic invasions by introduced species can be gained by studying long‐term patterns of invasions by native species. In this paper, we review literature in palaeo‐ecology, forest‐stand simulation modelling, and historical studies of plant species invasions to illustrate the relevance of biological inertia in plant communities to invasion ecology. Resistance to invasion occurs in part because of environmental, demographic, and biotic factors influencing the arrival and establishment of invading species. We propose that biological inertia within the resident community is a fourth component of resistance to invasion, because of the lag time inherent in eliminating resident species and perhaps their traces after environmental conditions become suitable for invasion by immigrating species. Whether or not an introduced species invades can be conditioned by the presence of the pre‐existing community (and/or its legacy) in addition to the other biotic and abiotic factors.  相似文献   

8.
Anthropogenic vectors have moved marine species around the world leading to increased invasions and expanded species'' ranges. The biotic resistance hypothesis of Elton (in The ecology of invasions by animals and plants, 1958) predicts that more diverse communities should have greater resistance to invasions, but experiments have been equivocal. We hypothesized that species richness interacts with other factors to determine experimental outcomes. We manipulated species richness, species composition (native and introduced) and availability of bare space in invertebrate assemblages in a marina in Monterey, CA. Increased species richness significantly interacted with both initial cover of native species and of all organisms to collectively decrease recruitment. Although native species decreased recruitment, introduced species had a similar effect, and we concluded that biotic resistance is conferred by total species richness. We suggest that contradictory conclusions in previous studies about the role of diversity in regulating invasions reflect uncontrolled variables in those experiments that modified the effect of species richness. Our results suggest that patches of low diversity and abundance may facilitate invasions, and that such patches, once colonized by non-indigenous species, can resist both native and non-indigenous species recruitment.  相似文献   

9.
There is a poor understanding of the importance of biotic interactions in determining species distributions with climate change. Theory from invasion biology suggests that the success of species introductions outside of their historical ranges may be either positively (biotic acceptance) or negatively (biotic resistance) related to native biodiversity. Using data on fish community composition from two survey periods separated by approximately 28 years during which climate was warming, we examined the factors influencing the establishment of three predatory centrarchids: Smallmouth Bass (Micropterus dolomieu), Largemouth Bass (M. salmoides), and Rock Bass (Ambloplites rupestris) in lakes at their expanding northern range boundaries in Ontario. Variance partitioning demonstrated that, at a regional scale, abiotic factors play a stronger role in determining the establishment of these species than biotic factors. Pairing lakes within watersheds where each species had established with lakes sharing similar abiotic conditions where the species had not established revealed both positive and negative relationships between the establishment of centrarchids and the historical presence of other predatory species. The establishment of these species near their northern range boundaries is primarily determined by abiotic factors at a regional scale; however, biotic factors become important at the lake‐to‐lake scale. Studies of exotic species invasions have previously highlighted how spatial scale mediates the importance of abiotic vs. biotic factors on species establishment. Our study demonstrates how concepts from invasion biology can inform our understanding of the factors controlling species distributions with changing climate.  相似文献   

10.
Communities are assembled from species that evolve or colonise a given geographic region, and persist in the face of abiotic conditions and interactions with other species. The evolutionary and colonisation histories of communities are characterised by phylogenetic diversity, while functional diversity is indicative of abiotic and biotic conditions. The relationship between functional and phylogenetic diversity infers whether species functional traits are divergent (differing between related species) or convergent (similar among distantly related species). Biotic interactions and abiotic conditions are known to influence macroecological patterns in species richness, but how functional and phylogenetic diversity of guilds vary with biotic factors, and the relative importance of biotic drivers in relation to geographic and abiotic drivers is unknown. In this study, we test whether geographic, abiotic or biotic factors drive biome‐scale spatial patterns of functional and phylogenetic diversity and functional convergence in vertebrate herbivores across the Arctic tundra biome. We found that functional and phylogenetic diversity both peaked in the western North American Arctic, and that spatial patterns in both were best predicted by trophic interactions, namely vegetation productivity and predator diversity, as well as climatic severity. Our results show that both bottom–up and top–down trophic interactions, as well as winter temperatures, drive the functional and phylogenetic structure of Arctic vertebrate herbivore assemblages. This has implications for changing Arctic ecosystems; under future warming and northward movement of predators potential increases in phylogenetic and functional diversity in vertebrate herbivores may occur. Our study thus demonstrates that trophic interactions can determine large‐scale functional and phylogenetic diversity just as strongly as abiotic conditions.  相似文献   

11.
Herbivores in nutrient‐limited systems such as arctic tundra have been suggested to play a minor role in controlling plant growth simply because they are relatively few in number. However, theory predicts that as net primary productivity (NPP) increases because of greater inputs of nutrients or energy, herbivores may have greater effects on plant growth. This prediction has not been tested in the context of climate warming in arctic tundra, which may increase soil nutrient availability and thus NPP. We examined a long‐term experiment that excluded small and large mammalian herbivores and increased soil nutrients in two arctic Alaskan tundra communities: dry heath (DH) and moist acidic tussock (MAT). In the ninth year of manipulations, we measured weekly growth of three plant species of three growth forms: tussock‐forming graminoid, rhizomatous graminoid, and dwarf deciduous shrub, in each community. All species grew better when fertilized. In DH, this increase in growth was exaggerated when plants were protected from herbivores, confirming that herbivory had a negative effect on plant growth under increased nutrient conditions, but was unimportant under ambient soil conditions. However, in MAT, the importance of herbivory differed among species with fertilization. The tussock‐forming sedge at MAT, Eriophorum vaginatum, grew better and flowered more when fenced under both ambient and amended nutrients compared to plants exposed to herbivores. This species decreases in abundance in long‐term fertilized plots when mammals are present, and our results suggest that herbivory may be accounting for at least some of that loss, in addition to shifts in competitive relationships. Although we only focused on individual plants here rather than the entire community, our results suggest that under the increased soil nutrient conditions expected with continued climate warming in the Arctic, herbivores may become more important in affecting several abundant tundra plant populations, and should not be ignored.  相似文献   

12.
Biological invasions are a major threat to natural biodiversity; hence, understanding the mechanisms underlying invasibility (i.e., the susceptibility of a community to invasions by new species) is crucial. Invasibility of a resident community may be affected by a complex but hitherto hardly understood interplay of (1) productivity of the habitat, (2) diversity, (3) herbivory, and (4) the characteristics of both invasive and resident species. Using experimental phytoplankton microcosms, we investigated the effect of nutrient supply and species diversity on the invasibility of resident communities for two functionally different invaders in the presence or absence of an herbivore. With increasing nutrient supply, increased herbivore abundance indicated enhanced phytoplankton biomass production, and the invasion success of both invaders showed a unimodal pattern. At low nutrient supply (i.e., low influence of herbivory), the invasibility depended mainly on the competitive abilities of the invaders, whereas at high nutrient supply, the susceptibility to herbivory dominated. This resulted in different optimum nutrient levels for invasion success of the two species due to their individual functional traits. To test the effect of diversity on invasibility, a species richness gradient was generated by random selection from a resident species pool at an intermediate nutrient level. Invasibility was not affected by species richness; instead, it was driven by the functional traits of the resident and/or invasive species mediated by herbivore density. Overall, herbivory was the driving factor for invasibility of phytoplankton communities, which implies that other factors affecting the intensity of herbivory (e.g., productivity or edibility of primary producers) indirectly influence invasions.  相似文献   

13.
Aim We test how productivity, disturbance rate, plant functional composition and species richness gradients control changes in the composition of high‐latitude vegetation during recent climatic warming. Location Northern Fennoscandia, Europe. Methods We resampled tree line ecotone vegetation sites sampled 26 years earlier. To quantify compositional changes, we used generalized linear models to test relationships between compositional changes and environmental gradients. Results Compositional changes in species abundances are positively related to the normalized difference vegetation index (NDVI)‐based estimate of productivity gradient and to geomorphological disturbance. Competitive species in fertile sites show the greatest changes in abundance, opposed to negligible changes in infertile sites. Change in species richness is negatively related to initial richness, whereas geomorphological disturbance has positive effects on change in richness. Few lowland species have moved towards higher elevations. Main conclusions The sensitivity of vegetation to climate change depends on a complex interplay between productivity, physical and biotic disturbances, plant functional composition and richness. Our results suggest that vegetation on productive sites, such as herb‐rich deciduous forests at low altitudes, is more sensitive to climate warming than alpine tundra vegetation where grazing may have strong buffering effects. Geomorphological disturbance promotes vegetation change under climatic warming, whereas high diversity has a stabilizing effect.  相似文献   

14.

Background

Increasing rates of change in climate have been observed across the planet and have contributed to the ongoing range shifts observed for many species. Although ecologists are now using a variety of approaches to study how much and through what mechanisms increasing temperature and nutrient pollution may influence the invasions inherent in range shifts, accurate predictions are still lacking.

Methods and Results

In this study, we conducted a factorial experiment, simultaneously manipulating warming, nitrogen addition and introduction of Pityopsis aspera, to determine how range-shifting species affect a plant community. We quantified the resident community using ordination scores, then used structural equation modeling to examine hypotheses related to how plants respond to a network of experimental treatments and environmental variables. Variation in soil pH explained plant community response to nitrogen addition in the absence of invasion. However, in the presence of invasion, the direct effect of nitrogen on the community was negligible and soil moisture was important for explaining nitrogen effects. We did not find effects of warming on the native plant community in the absence of invasion. In the presence of invasion, however, warming had negative effects on functional richness directly and invasion and herbivory explained the overall positive effect of warming on the plant community.

Conclusions and Significance

This work highlights the variation in the biotic and abiotic factors responsible for explaining independent and collective climate change effects over a short time scale. Future work should consider the complex and non-additive relationships among factors of climate change and invasion in order to capture more ecologically relevant features of our changing environment.  相似文献   

15.
The plant metabolite composition is modulated by various abiotic and biotic factors including nutrient availability and herbivory. In turn, induced changes in plant quality can affect herbivore performance and mediate indirect interactions between spatially separated herbivores sharing a host. Studies on plant-mediated herbivore interactions have been carried out at single fertilization regimes only, but we hypothesized that nutrient availability modifies these interactions. Therefore, we studied the interactions between two vascular tissue herbivores, the aboveground feeding aphid Brevicoryne brassicae and the belowground infesting nematode Heterodera schachtii, on Arabidopsis thaliana grown under two nitrate fertilization conditions (varying by 33 %). Furthermore, we investigated plant growth and primary metabolic responses to fertilization and herbivore treatments, which could potentially mediate these interactions, as the herbivores may act as metabolic sinks. Whereas nematodes had no effects on aphids, aphid presence influenced nematodes in opposite directions, depending on fertilization: at low nitrate supply, aphids had a promoting effect on nematodes, whereas at high nitrate fertilization they lowered the nematode infestation compared to control plants. Plants produced significantly more biomass under high nitrate supply but C and N contents were not altered. Primary metabolite profiles differed only marginally between roots of both fertilization treatments in plants with and without aphids, indicating that nematodes may respond to these or other metabolic modifications, which are caused by minute environmental changes, in a sensitive way. Our results highlight the need to consider the importance of plant nutrient availability on the outcome of interactions between co-occurring herbivores in future studies.  相似文献   

16.
Popp  Manuel R.  Kalwij  Jesse M. 《Plant Ecology》2021,222(4):421-432

Montane ecosystems are more prone to invasions by exotic plant species than previously thought. Besides abiotic factors, such as climate and soil properties, plant-plant interactions within communities are likely to affect the performance of potential invaders in their exotic range. The biotic resistance hypothesis predicts that high indigenous species richness hampers plant invasions. The biotic acceptance hypothesis, on the other hand, predicts a positive relationship between indigenous and exotic species richness. We tested these two hypotheses using observational data along an elevational gradient in a southern African biodiversity hotspot. Species composition data of indigenous and exotic plants were recorded in 20 road verge plots along a gradient of 1775–2775 m a.s.l. in the Drakensberg, South Africa. Plots were 2?×?50 m in size and positioned at 50 m elevational intervals. We found a negative correlation between indigenous and exotic richness for locations with poorly developed mineral soils, suggesting biotic resistance through competitive interactions. A strong positive correlation for plots with very shallow soils at high elevations indicated a lack of biotic resistance and the possibility of facilitating interactions in harsher environments. These results suggest that biotic resistance is restricted to the lower and mid elevations while biotic acceptance prevails in presence of severe abiotic stress, potentially increasing the risk of plant invasions into montane biodiversity hotspots.

  相似文献   

17.
A meta-analysis of biotic resistance to exotic plant invasions   总被引:12,自引:0,他引:12  
Biotic resistance describes the ability of resident species in a community to reduce the success of exotic invasions. Although resistance is a well‐accepted phenomenon, less clear are the processes that contribute most to it, and whether those processes are strong enough to completely repel invaders. Current perceptions of strong, competition‐driven biotic resistance stem from classic ecological theory, Elton's formulation of ecological resistance, and the general acceptance of the enemies‐release hypothesis. We conducted a meta‐analysis of the plant invasions literature to quantify the contribution of resident competitors, diversity, herbivores and soil fungal communities to biotic resistance. Results indicated large negative effects of all factors except fungal communities on invader establishment and performance. Contrary to predictions derived from the natural enemies hypothesis, resident herbivores reduced invasion success as effectively as resident competitors. Although biotic resistance significantly reduced the establishment of individual invaders, we found little evidence that species interactions completely repelled invasions. We conclude that ecological interactions rarely enable communities to resist invasion, but instead constrain the abundance of invasive species once they have successfully established.  相似文献   

18.
In contrast to expectations of the enemy release hypothesis, but consistent with the notion of biotic resistance, we found that native generalist crayfishes preferred exotic over native freshwater plants by a 3 : 1 ratio when plants were paired by taxonomic relatedness. Native crayfishes also preferred exotic over native plants when tested across 57 native and 15 exotic plants found growing sympatrically at 11 sites throughout the southeastern USA. Exotic grass carp that share little evolutionary history with most of these plants exhibited no preference for native vs. exotic species. Analyses of three terrestrial data sets showed similar patterns, with native herbivores generally preferring exotic plants, while exotic herbivores rarely exhibited a preference. Thus, exotic plants may escape their coevolved herbivores only to be preferentially consumed by the native generalist herbivores in their new ranges, suggesting that native herbivores may provide biotic resistance to plant invasions.  相似文献   

19.
Kari Klanderud  Ørjan Totland 《Oikos》2007,116(8):1279-1288
Most studies on factors determining diversity are conducted in temperate or warm regions, whereas studies in climatically harsh and low productivity areas, such as alpine regions, are rare. We examined the relative roles of seed availability and different biotic and abiotic factors for the diversity of an alpine plant community in southern Norway. Furthermore, because climate warming is predicted to be an important driver of alpine species diversity, we assessed how the relative impacts of dispersal and local interactions on diversity might change under experimental warming (open top chambers, OTCs).
Addition of seeds from 27 regional species increased community diversity. The establishment of the species was negatively related both to the diversity of the existing system and the cover of the abundant dwarf shrub Dryas octopetala . These results show that both species dispersal limitation and local biotic interactions are important factors for alpine plant community diversity. Despite relatively harsh environmental conditions and low productivity, competition from the resident vegetation appeared to have a greater role for species establishment and diversity than facilitation and experimental warming. Higher temperature appeared to increase the negative relationship between resident species diversity and species establishment. This may suggest that climate warming can increase the role of interspecific competition for alpine plant community structure, and thus alter the long-term effects of biotic interactions on diversity.  相似文献   

20.
Attempting to control invasive plant species in tallgrass prairie restorations is time-consuming and costly, making improved approaches for predicting and reducing invasion imperative. Both biotic and abiotic factors mediate plant invasions, and can potentially be used by restoration managers to reduce invasion rates. Biotic factors such as plant species richness and phylogenetic diversity of the native community may impact invasion. Relatedness of invading species to those in recipient communities has also been shown to influence invasion success. However, the direction of this influence is variable, reflecting Darwin’s Naturalization Conundrum. Abiotic factors such as fire regime and soil factors may impact invasion by selecting against invasive species or indicating suitable habitats for them. We surveyed 17 tallgrass prairie restorations in Illinois, USA, to investigate the effects of biotic and abiotic factors on invasion by non-native plant species at two different scales. We predicted we would find support for Darwin’s Naturalization Hypothesis at the plot (neighborhood) scale with invasion by distantly related species, and find support for the Pre-adaptation Hypothesis at the site scale. We hypothesized that biotic factors would exert more influence at the neighborhood scale, while abiotic factors would be more influential at a coarser site scale. Contrary to our expectations, at the neighborhood scale we found that closely related invasive species are more likely to invade, supporting the Pre-adaptation Hypothesis. We found that native species richness and age of restoration were negatively correlated with invasion. At the site scale, soil organic matter [SOM] concentrations and heterogeneity in SOM were positively associated with the number of invasive species while pH heterogeneity was negatively associated. Restoration practitioners may be able to reduce plant invasions by increasing native species richness, and non-native species most closely related to the resident community should potentially be prioritized as those most likely to be highly invasive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号