首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Activities of glycogen synthase (total) and branching enzyme in slow (soleus) muscle are higher than those in fast (vastus lateralis) muscle, while those of phosphorylase kinase (total), phosphorylase (total) and debranching enzyme are reversed. The active form ratio of glycogen synthase is higher in fast muscle, while those of phosphorylase kinase and phosphorylase are higher in slow muscle. Activities of cAMP-dependent protein kinase and protein phosphatase in slow muscle are higher than those in fast muscle. These results suggest that glycogen metabolizing enzymes in slow muscle, distinct from those in fast muscle, are regulated more strongly by cAMP-dependent protein kinase rather than by protein phosphatase.  相似文献   

3.
Differentiation of slow and fast muscles in chickens   总被引:3,自引:0,他引:3  
1. The development of the characteristic histochemical appearance of the slow anterior latissimus dorsi (ALD) and fast posterior latissimus dorsi (PLD) was studied in chickens during embryonic development as well as during regeneration of minced muscle. 2. During embryonic development the activity of the oxidative enzyme succinic dehydrogenase (SDH) is higher in the slow ALD muscle already at 16 days of incubation. At this time the fast PLD has a higher activity of the glycolytic enzyme, phosphorylase. Although the histochemical appearance of the two types of muscle is already different at 16 days, their contractile speeds are still similar. No difference in myosin ATP-ase was found in the two muscles in young embryos but in 20-day old embryos the two muscles became distinctly different when stained for this enzyme. 3. When PLD muscles in hatched chickens redeveloped during regeneration in place of ALD the histochemical characteristics of the regenerated muscle resembled ALD, and when ALD regenerated in place of PLD it resembled PLD. 4. It is concluded that the histochemical characteristics of slow and fast muscles become determined during early development, even before any difference in contractile properties can be detected and that they are determined by the nerve.  相似文献   

4.
The loss of muscle weight in the soleus (SOL) and extensor digitorum longus (EDL) muscles was compared after denervation and in the course of reflex muscle atrophy induced by unilateral fracture of metatarsal bones of the paw and local injection of 0.02 ml turpentine oil subcutaneously. This so-called reflex atrophy is significantly greater after 3 days than that after denervation. Seven days after the nociceptive stimulus, reflex and denervation atrophy are grossly similar in both muscles. This also applies in case that the nociceptive stimulus had been repeated on the third day. The EDL:SOL enzyme activities of energy supply metabolism reflect the differences between a glycolytic-aerobic (EDL) and predominantly aerobic type (SOL) of muscle. No consistent changes were found in either type of atrophy after 3 days. In 7 days' denervation, the activity of hydroxyacetyl-CoA-dehydrogenase (HOADH) and citrate synthase (CS) was decreased in the SOL, while glycerolphosphate:NAD dehydrogenase (GPDH) was enhanced. In the EDL, the activity of triosephosphate dehydrogenase (TPDH), GPDH, malate dehydrogenase (MDH), CS and HOADH was decreased. Acid phosphatase (AcP) was greatly increased in both muscles. Seven days after application of the nociceptive stimulus, all enzyme activities were altered in a grossly analogous manner as after denervation.  相似文献   

5.
6.
Serial sections of stage 18-27 HH (3-5 days of incubation) chick embryo myotomes were investigated by electron microscope. Two morphologically different types of contractile elements (myoblasts and myotubes) with an exact and constant localization were identified. Myotome sections of other chick embryos in the same stages were examined with the immunofluorescence technique, after treatment with antisera directed against fast and slow adult myosins. As from stage 24 HH, some contractile elements react positively with anti-fast adult myosin antiserum, others with anti-slow antiserum. A very precise correspondence was constantly found between the ultrastructural and immunohistochemical findings. An identical pattern was observed in the buds of the fast-twitching pectoralis major and posterior latissimus dorsi and slow-twitching anterior latissimus dorsi muscles.  相似文献   

7.
The DNA-binding HU-type proteins have been isolated from two very different strains of Rhizobiaceae: Agrobacterium tumefaciens and Rhizobium japonicum. These proteins have been called HAt and HRj respectively. Their electrophoretic mobility on polyacrylamide gel, amino acid composition and crossed immunoreactivity have been compared to that of the homologous protein isolated from Rhizobium meliloti: the protein HRm. The proteins HAt and HRm show close similarities whereas the protein HRj differs markedly from the two others. The physico-chemical characteristics of the HU-type proteins from these Rhizobiaceae are in good agreement with the respective position of these bacteria in the taxonomy.  相似文献   

8.
9.
mRNA levels for the type I and type II isoforms of sarcoplasmic reticulum (SR) Ca-ATPase were determined in soleus (SOL) and extensor digitorum longus (EDL) muscle of euthyroid (normal), hypothyroid, and hyperthyroid rats. Total Ca-ATPase mRNA content of hyperthyroid muscle was 1.5-fold (EDL) and 6-fold (SOL) higher compared to hypothyroid muscle, with corresponding increases in total SR Ca-ATPase activity. EDL contained only type II Ca-ATPase mRNA. In SOL type I mRNA was the major form in hypothyroidism (98%), but the type II mRNA content was stimulated 150-fold by T3, accounting for 50% of the Ca-ATPase mRNA in hyperthyroidism.  相似文献   

10.
1. Activities of a glycolytic enzyme--lactate dehydrogenase, LDH, and two oxidative enzymes--citrate synthase (CS), a marker for TCA cycle entry, and 3-hydroxyacyl-CoA dehydrogenase (HAD), which indicates the capacity for beta-oxidation of endogenous lipids, were measured in fast (tibialis anterior, TA, and extensor digitorum longus, EDL) and slow (soleus, SOL) muscles of Sprague-Dawley rats with intact and limited blood supply, and following treatment with the xanthine derivative torbafylline (Hoechst, Werk Albert, Wiesbaden). 2. Limitation of blood supply by unilateral ligation of the common iliac artery increased activity of LDH in fast muscles, and activity of CS and HAD in soleus. 3. Torbafylline treatment caused an increased LDH activity in intact fast muscles and decreased it in soleus, although the relative capacity for anaerobic and aerobic metabolism (indicated by the ratio of LDH and CS activities) remained unchanged in all cases. 4. Whilst having little effect on oxidative enzyme activity of fast muscles, torbafylline decreased the activity of CS but increased activity of HAD in soleus, suggesting a greater reliance on lipid metabolism. 5. The effect of arterial ligation on enzyme activity was ameliorated by treatment with torbafylline, possibly due to its effect on the microcirculation.  相似文献   

11.
12.
13.
J F Hoh 《Biochemistry》1975,14(4):742-747
Mammalian nerves to fast and slow muscles have the remarkable property of changing the speed of contraction of muscles following cross-reinnervation. The biochemical basis of speed transformation is the change in myosin in ATPase activity. This paper provides electrophoretic evidence for structural changes in myosin from cross-reinnervated muscles. A method is described for the separation of intact fast and slow muscle myosins by polyacrylamide gel electrophoresis. This method utilizes the fact that ATP and its analogs prevent the formation of myosin polymers in low ionic strength buffers. In this system, normal fast muscle myosin has a higher electrophoretic mobility than slow muscle myosin. Normal rat soleus myosin has a major slow and a minor fast component due to two populations of muscle fibers. The same muscle cross-reinnervated by a fast muscle nerve shows only the fast component, The normal, homogeneous fast extensor digitorum longus muscle has only the electrophoretically fast myosin, but following cross-reinnervation it shows both fast and slow components. These results suggest that mammalian motor nerves can induce or suppress the expression of genes that code for fast and slow skeletal muscle myosins.  相似文献   

14.
Physical exercise induces phasic changes in the tropomyosin content and metabolism in muscles and its concentration in blood. The intensive catabolic processes (decrease of 14C-leicin inclusion and time of half-life) of muscle tropomyosin and its appearance in blood were shown 2-24 hours after the exercise. Intensive anabolic processes of muscle tropomyosin were found at the late period of rest (72-144 h). These results reveal the biochemical mechanism of muscle adaptation to physical exercise. Data on the tropomyosin content in blood permit recommending tropomyosin for development of the diagnostic test of functional condition of the skeletal muscle.  相似文献   

15.
16.
Summary Synaptic terminals of fast (FCE) and slow (SCE) excitatory neurons were physiologically identified on separate fibres of one muscle, the closer muscle in lobster claws. The innervation by these identified fibers was demonstrated over long distances (7–21 m) by examining serial thin sections at periodic intervals. The ultrastructure of each type of innervation was consistent both qualitatively and quantitatively in two separate samples. The FCE innervation is relatively simple in having consistently small-diameter terminals each forming a single long synapse, with few synaptic vesicles, and little if any postsynaptic apparatus. The SCE innervation is more complex in having larger-diameter but more variable terminals forming several short synapses, with many synaptic vesicles and an extensive postsynaptic apparatus. These differences in the size of the synapses and the number of synaptic vesicles parallel differences in transmitter release and fatigue sensitivity characteristic of the two types of innervation. The degree of elaboration of the postsynaptic apparatus may reflect differences in the amount of transmitter taken up after release. Our data reveal for the first time in a single muscle differences between FCE and SCE innervation previously reported in different muscles and in different species.Supported by grants from NIH (NINCDS) to A.G. Humes and the late Fred Lang and from NSERC and Muscular Dystrophy Assoc. of Canada to C.K. GovindWe thank Lena Hill for her technical expertise and critical evaluation of the study, and Dr. A.G. Humes for providing research facilities  相似文献   

17.
Excitatory miniature postsynaptic potentials were studied by an intracellular recording method in fast and slow muscle fibers ofLocusta migratorioides. Statistical analysis showed that liberation of mediator in both types of fibers can be predicted by the formula for a negative binomial distribution with a probability of 85%. This correlation is evidence of some degree of interaction between consecutive liberations of quanta of mediator by nerve endings. It is shown that the fraction of miniature potentials depending on the external calcium concentration is greater in fast muscle fibers. An increase in the magnesium ion concentration from 2 to 40 mM led to a decrease in the frequency of miniature potentials, and this decrease was greater in fast fibers; an increase in the magnesium ion concentration from 1 to 10 mM in calcium-free solutions, on the other hand, led to some increase in frequency, and this also was greater in fast muscle fibers. It is concluded that nerve endings in fast and slow muscle fibers differ in their sensitivity to changes in the ionic composition of the medium.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 13, No. 2, pp. 210–217, March–April, 1981.  相似文献   

18.
Acetylcholine receptor in normal and denervated slow and fast muscle   总被引:7,自引:0,他引:7  
R R Almon  C G Andrew  S H Appel 《Biochemistry》1974,13(27):5522-5528
  相似文献   

19.
Components of fast and slow phases of axoplasmic flow   总被引:4,自引:2,他引:4  
Abstract— Cat ventral roots removed at times from hours to days after injection of [3H]leucine into the seventh lumbar and first sacral spinal cord segments were homogenized and subjected to sub-cellular fractionation. The soluble fraction was further analysed for protein content by column chromatography with Sephadex. The fast phase of axoplasmic flow carries down labelled free leucine, polypeptide, and soluble protein. The slow phase of axoplasmic flow carries down labelled soluble protein. The sub-cellular components were labelled with the small particulate fraction showing a higher specific activity than the other sub-cellular fractions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号