首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Plant functional trait variation in tropical forests results from taxonomic differences in phylogeny and associated genetic differences, as well as, phenotypic plastic responses to the environment. Accounting for the underlying mechanisms driving plant functional trait variation is important for understanding the potential rate of change of ecosystems since trait acclimation via phenotypic plasticity is very fast compared to shifts in community composition and genetic adaptation. We here applied a statistical technique to decompose the relative roles of phenotypic plasticity, genetic adaptation, and phylogenetic constraints. We examined typically obtained plant functional traits, such as wood density, plant height, specific leaf area, leaf area, leaf thickness, leaf dry mass content, leaf nitrogen content, and leaf phosphorus content. We assumed that genetic differences in plant functional traits between species and genotypes increase with environmental heterogeneity and geographic distance, whereas trait variation due to plastic acclimation to the local environment is independent of spatial distance between sampling sites. Results suggest that most of the observed trait variation could not be explained by the measured environmental variables, thus indicating a limited potential to predict individual plant traits from commonly assessed parameters. However, we found a difference in the response of plant functional traits, such that leaf traits varied in response to canopy‐light regime and nutrient availability, whereas wood traits were related to topoedaphic factors and water availability. Our analysis furthermore revealed differences in the functional response of coexisting neotropical tree species, which suggests that endemic species with conservative ecological strategies might be especially prone to competitive exclusion under projected climate change.  相似文献   

2.
3.
孙鹏  韦霄  叶万辉  沈浩 《广西植物》2022,42(3):510-519
植物可以通过改变功能性状适应环境变化,不同类型的植物如何调整表型来适应环境一直是生态学研究的热点.为探究南亚热带森林不同生长型植物对异质生境的生态响应机制,该研究沿广东鼎湖山南亚热带常绿阔叶林20 hm2样地的3条山体选取不同海拔和凹凸度的27个样方(20 m×20 m)中的5种优势树种(包括2种冠层树种和3种林下层树...  相似文献   

4.
    
Maesopsis eminii is referred to as one of the most widely distributed African tree species. However, its occurrence in Africa has never been mapped and little is known as to how this species can sustain in different environments. To gain insight into Maesopsis’ ecology, we (i) made a synthesis of its functional trait data from the literature, (ii) investigated phenological patterns using data on four M. eminii trees from Yangambi, DR Congo, (iii) assessed an empirical provenance trial from Uganda on 600 Maesopsis trees and (iv) synthesized geo‐referenced point location maps of Maesopsis entailing WorldClim precipitation and temperature and FAO soils, rainfall and ecological zones for Africa. We found M. eminii to straddle the equator equidistantly in terms of latitude (10.97°N and 10.98°S) covering five forest types where twenty soil types and variable rainfall regimes support complex plant biodiversity. Maesopsis eminii was, however, largely concentrated in the tropical rainforest ecosystem which contains fertile Orthic Ferralsol soils. More than 97% of the point locations were found where annual precipitation was >1000 mm, and 82% occurred where average annual temperature was 22–28°C. Its functional traits, phenology and provenance trial findings explained its occurrence in Africa.  相似文献   

5.
    
Extreme droughts are globally increasing in frequency and severity. Most research on drought in forests focuses on the response of trees, while less is known about the impacts of drought on forest understory species and how these effects are moderated by the local environment. We assessed the impacts of a 45-day experimental summer drought on the performance of six boreal forest understory plants, using a transplant experiment with rainout shelters replicated across 25 sites. We recorded growth, vitality and reproduction immediately, 2 months, and 1 year after the simulated drought, and examined how differences in ambient soil moisture and canopy cover among sites influenced the effects of drought on the performance of each species. Drought negatively affected the growth and/or vitality of all species, but the effects were stronger and more persistent in the bryophytes than in the vascular plants. The two species associated with older forests, the moss Hylocomiastrum umbratum and the orchid Goodyera repens, suffered larger effects than the more generalist species included in the experiment. The drought reduced reproductive output in the moss Hylocomium splendens in the next growing season, but increased reproduction in the graminoid Luzula pilosa. Higher ambient soil moisture reduced some negative effects of drought on vascular plants. Both denser canopy cover and higher soil moisture alleviated drought effects on bryophytes, likely through alleviating cellular damage. Our experiment shows that boreal understory species can be adversely affected by drought and that effects might be stronger for bryophytes and species associated with older forests. Our results indicate that the effects of drought can vary over small spatial scales and that forest landscapes can be actively managed to alleviate drought effects on boreal forest biodiversity. For example, by managing the tree canopy and protecting hydrological networks.  相似文献   

6.
植物功能性状对全球气候变化的指示作用研究进展   总被引:1,自引:0,他引:1  
以大气CO2浓度升高、大气温度升高、干旱胁迫加剧及紫外辐射增强为特征的全球变化对陆地生态系统产生巨大影响,植物作为陆地生态系统的重要组成部分,其功能性状对全球变化的指示作用为探寻全球变化规律、减缓气候变化提供了科学依据。该文主要综述了植物生理功能性状改变(形态变化、气孔调节、光合结构及光合途径改变和植物光合、呼吸速率及水分生理变化等)和物候功能性状改变对全球变化的指示作用,以及植物群落物种丰富度或数量增加等群落特征变化对全球气候变暖的指示作用。最后指出,完善植物功能性状指标和建立从植物个体、群落到生态系统功能的网络指示系统是今后植物功能性状指示研究的发展方向。  相似文献   

7.
    
Plot-scale experiments indicate that functional diversity (FD) plays a pivotal role in sustaining ecosystem functions such as net primary productivity (NPP). However, the relationships between functional diversity and NPP across larger scale under varying climatic conditions are sparsely studied, despite its significance for understanding forest–atmosphere interactions and informing policy development. Hence, we examine the relationships of community-weighted mean (CWM) and functional dispersion (FDis) of woody plant traits on NPP across China and if such relationships are modulated by climatic conditions at the national scale. Using comprehensive datasets of distribution, functional traits, and productivity for 9120 Chinese woody plant species, we evaluated the distribution pattern of community-weighted mean and functional dispersion (including three orthogonal trait indicators: plant size, leaf morphology, and flower duration) and its relationships with NPP. Finally, we tested the effects of climatic conditions on community-weighted mean/functional dispersion–NPP relationships. We first found overall functional diversity–NPP relationships, but also that the magnitude of these relationships was sensitive to climate, with plant size community-weighted mean promoting NPP in warm regions and plant size functional dispersion promoting NPP in wet regions. Second, warm and wet conditions indirectly increased NPP by its positive effects on community-weighted mean or functional dispersion, particularly through mean plant size and leaf morphology. Our study provides comprehensive evidence for the relationships between functional diversity and NPP under varying climates at a large scale. Importantly, our results indicate a broadening significance of multidimensional plant functional traits for woody vegetation NPP in response to rising temperatures and wetter climates. Restoration, reforestation actions and natural capital accounting need to carefully consider not only community-weighted mean and functional dispersion but also their interactions with climate, to predict how functional diversity may promote ecosystem functioning under future climatic conditions.  相似文献   

8.
    
Climate change is pushing species towards and potentially beyond their critical thermal limits. The extent to which species can cope with temperatures exceeding their critical thermal limits is still uncertain. To better assess species' responses to warming, we compute the warming tolerance (ΔTniche) as a thermal vulnerability index, using species' upper thermal limits (the temperature at the warm limit of their distribution range) minus the local habitat temperature actually experienced at a given location. This metric is useful to predict how much more warming species can tolerate before negative impacts are expected to occur. Here we set up a cross-continental transplant experiment involving five regions distributed along a latitudinal gradient across Europe (43° N–61° N). Transplant sites were located in dense and open forests stands, and at forest edges and in interiors. We estimated the warming tolerance for 12 understory plant species common in European temperate forests. During 3 years, we examined the effects of the warming tolerance of each species across all transplanted locations on local plant performance, in terms of survival, height, ground cover, flowering probabilities and flower number. We found that the warming tolerance (ΔTniche) of the 12 studied understory species was significantly different across Europe and varied by up to 8°C. In general, ΔTniche were smaller (less positive) towards the forest edge and in open stands. Plant performance (growth and reproduction) increased with increasing ΔTniche across all 12 species. Our study demonstrated that ΔTniche of understory plant species varied with macroclimatic differences among regions across Europe, as well as in response to forest microclimates, albeit to a lesser extent. Our findings support the hypothesis that plant performance across species decreases in terms of growth and reproduction as local temperature conditions reach or exceed the warm limit of the focal species.  相似文献   

9.
亚热带次生常绿阔叶林普遍存在生长滞缓、固碳功能和经济价值低下等问题,迫切需要通过人工抚育提高其生态系统功能。对植物功能性状及其多样性的深入研究,能够找寻植物共存与群落稳定发展的内在机制,为提升森林生态系统功能的实践提供基础。为了探究人工抚育对亚热带次生常绿阔叶林质量提升的影响,以杭州午潮山国家森林公园内的次生常绿阔叶林为研究对象,实施了不同强度的抚育措施,通过群落植被复查,分析群落植物功能性状以及功能多样性对不同强度人工抚育的响应。结果发现:抚育2年后,群落最大潜在树高与叶片氮、磷、钾含量显著上升,而叶片干物质含量和叶片叶绿素含量均有显著下降,比叶面积有下降趋势,两种强度的抚育之间差异不显著;叶片干物质含量、叶绿素含量与叶片氮含量间的相关性由不显著变为了显著负相关,而叶片干物质含量与叶片叶绿素含量,叶片磷、钾含量与叶片氮含量,叶片磷含量与叶片钾含量间的相关性由不显著变为显著正相关;在20%强度抚育下,功能丰富度指数均值从对照的0.52显著下降为0.16,功能均匀度指数与功能分离度指数的均值则分别上升到0.61和0.67,显著高于对照组的0.51和0.56;在10%强度抚育下,功能丰富度有所下降,功能均匀度与功能分离度均有所上升,但差异不显著。研究表明,人工抚育在一定程度上改变了群落水平的植物功能性状与功能多样性,提高了群落植物利用资源的能力和效率;而适度的抚育强度更能解放资源空间,对群落产生的影响更加明显。该结果为亚热带次生常绿阔叶林的经营与管理提供依据与参考。  相似文献   

10.
    
Forest encroachment into savanna is occurring at an unprecedented rate across tropical Africa, leading to a loss of valuable savanna habitat. One of the first stages of forest encroachment is the establishment of tree seedlings at the forest–savanna transition. This study examines the demographic bottleneck in the seedlings of five species of tropical forest pioneer trees in a forest–savanna transition zone in West Africa. Five species of tropical pioneer forest tree seedlings were planted in savanna, mixed/transition, and forest vegetation types and grown for 12 months, during which time fire occurred in the area. We examined seedling survival rates, height, and stem diameter before and after fire; and seedling biomass and starch allocation patterns after fire. Seedling survival rates were significantly affected by fire, drought, and vegetation type. Seedlings that preferentially allocated more resources to increasing root and leaf starch (starch storage helps recovery from fire) survived better in savanna environments (frequently burnt), while seedlings that allocated more resources to growth and resource‐capture traits (height, the number of leaves, stem diameter, specific leaf area, specific root length, root‐to‐shoot ratio) survived better in mixed/transition and forest environments. Larger (taller with a greater stem diameter) seedlings survived burning better than smaller seedlings. However, larger seedlings survived better than smaller ones even in the absence of fire. Bombax buonopozense was the forest species that survived best in the savanna environment, likely as a result of increased access to light allowing greater investment in belowground starch storage capacity and therefore a greater ability to cope with fire. Synthesis: Forest pioneer tree species survived best through fire and drought in the savanna compared to the other two vegetation types. This was likely a result of the open‐canopied savanna providing greater access to light, thereby releasing seedlings from light limitation and enabling them to make and store more starch. Fire can be used as a management tool for controlling forest encroachment into savanna as it significantly affects seedling survival. However, if rainfall increases as a result of global change factors, encroachment may be more difficult to control as seedling survival ostensibly increases when the pressure of drought is lifted. We propose B. buonopozense as an indicator species for forest encroachment into savanna in West African forest–savanna transitions.  相似文献   

11.
Determinants of the occurrence of buttress and stilt roots are still poorly understood. These may be linked to individual's properties as a way to increase stability as trees get higher, to environmental factors that increase falling risks or interactions of both. We took advantage of a large dataset (presence of buttress, stilt roots, and tree diameter in 8415 trees from 35 1-ha plots in central Amazonia) to investigate how tree and environmental properties interact to determine the occurrence of support structures. We also made detailed measurements of allometry and canopy size in 67 trees of two dominant species. The probability of occurrence of support structures was modeled with multiple logistic regressions and boosted regression trees. We established a best-fitting subset model based on AIC ranking using unsupervised model selection. At the landscape scale, support structures were more common in large trees (bstd = 0.88, p < .001) and valleys (bstd = −0.09, p < .01), due to species turnover along topography and also due to intraspecific variation in the development of buttresses within species, linked to interactions of tree size and topography. The relationship between height and diameter (Height:Diameter) was the most important determinant of buttress occurrence (bstd = −1.57, p < .001). We conclude that less stable soils select a higher frequency of trees with support structures. However, coordinated allometric relationships among stem and crown sizes also influence the need of support structures. Thus, the presence of support structures depends on the interplay of individual plant's allometry and environmentally imposed conditions of instability. Abstract in Portuguese is available with online material.  相似文献   

12.
    
Understory bird communities, especially those comprising insectivores, are highly sensitive to forest loss and fragmentation. Currently, there is little knowledge regarding the large-scale diversity patterns of understory bird communities, particularly in Eastern Asia. Consequently, we aimed to identify the distribution patterns of understory birds in southern China and the factors underlying these patterns. We analysed the diversity distribution patterns of taxonomic and functional α and β diversity for understory Passeriformes birds in southern China utilising cluster and ordination analyses. Subsequently, we analysed the effects of geographic distance, annual mean temperature, annual temperature range, annual mean precipitation, and annual precipitation range on diversity distribution patterns. In total, 9282 individuals belonging to 11 orders, 48 families, and 297 species were captured over 98,544 net hours, with Alcippeidae being the most abundant family in southern China. The understory bird communities of the 25 sites were categorised into six sub-regions of the Oriental Realm (Indo-Malayan Realm). The pattern in the distribution of taxonomic and functional β-diversity of understory birds in southern China was consistent with zoogeographical regionalisation. Three distinct geographical groups were identified: Group 1 was located in the Min-Guang Coast and Hainan sub-regions; Group 2 was located in the East Hilly Plain, Southwest Mountains, and Western Mountains and Plateaus sub-regions; and Group 3 was located in the Southern Yunnan Mountain subregion. The most critical factors related to the distribution patterns of β-diversity were geographical distance, annual mean temperature, and annual temperature range. Our results showed that the understory bird communities of the Southwest Mountain, East Hilly Plain, and Western Mountains, and Plateaus sub-regions were similar, as were those of the Min-Guang Coast and Hainan sub-regions. Our results underscore the joint roles of distance, temperature, and historical evolution in understory bird communities.  相似文献   

13.
海南尖峰岭热带山地雨林林冠层树种功能多样性特征   总被引:4,自引:0,他引:4  
以海南尖峰岭热带山地雨林3块1 hm2样地为研究对象,利用11个林冠功能性状结合样地地形及林冠乔木树种样地清查数据,分别基于单维性状和多维性状比较物种多度加权对群落功能离散度指数——平均成对距离(MPD)和平均最近类群距离(MNTD)的影响;同时分析林冠层功能丰富度(FRic)与物种丰富度之间的关系,最后利用零模型探讨不同生境类型下标准化效应MPD和MNTD(经过物种多度加权且剔除群落物种丰富度差异影响)的变化,进而评价林冠层群落水平功能多样性格局及其对局域生境异质性的响应.结果表明: 功能性状维度和物种多度对MPD的影响强烈,不同维度功能性状多度加权前后MPD相关性较弱(R=0.359~0.628);但对MNTD的影响相对较弱,不同维度功能性状多度加权前后MNTD相关性较强(R=0.746~0.820);未经物种多度加权的MPD和MNTD均普遍高估了林冠层的功能离散度.林冠层功能丰富度与物种丰富度基本呈指数相关关系(F=128.20;R2=0.632;AIC=97.72;P<0.001),且功能丰富度很有可能存在一定的物种丰富度阈值.基于不同维度功能性状的林冠层功能多样性格局及其生境响应存在一定的差异性.在生物竞争激烈的低沟生境中,林冠层功能多样性倾向于比预期零模型随机产生的功能多样性高,林冠树种功能性状表现出离散分布;而在其他生境类型中,林冠层功能多样性倾向于接近或低于随机产生的功能多样性,林冠树种功能性状随机或聚集分布.  相似文献   

14.
植物间交互作用在植物群落和生态系统的组成、结构、功能等方面发挥着重要作用.在过去的森林生态系统研究中,更多地关注上层乔木之间的相互作用或乔木层对下层植被的影响,较少研究林下层植被对上层乔木生理生态和生长的影响.本文综述了去除林下层植被对土壤理化性质、土壤动物区系、凋落物分解及上层乔木生理生态和生长的影响,讨论了外界干扰对林下植被-乔木层竞争关系的影响,提出林下植被对上层乔木影响的生理生态学机理概念模型.研究区域、乔木林龄、地力条件、林下植物种类是影响林下层植被-乔木层竞争关系的重要因素.  相似文献   

15.
    
Global climate change models forecast an increasing frequency and duration of extreme flood events, including during the growing season. In this mesocosm experiment, the survival, growth, and flowering of two hydric and two mesic wetland plant species were monitored under two extreme flood regimes, namely, repeated 2‐ and 7‐day floods, and compared with unflooded conditions. Plant survival was not significantly affected by flooding, but species showed different growth and flowering responses to the flood regimes. The hydric species Cardamine pratensis showed contrasting responses to floods with significantly more flowering stems and longer leaves in the 2‐day regime but delayed and poorer flowering in the 7‐day regime. Juncus articulatus, the other hydric species, responded most actively to 7‐day flooding, with significantly longer leaves, taller and more abundant flowering stems, and more flowers than in unflooded conditions. The mesic species Ranunculus acris showed variable growth and phenological responses to flooding, whereas Scorzoneroides autumnalis was most affected by the 7‐day flood regime, producing significantly shorter leaves and flowering stems and fewer flowers earlier in the season, compared with unflooded conditions. Overall, repeated 7‐day floods had a greater impact on plant performance than 2‐day flood events. All four species showed resilience to extreme flooding, irrespective of whether they were classed as hydric or mesic, but there was differential tolerance between species. This suggests that wetlands should be able to sustain vegetation under flooding extremes induced by climate change but community composition, biodiversity, and wetland services will all be affected.  相似文献   

16.
    
In migratory songbirds, older individuals are thought to be more efficient migrants than younger individuals. Age‐specific differences in migratory efficiency have been reported mainly in respect of arrival timing, energy stores, rate of energy accumulation, departure behaviour, and departure direction. Yet, these traits were rarely assessed simultaneously in a single species. We further lack information whether age‐specific differences in behavioural traits present in autumn still manifest to the same degree in spring. Here we used the northern wheatear Oenanthe oenanthe, a long‐distance nocturnal songbird migrant, and investigated age‐specific differences in energy stores at capture (autumn: 1059 birds/spring: 803 birds), rate of energy accumulation (168/147), nocturnal departure timing (126/105), and departure direction (94/77) for both seasons. We found that in autumn, young northern wheatears departed significantly later in the night than older birds. This difference was not observed in spring. The resulting advance in nocturnal departure timing by young birds from autumn to spring may be due to learning based on experience gained during autumn, and/or to selective disappearance of those young individuals showing late departure times during autumn. We found no age‐specific difference in any of the other migratory traits investigated. To get a better understanding of age effects in songbird migrants, we need to study the potential adjustments of migratory behaviour within the individual over its life time. By individually tracking songbirds throughout their lifetime, we could start estimating whether a certain migratory decision (fuelling, departure, orientation) translates into higher (or lower) fitness, and whether individuals adjust their migratory behaviour based on learning from ‘wrong decisions’.  相似文献   

17.
为了探索青藏高原湿润地区草地的演变规律和未来对气候变化的响应,以雅家埂高山带不同海拔草地为对象,研究了草地群落特征沿海拔梯度的变化,并分析了气候因子和土壤因子对群落特征的影响。结果表明:(1)沿海拔梯度草地群落特征具有明显分异,地上生物量随海拔升高呈现显著降低,而地下生物量和群落的根冠比呈现显著增加。群落多样性指数在较低海拔间呈现显著变化,而在较高海拔间变化不明显。总体而言,随海拔升高群落多样性增大,均匀度增大。(2)不同海拔群落特征差异主要由气候因子控制,且温度起主导作用,土壤因子的解释度可忽略。(3)整个海拔梯度上群落多样性指数与生物量呈负相关关系,支持根竞争和光竞争假说。  相似文献   

18.
19.
20.
研究植物功能性状的分异,有助于理解植物适应环境的方式和策略,也能为预测物种分布和环境变化提供依据。以海南霸王岭热带云雾林为对象,建立21个20 m×20 m固定样方,划分为336个5 m×5 m小样方;测定胸径在5cm以上所有乔灌木植物个体的功能性状(叶面积LA;叶干重LDW;比叶重LMA;叶绿素含量Chl;叶厚度LTh;木材密度WD)和土壤养分含量,通过方差分解分析植物功能性状在个体、种内、种间、群落水平的分异大小,探究土壤养分对功能性状分异的影响。结果表明,LA、LDW、LMA、CHl、LTh、WD在个体、种内、种间、群落水平的解释方差范围分别为0.06—0.47、0.09—0.35、0.35—0.72、0—0.07,在个体、种内、种间、群落层次上,种间水平的功能性状分异最大,而群落水平的分异最小。逐步回归分析表明,不同尺度的功能性状变化与土壤有机质、氮和磷含量都有密切关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号