首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some naturally competent bacteria exhibit both a strong preference for DNA fragments containing specific ‘uptake sequences’ and dramatic overrepresentation of these sequences in their genomes. Uptake sequences are often assumed to directly reflect the specificity of the DNA uptake machinery, but the actual specificity has not been well characterized for any bacterium. We produced a detailed analysis of Haemophilus influenzae’s uptake specificity, using Illumina sequencing of degenerate uptake sequences in fragments recovered from competent cells. This identified an uptake motif with the same consensus as the motif overrepresented in the genome, with a 9 bp core (AAGTGCGGT) and two short flanking T-rich tracts. Only four core bases (GCGG) were critical for uptake, suggesting that these make strong specific contacts with the uptake machinery. Other core bases had weaker roles when considered individually, as did the T-tracts, but interaction effects between these were also determinants of uptake. The properties of genomic uptake sequences are also constrained by mutational biases and selective forces acting on USSs with coding and termination functions. Our findings define constraints on gene transfer by natural transformation and suggest how the DNA uptake machinery overcomes the physical constraints imposed by stiff highly charged DNA molecules.  相似文献   

2.
Many bacteria are naturally competent, able to actively transport environmental DNA fragments across their cell envelope and into their cytoplasm. Because incoming DNA fragments can recombine with and replace homologous segments of the chromosome, competence provides cells with a potent mechanism of horizontal gene transfer as well as access to the nutrients in extracellular DNA. This review starts with an introductory overview of competence and continues with a detailed consideration of the DNA uptake specificity of competent proteobacteria in the Pasteurellaceae and Neisseriaceae. Species in these distantly related families exhibit strong preferences for genomic DNA from close relatives, a self-specificity arising from the combined effects of biases in the uptake machinery and genomic overrepresentation of the sequences this machinery prefers. Other competent species tested lack obvious uptake bias or uptake sequences, suggesting that strong convergent evolutionary forces have acted on these two families. Recent results show that uptake sequences have multiple “dialects,” with clades within each family preferring distinct sequence variants and having corresponding variants enriched in their genomes. Although the genomic consensus uptake sequences are 12 and 29 to 34 bp, uptake assays have found that only central cores of 3 to 4 bp, conserved across dialects, are crucial for uptake. The other bases, which differ between dialects, make weaker individual contributions but have important cooperative interactions. Together, these results make predictions about the mechanism of DNA uptake across the outer membrane, supporting a model for the evolutionary accumulation and stability of uptake sequences and suggesting that uptake biases may be more widespread than currently thought.  相似文献   

3.
目的:21世纪以来,随着合成生物学的高速发展及其所遇到的问题,开发下一代DNA合成技术已经成为了必然趋势。基因芯片技术和DNA大片段组装技术是建立下一代DNA合成平台的关键技术力量。方法:为了开发具有工业化标准的DNA芯片一基因组合成平台,我们首次利用电化学DNA芯片和DNA大片段组装技术合成了72kb的Ostreococcusmud的全叶绿体基因组。结果:首先,我们使用电化学DNA芯片合成仪合成了564条150bp的OligoMix,并成功扩增分离了其中96%的Oligo序列,剩下的基因组序列是通过传统的固相亚磷酰胺三脂合成法合成。在此基础上,我们利用DNA重组技术将564条150bpOligo片段分三步克隆到了一个pGSYN系统。通过高通量测序,我们证实叶绿体基因组被成功地人工合成。整个合成成本大约是目前传统基因合成成本的10%.20%。结论:研究证实基因芯片技术和DNA大片段组装技术的应用是能够明显的降低现阶段基因组合成工艺的成本。新技术的成熟推广和成本的有效控制也会进一步加速科学家对基因组功能的深入研究以及合成生物学的质的飞跃。  相似文献   

4.
How mobile genetic elements molded eukaryotic genomes is a key evolutionary question that gained wider popularity when mobile DNA sequences were shown to comprise about half of the human genome. Although Saccharomyces cerevisiae does not suffer such "genome obesity", five families of LTR-retrotransposons, Ty1, Ty2, Ty3, Ty4, and Ty5 elements, comprise about 3% of its genome. The availability of complete genome sequences from several Saccharomyces species, including members of the closely related sensu stricto group, present new opportunities for analyzing molecular mechanisms for chromosome evolution, speciation, and reproductive isolation. In this review I present key experiments from both the pre- and current genomic sequencing eras suggesting how Ty elements mediate genome evolution.  相似文献   

5.
By conventional wisdom, a feature that occurs too often or too rarely in a genome can indicate a functional element. To infer functionality from frequency, it is crucial to precisely characterize occurrences in randomly evolving DNA. We find that the frequency of oligonucleotides in a genomic sequence follows primarily a Pareto-lognormal distribution, which encapsulates lognormal and power-law features found across all known genomes. Such a distribution could be the result of completely random evolution by a copying process. Our characterization of the entire frequency distribution of genomic words opens a way to a more accurate reasoning about their over- and underrepresentation in genomic sequences.  相似文献   

6.
Repeated sequence signatures are characteristic features of all genomic DNA. We have made a rigorous search for repeat genomic sequences in the human pathogens Neisseria meningitidis, Neisseria gonorrhoeae and Haemophilus influenzae and found that by far the most frequent 9–10mers residing within coding regions are the DNA uptake sequences (DUS) required for natural genetic transformation. More importantly, we found a significantly higher density of DUS within genes involved in DNA repair, recombination, restriction-modification and replication than in any other annotated gene group in these organisms. Pasteurella multocida also displayed high frequencies of a putative DUS identical to that previously identified in H.influenzae and with a skewed distribution towards genome maintenance genes, indicating that this bacterium might be transformation competent under certain conditions. These results imply that the high frequency of DUS in genome maintenance genes is conserved among phylogenetically divergent species and thus are of significant biological importance. Increased DUS density is expected to enhance DNA uptake and the over-representation of DUS in genome maintenance genes might reflect facilitated recovery of genome preserving functions. For example, transient and beneficial increase in genome instability can be allowed during pathogenesis simply through loss of antimutator genes, since these DUS-containing sequences will be preferentially recovered. Furthermore, uptake of such genes could provide a mechanism for facilitated recovery from DNA damage after genotoxic stress.  相似文献   

7.
We explored DNA structures of genomes by means of a new tool derived from the "chaotic dynamical systems" theory (the so-called chaos game representation [CGR]), which allows the depiction of frequencies of oligonucleotides in the form of images. Using CGR, we observe that subsequences of a genome exhibit the main characteristics of the whole genome, attesting to the validity of the genomic signature concept. Base concentrations, stretches (runs of complementary bases or purines/pyrimidines), and patches (over- or underexpressed words of various lengths) are the main factors explaining the variability observed among sequences. The distance between images may be considered a measure of phylogenetic proximity. Eukaryotes and prokaryotes can be identified merely on the basis of their DNA structures.  相似文献   

8.
We used synthetic oligonucleotide DNA probes specific for the four-base repetitive core sequences (GACA)n and (AGGC)n to examine human genomic variation. The results of hybridizing these oligonucleotides to human genomic digests indicate that they are useful and accessible markers for ubiquitously repeated regions of DNA in the human genome. Furthermore, these sequences appear to be highly conserved in eukaryotic genomes, but their function remains largely unknown.  相似文献   

9.
The transfer of organelle DNA fragments to the nuclear genome is frequently observed in eukaryotes. These transfers are thought to play an important role in gene and genome evolution of eukaryotes. In plants, such transfers occur from plastid to nuclear [nuclear plastid DNAs (NUPTs)] and mitochondrial to nuclear (nuclear mitochondrial DNAs) genomes. The amount and genomic organization of organelle DNA fragments have been studied in model plant species, such as Arabidopsis thaliana and rice. At present, publicly available genomic data can be used to conduct such studies in non-model plants. In this study, we analysed the amount and genomic organization of NUPTs in 17 plant species for which genome sequences are available. The amount and distribution of NUPTs varied among the species. We also estimated the distribution of NUPTs according to the time of integration (relative age) by conducting sequence similarity analysis between NUPTs and the plastid genome. The age distributions suggested that the present genomic constitutions of NUPTs could be explained by the combination of the rapidly eliminated deleterious parts and few but constantly existing less deleterious parts.  相似文献   

10.
We calculated the variation coefficients of the mononucleotide and short oligonucleotide distributions in over 1700 long genomic sequences originating from six organisms to demonstrate that the human and Escherichia coli genomic sequences were the least and the most uniform, respectively. The most non-random genomic distributions were exhibited by the four canonical nucleotides, followed by the strong and weak nucleotides, while the distributions of purine or pyrimidine nucleotides and especially the distributions of (A+C) and (G+T) were significantly more uniform even in the human genome. In the human and mouse genomes, the highest coefficients of variation were further observed with the oligonucleotides where CG was combined with the strong nucleotides while its combination with the weak nucleotides significantly decreased the variation which, however, was still very high. High variation was also exhibited by the remaining oligonucleotides composed exclusively of the strong nucleotides or those containing only weak nucleotides. On the other hand, the distributions of oligonucleotides containing similar and especially the same numbers of the strong and weak nucleotides, but no CG or TA dinucleotide, were the most uniform. The information following from the present analysis will be useful not only in the identification of important genomic regions but also in computer simulations of the genomic nucleotide sequences in order to trace and reproduce the pathways of genome evolution.  相似文献   

11.
Based on the reported cDNA sequences of BmKalphaTxs , the genes encoding toxin BmKalphaTx11 and BmKalphaTx15 were amplified by PCR from the Chinese scorpion Buthus martensii Karsch genomic DNA employing synthetic oligonucleotides. Sequences analysis of nucleotide showed that an intron about 500 bp length interrupts signal peptide coding regions of BmKalphaTx11 and BmKalphaTx15. Using cDNA sequence of BmKalphaTx11 as probe, southern hybridization of BmK genome total DNA was performed. The result indicates that BmKalphaTx11 is multicopy genes or belongs to multiple gene family with high homology genes. The similarity of BmKalpha-toxin gene sequences and southern hybridization revealed the evolution trace of BmKalpha-toxins: BmKalpha-toxin genes evolve from a common progenitor, and the genes diversity is associated with a process of locus duplication and gene divergence.  相似文献   

12.
Uptake signal sequences are DNA motifs that promote DNA uptake by competent bacteria in the family Pasteurellaceae and the genus Neisseria. The genomes of these bacteria contain many copies of their canonical uptake sequence (often >100-fold overrepresentation), so the bias of the uptake machinery causes cells to prefer DNA derived from close relatives over DNA from other sources. However, the molecular and evolutionary forces responsible for the abundance of uptake sequences in these genomes are not well understood, and their presence is not easily explained by any of the current models of the evolution of competence. Here we describe use of a computer simulation model to thoroughly evaluate the simplest explanation for uptake sequences, that they accumulate in genomes by a form of molecular drive generated by biased DNA uptake and evolutionarily neutral (i.e., unselected) recombination. In parallel we used an unbiased search algorithm to characterize genomic uptake sequences and DNA uptake assays to refine the Haemophilus influenzae uptake specificity. These analyses showed that biased uptake and neutral recombination are sufficient to drive uptake sequences to high densities, with the spacings, stabilities, and strong consensuses typical of uptake sequences in real genomes. This result greatly simplifies testing of hypotheses about the benefits of DNA uptake, because it explains how genomes could have passively accumulated sequences matching the bias of their uptake machineries.MANY bacteria are able to take up DNA fragments from their environment, a genetically specified trait called natural competence (Chen and Dubnau 2004; Johnsborg et al. 2007; Maughan et al. 2008). Many other species have homologs of competence genes, suggesting that although they are not competent under laboratory conditions, they may be competent under natural conditions (Claverys and Martin 2003; Kovacs et al. 2009). Such a widespread trait must be beneficial but the evolutionary function of DNA uptake remains controversial. Cells can use the nucleotides released by degradation of both incoming DNA and any strands displaced by its recombination, thus reducing demands on their nucleotide salvage and biosynthesis pathways (Redfield 1993; Palchevskiy and Finkel 2009). Cells may also benefit if recombination of the incoming DNA provides templates for DNA repair or introduces beneficial mutations, but may suffer if recombination introduces damage or harmful mutations (Redfield 1988; Michod et al. 2008).Although most bacteria that have been tested show no obvious preferences for specific DNA sources or sequences, bacteria in the family Pasteurellaceae and the genus Neisseria strongly prefer DNA fragments from close relatives. Two factors are responsible: First, the DNA uptake machineries of these bacteria are strongly biased toward certain short DNA sequence motifs. Second, the genomes of these bacteria contain hundreds of occurrences of the preferred sequences. The Pasteurellacean motif is called the uptake signal sequence (USS); its Neisseria counterpart is called the DNA uptake sequence (DUS). All Neisseria genomes contain the same consensus DUS [core GCCGTCTGAA (Treangen et al. 2008)], but divergence in the Pasteurellaceae has produced two subclades, one of species sharing the canonical Haemophilus influenzae 9-bp USS (Hin-USS core AAGTGCGGT) and the other of species with a variant USS that differs at three core positions (Apl-USS core: ACAAGCGGT) and has a longer flanking consensus (Redfield et al. 2006). Uptake sequence biases are strong but not absolute; for example, replacing the Hin-USS with the Apl-USS reduces H. influenzae DNA uptake only 10-fold (Redfield et al. 2006) and DNA from Escherichia coli is taken up in the absence of competing H. influenzae DNA (Goodgal and Mitchell 1984).Most studies of the distribution and consensus of uptake sequences in genomes have examined only those occurrences that perfectly match the above core DUS and USS sequences. Here we call these perfect matches “core-consensus” (cc) uptake sequences. These cc-uptake sequences occupy ∼1% of their genomes; they are equally frequent in the plus and minus orientations of the genome sequence but are underrepresented in coding sequences, with the noncoding 14% and 20% of their respective genomes containing 35% of cc-USSs and 65% of cc-DUSs (Smith et al. 1995). Although many of these intergenic cc-DUSs and cc-USSs occur in inverted-repeat pairs that function as terminators (Kingsford et al. 2007), most uptake sequences are too far apart or in genes or other locations where termination does not occur. Within coding regions uptake sequences occur more often in weakly conserved genes, in weakly conserved parts of genes, and in reading frames that encode common tripeptides (Findlay and Redfield 2009), all of which are consistent with selection acting mainly to eliminate mutations that improve uptake from genome regions constrained by coding or other functions.Analyses that focus on cc-uptake sequences effectively treat uptake sequences as replicative elements (Smith et al. 1995; Redfield et al. 2006; Ambur et al. 2007; Treangen et al. 2008). However, USS and DUS are known to originate in situ by normal mutational processes, mainly point mutations, and to spread between genomes mainly by homologous recombination (Redfield et al. 2006; Treangen et al. 2008). As they are not replicating elements, why are they up to 1000-fold more common in their genomes than expected for unselected sequences (e.g., H. influenzae, 1471 cc-USS vs. 8 expected by chance; N. gonorrheae, 1892 cc-DUS vs. 2 expected by chance)?The explanation for this abundance must lie with the specificity of the DNA uptake system, because the strong correspondence between the uptake bias and the uptake sequences in the genome is far too improbable to be a coincidence. However, uptake specificity is not easily accommodated by either of the hypothesized functions of DNA uptake. If bacteria take up DNA to get benefits from homologous genetic recombination, the combination of uptake bias and uptake sequences might serve as a mate-choice adaptation that maximizes these benefits by excluding foreign DNAs (Treangen et al. 2008). Although this explanation is appealing, it requires simultaneous evolution of bias in the uptake machinery and of genomic sequences matching this bias. Another problem is that the genomic sequences can be “selected” only after the cell carrying them is dead. On the other hand, if bacteria instead take up DNA as a source of nutrients, all DNAs should be equally useful, so uptake bias and uptake sequences would likely reduce rather than increase this benefit. Although the sequence bias could be explained as a consequence of mechanistic constraints on DNA uptake, this would not account for the high density of the preferred sequences in the genome.However, both hypotheses may be simplified by a process called molecular drive, under which uptake sequences would gradually accumulate over evolutionary time as a direct consequence of biased uptake and recombination (Danner et al. 1980; Bakkali et al. 2004; Bakkali 2007), without any need for natural selection. This drive is proposed to work as follows: First, random mutation continuously creates variation in DNA sequences that affects their probability of uptake, and random cell death allows DNA fragments containing preferred variants to be taken up by other cells. Second, repeated recombination of such preferred DNA sequences with their chromosomal homologs gradually increases their abundance in the genomes of competent cells'' descendants. Thus mutations that create matches to the bias of the uptake machinery are horizontally transmitted to other members of the same species more often than other mutations. Because some recombination may be inevitable even if DNA''s main benefit is nutritional, molecular drive could account for uptake sequence accumulation under both hypotheses, leaving only the biased uptake process to be explained by natural selection for either genetic variation or nutrients.Although drive is plausible, its ability to account for the observed properties of genomic uptake sequences has never been evaluated. To do this, we developed a realistic computer simulation model that includes only the processes thought to generate molecular drive. Below we first use this model to identify the conditions that determine whether uptake sequences will accumulate and then compare the properties of these simulated uptake sequences to those of the uptake sequences in the N. meningitidis and H. influenzae genomes. In parallel we use unbiased motif searches to better characterize genomic uptake sequences and DNA uptake assays to refine the H. influenzae uptake specificity.  相似文献   

13.
Different statistical measures of bias of oligonucleotide sequences in DNA sequences were compared, both by theoretical analysis and according to their abilities to predict the relative abundances of oligonucleotides in the genome of Escherichia coli. The expected frequency of an oligonucleotide calculated from a maximal order Markov model was shown to be a degenerate case of the expected frequency calculated from biases of all subwords arising when noncontiguous subwords exhibit no bias. Since (at least in E. coli) noncontiguous sequences exhibit significant bias, the total compositional bias approach is expected to represent biases in genomic sequences more faithfully than Markov approaches. In fact, the efficacy of statistics based on Markov analysis even at the highest order were inferior in predicting actual frequencies of oligonucleotides to methods that factored out biases of internal subwords with gaps. Using total compositional bias as a measure of relative abundance, tetranucleotide and hexanucleotide palindromes were found to be distributed differently from nonpalindromic sequences, with their means shifted somewhat towards underrepresentation. A subpopulation of palindromic hexanucleotides, however, was highly underrepresented, and this group consisted almost entirely of targets for Type II restriction enzymes found within strains of E. coli. Sites recognized by Type I endonucleases from related strains were not markedly biased, and with pentanucleotides, palindromic and nonpalindromic sequences had nearly identical distributions. The loss of restriction sites may be explained by the free transfer of plasmids encoding restriction enzymes and episodic selection for the presence of the enzymes.  相似文献   

14.
Satellite DNA is an enigmatic component of genomic DNA with unclear function that has been regarded as "junk." Yet, persistence of these tandem highly repetitive sequences in heterochromatic regions of most eukaryotic chromosomes attests to their importance in the genome. We explored the Anopheles gambiae genome for the presence of satellite repeats and identified 12 novel satellite DNA families. Certain families were found in close juxtaposition within the genome. Six satellites, falling into two evolutionarily linked groups, were investigated in detail. Four of them were experimentally confirmed to be linked to the Y chromosome, whereas their relatives occupy centromeric regions of either the X chromosome or the autosomes. A complex evolutionary pattern was revealed among the AgY477-like satellites, suggesting their rapid turnover in the A. gambiae complex and, potentially, recombination between sex chromosomes. The substitution pattern suggested rolling circle replication as an array expansion mechanism in the Y-linked 53-bp satellite families. Despite residing in different portions of the genome, the 53-bp satellites share the same monomer lengths, apparently maintained by molecular drive or structural constraints. Potential functional centromeric DNA structures, consisting of twofold dyad symmetries flanked by a common sequence motif, have been identified in both satellite groups.  相似文献   

15.
Noncoding DNA sequences (NCS) have attracted much attention recently due to their functional potentials. Here we attempted to reveal the functional roles of noncoding sequences from the point of view of natural selection that typically indicates the functional potentials of certain genomic elements. We analyzed nearly 37 million single nucleotide polymorphisms (SNPs) of Phase I data of the 1000 Genomes Project. We estimated a series of key parameters of population genetics and molecular evolution to characterize sequence variations of the noncoding genome within and between populations, and identified the natural selection footprints in NCS in worldwide human populations. Our results showed that purifying selection is prevalent and there is substantial constraint of variations in NCS, while positive selectionis more likely to be specific to some particular genomic regions and regional populations. Intriguingly, we observed larger fraction of non-conserved NCS variants with lower derived allele frequency in the genome, indicating possible functional gain of non-conserved NCS. Notably, NCS elements are enriched for potentially functional markers such as eQTLs, TF motif, and DNase I footprints in the genome. More interestingly, some NCS variants associated with diseases such as Alzheimer''s disease, Type 1 diabetes, and immune-related bowel disorder (IBD) showed signatures of positive selection, although the majority of NCS variants, reported as risk alleles by genome-wide association studies, showed signatures of negative selection. Our analyses provided compelling evidence of natural selection forces on noncoding sequences in the human genome and advanced our understanding of their functional potentials that play important roles in disease etiology and human evolution.  相似文献   

16.
Frey JE  Frey B 《Hereditas》2004,140(2):92-98
The mitochondrial genome is increasingly being used as a species diagnostic marker in insects. Typically, genomic DNA is PCR amplified and then analysed by restriction analyses or sequencing. This analysis system may cause some serious problems for molecular diagnosis. Besides the errors introduced by the PCR process, mtDNA sequence variation of amplified fragments may originate from mtDNA heteroplasmy or from nuclear integrations of mtDNA fragments, both of which have been shown to occur in insects. Here we document abundant variation in PCR-amplified sequences of the mitochondrial cytochrome oxidase I gene of Thrips tabaci. We confirm that the most common haplotype is of mitochondrial origin. Some of the observed mutations were introduced by the amplification process. However, the occurrence of some haplotypes at elevated frequencies indicates that within-individual variation of the respective fragment exists at low levels in T. tabaci. The frequencies of these sequences are too low to negatively affect mtDNA-based molecular diagnosis of T. tabaci. The possible origin of these variant haplotypes is discussed.  相似文献   

17.
Meiotic drive of chromosomal knobs reshaped the maize genome.   总被引:5,自引:0,他引:5  
Meiotic drive is the subversion of meiosis so that particular genes are preferentially transmitted to the progeny. Meiotic drive generally causes the preferential segregation of small regions of the genome; however, in maize we propose that meiotic drive is responsible for the evolution of large repetitive DNA arrays on all chromosomes. A maize meiotic drive locus found on an uncommon form of chromosome 10 [abnormal 10 (Ab10)] may be largely responsible for the evolution of heterochromatic chromosomal knobs, which can confer meiotic drive potential to every maize chromosome. Simulations were used to illustrate the dynamics of this meiotic drive model and suggest knobs might be deleterious in the absence of Ab10. Chromosomal knob data from maize's wild relatives (Zea mays ssp. parviglumis and mexicana) and phylogenetic comparisons demonstrated that the evolution of knob size, frequency, and chromosomal position agreed with the meiotic drive hypothesis. Knob chromosomal position was incompatible with the hypothesis that knob repetitive DNA is neutral or slightly deleterious to the genome. We also show that environmental factors and transposition may play a role in the evolution of knobs. Because knobs occur at multiple locations on all maize chromosomes, the combined effects of meiotic drive and genetic linkage may have reshaped genetic diversity throughout the maize genome in response to the presence of Ab10. Meiotic drive may be a major force of genome evolution, allowing revolutionary changes in genome structure and diversity over short evolutionary periods.  相似文献   

18.
Considerable amounts of molecular and genetic data indicate that interspecific hybridisation may not be rare among natural strains of Saccharomyces sensu stricto. Although a post-zygotic barrier operating during meiosis usually prevents the production of viable spores, stable hybrids can arise which can even evolve into distinct species. This study was aimed to analyse the genome of a fertile Saccharomyces cerevisiae x S. uvarum hybrid and monitor its changes over four filial generations of viable spores. The molecular genetic analysis demonstrated that the two species did not contribute equally to the formation and stabilisation of the hybrid genome. S. cerevisiae provided the mitochondrial DNA and the more stable part of the nuclear genome. The S. uvarum part of the hybrid nuclear genome became progressively smaller by loosing complete chromosomes and genetic markers in the course of successive meiotic divisions. Certain S. uvarum chromosomes were eliminated and/or underwent rearrangements in interactions with S. cerevisiae chromosomes. Numerous S. uvarum chromosomes acquired S. cerevisiae telomere sequences. The gradual elimination of large parts of the S. uvarum genome was associated with a progressive increase of sporulation efficiency. We hypothesise that this sort of genomic alterations may contribute to speciation in Saccharomyces sensu stricto.  相似文献   

19.
The value of genome-specific repetitive DNA sequences for use as molecular markers in studying genome differentiation was investigated. Five repetitive DNA sequences from wild species of rice were cloned. Four of the clones, pOm1, pOm4, pOmA536, and pOmPB10, were isolated from Oryza minuta accession 101141 (BBCC genomes), and one clone, pOa237, was isolated from Oryza australiensis accession 100882 (EE genome). Southern blot hybridization to different rice genomes showed strong hybridization of all five clones to O. minuta genomic DNA and no cross hybridization to genomic DNA from Oryza sativa (AA genome). The pOm1 and pOmA536 sequences showed cross hybridization only to all of the wild rice species containing the C genome. However, the pOm4, pOmPB10, and pOa237 sequences showed cross hybridization to O. australiensis genomic DNA in addition to showing hybridization to the O. minuta genomic DNA.  相似文献   

20.
A hypothesis of genome structural evolution is explored. Rapid and cohesive alterations in genome organization are viewed as resulting from the dynamic and constrained interactions of chromosomal subsystem components. A combination of macromolecular boundary conditions and DNA element involvement in far-from-equilibrium reactions is proposed to increase the complexity of genomic subsystems via the channelling of genome turnover; interactions between subsystems create higher-order subsystems expanding the phase space for further genetic evolution. The operation of generic constraints on structuration in genome evolution is suggested by i) universal, homoplasic features of chromosome organization and ii) the metastable nature of genome structures where lower-level flux is constrained by higher-order structures. Phenomena such as genomic shock, bursts of transposable element activity, concerted evolution, etc., are hypothesized to result from constrained systemic responses to endogenous/exogenous, micro/macro perturbations. The constraints operating on genome turnover are expected to increase with chromosomal structural complexity, the number of interacting subsystems, and the degree to which interactions between genomic components are tightly ordered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号