首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Altered sialylation of glycosphingolipids is observed in cancer as a ubiquitous phenotype, leading to the appearance of tumor-associated antigens, aberrant adhesion and disturbance of transmembrane signaling. To understand the pathological significance of aberrant alterations of gangliosides in cancer, our studies have been focused on sialidase, which is responsible for the removal of sialic acids from glycoproteins and glycolipids. Among human sialidases so far identified, sialidase NEU3 is a key enzyme for ganglioside degradation because of its uniqueness both in its localization in the plasma membrane and in specifically hydrolyzing gangliosides. NEU3 is markedly up-regulated in many types of cancers including colon and renal carcinomas and suppresses apoptosis of cancer cells. The present paper briefly summarizes our recent results on the sialidase alterations and their significance in cancer. NEU3 is indeed closely related to malignancy and thus may be a potential target for cancer diagnosis and therapy.  相似文献   

2.
The sialylation level of molecules, sialoglycoproteins and gangliosides, protruding from plasma membranes regulates multiple facets of erythrocyte function, from interaction with endothelium to cell lifespan. Our results demonstrate that: (a) Both sialidases NEU1 and NEU3 are present on erythrocyte plasma membrane; (b) NEU1 is kept on the plasma membrane in absence of the protective protein/cathepsin A (PPCA); (c) NEU1 and NEU3 are retained on the plasma membrane, as peripheral proteins, associated to the external leaflet and released by alkaline treatments; (d) NEU1 and NEU3 are segregated in Triton X‐100 detergent‐resistant membrane domains (DRMs); (e) NEU3 shows activity also at neutral pH; and (f) NEU1 and NEU3 are progressively lost during erythrocyte life. Interestingly, sialidase activity released from erythrocyte membranes after an alkaline treatment preserves its functionality and recognizes sialoglycoproteins and gangliosides. On the other hand, the weak anchorage of sialidases to the plasma membrane and their loss during erythrocyte life could be a tool to preserve the cellular sialic acid content in order to avoid the early ageing of erythrocyte and processes of cell aggregation in the capillaries. J. Cell. Biochem. 114: 204–211, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
The paramyxovirus Newcastle Disease Virus (NDV) binds to sialic acid-containing glycoconjugates, sialoglycoproteins and sialoglycolipids (gangliosides) of host cell plasma membrane through its hemagglutinin-neuraminidase (sialidase) HN glycoprotein. We hypothesized that the modifications of the cell surface ganglioside pattern determined by over-expression of the mammalian plasma-membrane associated, ganglioside specific, sialidase NEU3 would affect the virus-host cell interactions. Using COS7 cells as a model system, we observed that over-expression of the murine MmNEU3 did not affect NDV binding but caused a marked reduction in NDV infection and virus propagation through cell-cell fusion. Moreover, since GD1a was greatly reduced in COS7 cells following NEU3-over-expression, we added [(3)H]-labelled GD1a to COS7 cells under conditions that block intralysosomal metabolic processing, and we observed a marked increase of GD1a cleavage to GM1 during NDV infection, indicating a direct involvement of the virus sialidase and host cell GD1a in NDV infectivity. Therefore, the decrease of GD1a in COS7 cell membrane upon MmNEU3 over-expression is likely to be instrumental to NDV reduced infection. Evidence was also provided for the preferential association of NDV-HN at 4 degrees C to detergent resistant microdomains (DRMs) of COS7 cells plasma membranes.  相似文献   

4.
Sialidases are glycohydrolytic enzymes present from virus to mammals that remove sialic acid from oligosaccharide chains. Four different sialidase forms are known in vertebrates: the lysosomal NEU1, the cytosolic NEU2 and the membrane-associated NEU3 and NEU4. These enzymes modulate the cell sialic acid content and are involved in several cellular processes and pathological conditions. Molecular defects in NEU1 are responsible for sialidosis, an inherited disease characterized by lysosomal storage disorder and neurodegeneration. The studies on the biology of sialic acids and sialyltransferases, the anabolic counterparts of sialidases, have revealed a complex picture with more than 50 sialic acid variants selectively present in the different branches of the tree of life. The gain/loss of specific sialoconjugates have been proposed as key events in the evolution of deuterostomes and Homo sapiens, as well as in the host-pathogen interactions. To date, less attention has been paid to the evolution of sialidases. Thus we have conducted a survey on the state of the sialidase family in metazoan. Using an in silico approach, we identified and characterized sialidase orthologs from 21 different organisms distributed among the evolutionary tree: Metazoa relative (Monosiga brevicollis), early Deuterostomia, precursor of Chordata and Vertebrata (teleost fishes, amphibians, reptiles, avians and early and recent mammals). We were able to reconstruct the evolution of the sialidase protein family from the ancestral sialidase NEU1 and identify a new form of the enzyme, NEU5, representing an intermediate step in the evolution leading to the modern NEU3, NEU4 and NEU2. Our study provides new insights on the mechanisms that shaped the substrate specificity and other peculiar properties of the modern mammalian sialidases. Moreover, we further confirm findings on the catalytic residues and identified enzyme loop portions that behave as rapidly diverging regions and may be involved in the evolution of specific properties of sialidases.  相似文献   

5.
Three different mammalian sialidases have been described as follows: lysosomal (Neu1, gene NEU1), cytoplasmic (Neu2, gene NEU2), and plasma membrane (Neu3, gene NEU3). Because of mutations in the NEU1 gene, the inherited deficiency of Neu1 in humans causes the severe multisystemic neurodegenerative disorder sialidosis. Galactosialidosis, a clinically similar disorder, is caused by the secondary Neu1 deficiency because of genetic defects in cathepsin A that form a complex with Neu1 and activate it. In this study we describe a novel lysosomal lumen sialidase encoded by the NEU4 gene on human chromosome 2. We demonstrate that Neu4 is ubiquitously expressed in human tissues and has broad substrate specificity by being active against sialylated oligosaccharides, glycoproteins, and gangliosides. In contrast to Neu1, Neu4 is targeted to lysosomes by the mannose 6-phosphate receptor and does not require association with other proteins for enzymatic activity. Expression of Neu4 in the cells of sialidosis and galactosialidosis patients results in clearance of storage materials from lysosomes suggesting that Neu4 may be useful for developing new therapies for these conditions.  相似文献   

6.
Several mammalian sialidases have been cloned so far and here we describe the identification and expression of a new member of the human sialidase gene family. The NEU4 gene, identified by searching sequence databases for entries showing homologies to the human cytosolic sialidase NEU2, maps in 2q37 and encodes a 484-residue protein. The polypeptide contains all the typical sialidase amino acid motifs and, apart from an amino acid stretch that appears unique among mammalian sialidases, shows a high degree of homology for NEU2 and the plasma membrane-associated (NEU3) sialidases. RNA dot-blot analysis showed a low but wide expression pattern, with the highest level in liver. Transient transfection in COS7 cells allowed the detection of a sialidase activity toward the artificial substrate 4MU-NeuAc in the acidic range of pH. Immunofluorescence staining and Western blot analysis demonstrated the association of NEU4 with the inner cell membranes.  相似文献   

7.
Mammalian sialidases, glycosidases responsible for the removal of sialic acids from glycoproteins and glycolipids, has been implicated to participate in many biological processes as well as in lysosomal catabolism. Among those forms identified to date, plasma membrane-associated sialidase, Neu3, is a key enzyme in degradation of gangliosides, for which it exhibits a special substrate preference. This sialidase has been shown to control transmembrane signalling for many cellular processes, including cell differentiation, cell growth and apoptosis, and human orthologue NEU3 is markedly up-regulated in various cancers. It is known to suppress apoptosis in cancer cells. Furthermore, its overexpression causes impaired glucose tolerance and hyper-insulinaemia together with overproduction of insulin in enlarged islets in the transgenic mice. The present review primarily summarizes our recent results, focusing on Neu3 as a regulator of transmembrane signalling.  相似文献   

8.
Gangliosides are sialic acid-containing glycosphingolipids present on mammalian plasma membranes, where they participate in cell-surface events such as modulation of growth factor receptors and cell-to-cell and cell-to-matrix interactions. Antibodies to gangliosides have been associated with a wide range of clinically identifiable acute and chronic neuropathy syndromes. In addition, antibodies to tumor-associated gangliosides are being used as therapeutic agents. Their binding to and release from cell membranes and intracellular destinations have not so far been extensively examined. In this study, we characterized in both GD3 ganglioside-expressing Chinese hamster ovary (CHO)-K1 and SK-Mel 28 melanoma cells the intracellular trafficking and subcellular localization of the mouse monoclonal antibody to GD3, R24. By biochemical techniques and detailed confocal microscopic analysis, we demonstrate that the GD3-R24 antibody complex is rapidly and specifically internalized by a dynamin 2-independent pathway and then accumulates in the endocytic recycling compartment. In addition, we show that the R24 antibody exits the recycling compartment en route to the plasma membrane by a dynamin 2-dependent pathway sensitive to brefeldin A and monensin. Taken together, our results indicate that the GD3-R24 complex is endocytosed in GD3-expressing cells, accumulates in the recycling endosome, and is transported back to the plasma membrane via a route that involves clathrin-coated vesicles.  相似文献   

9.
10.
In an attempt to understand the possible mechanism of chronic ethanol-induced generation of asialoconjugates in the brain and consequent behavioral abnormalities, we have studied the effects of chronic ethanol feeding to rats on the plasma membrane sialidase status in the various subcellular fractions of the brain. We determined sialidase activity using 3H-monosialoganglioside (3H-GM3), 2'-(4-methylumbelliferyl)-alpha-D-N-acetylneuraminic acid (4-MU-NeuAC) substrates and Amplex Red (Sialidase) kit. We determined the plasma membrane sialidase protein by Western blot using the anti-plasma membrane sialidase. We also determined its relative synthetic rate (RSR) by the 60 min incorporation of intracranially infused [35S]-methionine (50 microCi/100 g) into immunoprecipitable plasma membrane sialidase. Chronic ethanol administration stimulated the sialidase activity in the total brain homogenate as well as the myelin and synaptosomal membrane fractions, respectively, in all the three experimental models. Chronic ethanol also increased the concentration of the rat brain plasma membrane sialidase protein relative to that of glyceraldehyde-3-phosphate dehydrogenase by 2.4-, 1.62- and 1.51-fold in the total brain homogenate, myelin and synaptosomal membrane fractions, respectively. These increases in plasma membrane sialidase activity and its protein content were due to concomitant increases in their relative synthetic rates by 115% (p < 0.01) and 72% (p < 0.01) in the myelin and synaptosomal membrane fractions, respectively. Thus, our studies clearly show that chronic ethanol induced deglycosylation of brain gangliosides is in part, due to specific up-regulation of plasma membrane sialidase in the myelin and synaptosomal membrane fractions of the brain. This increase in plasma membrane sialidase may be responsible for chronic-ethanol-induced physiological and neurological impairment in the brain, presumably due to deglycosylation of gangliosides that are essential for crucial cellular and metabolic activities.  相似文献   

11.
The human plasma membrane sialidase NEU3 is a key enzyme in the catabolism of membrane gangliosides, is crucial in the regulation of cell surface processes, and has been demonstrated to be significantly up-regulated in renal cell carcinomas (RCCs). In this report, we show that NEU3 regulates β1 integrin trafficking in RCC cells by controlling β1 integrin recycling to the plasma membrane and controlling activation of the epidermal growth factor receptor (EGFR) and focal adhesion kinase (FAK)/protein kinase B (AKT) signaling. NEU3 silencing in RCC cells increased the membrane ganglioside content, in particular the GD1a content, and changed the expression of key regulators of the integrin recycling pathway. In addition, NEU3 silencing up-regulated the Ras-related protein RAB25, which directs internalized integrins to lysosomes, and down-regulated the chloride intracellular channel protein 3 (CLIC3), which induces the recycling of internalized integrins to the plasma membrane. In this manner, NEU3 silencing enhanced the caveolar endocytosis of β1 integrin, blocked its recycling and reduced its levels at the plasma membrane, and, consequently, inhibited EGFR and FAK/AKT. These events had the following effects on the behavior of RCC cells: they (a) decreased drug resistance mediated by the block of autophagy and the induction of apoptosis; (b) decreased metastatic potential mediated by down-regulation of the metalloproteinases MMP1 and MMP7; and (c) decreased adhesion to collagen and fibronectin. Therefore, our data identify NEU3 as a key regulator of the β1 integrin-recycling pathway and FAK/AKT signaling and demonstrate its crucial role in RCC malignancy.  相似文献   

12.
13.
Plasma membrane-associated sialidase is a key enzyme for ganglioside hydrolysis, thereby playing crucial roles in regulation of cell surface functions. Here we demonstrate that mice overexpressing the human ortholog (NEU3) develop diabetic phenotype by 18-22 weeks associated with hyperinsulinemia, islet hyperplasia, and increased beta-cell mass. As compared with the wild type, insulin-stimulated phosphorylation of the insulin receptor (IR) and insulin receptor substrate I was significantly reduced, and activities of phosphatidylinositol 3-kinase and glycogen synthase were low in transgenic muscle. IR phosphorylation was already attenuated in the younger mice before manifestation of hyperglycemia. Transient transfection of NEU3 into 3T3-L1 adipocytes and L6 myocytes caused a significant decrease in IR signaling. In response to insulin, NEU3 was found to undergo tyrosine phosphorylation and subsequent association with the Grb2 protein, thus being activated and causing negative regulation of insulin signaling. In fact, accumulation of GM1 and GM2, the possible sialidase products in transgenic tissues, caused inhibition of IR phosphorylation in vitro, and blocking of association with Grb2 resulted in reversion of impaired insulin signaling in L6 cells. The data indicate that NEU3 indeed participates in the control of insulin signaling, probably via modulation of gangliosides and interaction with Grb2, and that the mice can serve as a valuable model for human insulin-resistant diabetes.  相似文献   

14.
Sialidases are enzymes that influence cellular activity by removing terminal sialic acid from glycolipids and glycoproteins. Four genetically distinct sialidases have been identified in mammalian cells. In this study, we demonstrate that three of these sialidases, lysosomal Neu1 and Neu4 and plasma membrane-associated Neu3, are expressed in human monocytes. When measured using the artificial substrate 2'-(4-methylumbelliferyl)-alpha-d-N-acetylneuraminic acid (4-MU-NANA), sialidase activity of monocytes increased up to 14-fold per milligram of total protein after cells had differentiated into macrophages. In these same cells, the specific activity of other cellular proteins (e.g. beta-galactosidase, cathepsin A and alkaline phosphatase) increased only two- to fourfold during differentiation of monocytes. Sialidase activity measured with 4-MU-NANA resulted from increased expression of Neu1, as removal of Neu1 from the cell lysate by immunoprecipitation eliminated more than 99% of detectable sialidase activity. When exogenous mixed bovine gangliosides were used as substrates, there was a twofold increase in sialidase activity per milligram of total protein in monocyte-derived macrophages in comparison to monocytes. The increased activity measured with mixed gangliosides was not affected by removal of Neu1, suggesting that the expression of a sialidase other than Neu1 was present in macrophages. The amount of Neu1 and Neu3 RNAs detected by real time RT-PCR increased as monocytes differentiated into macrophages, whereas the amount of Neu4 RNA decreased. No RNA encoding the cytosolic sialidase (Neu2) was detected in monocytes or macrophages. Western blot analysis using specific antibodies showed that the amount of Neu1 and Neu3 proteins increased during monocyte differentiation. Thus, the differentiation of monocytes into macrophages is associated with regulation of the expression of at least three distinct cellular sialidases, with specific up-regulation of the enzyme activity of only Neu1.  相似文献   

15.
Gangliosides of the plasma membrane are important modulators of cellular functions. Recent reports have shown their enrichment in glycosphingolipid-containing membrane microdomains, called glycosphingolipid-signaling domain or rafts, which can be isolated due to their insolubility in Triton X-100 and flotation through a sucrose gradient. In previous work on neuroblastoma cells we had found that a ganglioside-specific sialidase activity of the plasma membrane controlled proliferation and differentiation through selective ganglioside desialylation. Assuming the ganglioside sialidase to be close to its substrates in the membrane, we investigated its association with detergent-insoluble microdomains in the neuroblastoma cell line SK-N-MC. The results show that the ganglioside sialidase codistributes with the raft markers ganglioside GM1, flotillin, src family kinases, and glycosylphosphatidylinositol-anchored proteins in a fraction containing about 2% of cellular protein. The association of the ganglioside sialidase with glycosphingolipid-enriched membrane fractions therefore is in support of a role of this glycosidase in ganglioside-dependent signaling processes.  相似文献   

16.
Miyagi T  Yamaguchi K 《Glycobiology》2012,22(7):880-896
Sialic acids are terminal acidic monosaccharides, which influence the chemical and biological features of glycoconjugates. Their removal catalyzed by a sialidase modulates various biological processes through change in conformation and creation or loss of binding sites of functional molecules. Sialidases exist widely in vertebrates and also in a variety of microorganisms. Recent research on mammalian sialidases has provided evidence for great importance of these enzymes in various cellular functions, including lysosomal catabolism, whereas microbial sialidases appear to play roles limited to nutrition and pathogenesis. Four types of mammalian sialidases have been identified and characterized to date, designated as NEU1, NEU2, NEU3 and NEU4. They are encoded by different genes and differ in major subcellular localization and enzymatic properties including substrate specificity, and each has been found to play a unique role depending on its particular properties. This review is an attempt to concisely summarize current knowledge concerning mammalian sialidases, with a special focus on their properties and physiological and pathological roles in cellular functions.  相似文献   

17.
The Arp2/3-activator Wiskott-Aldrich syndrome protein and Scar homologue (WASH) is suggested to regulate actin-dependent membrane scission during endosomal sorting, but its cellular roles have not been fully elucidated. To investigate WASH function, we generated tamoxifen-inducible WASH-knockout mouse embryonic fibroblasts (WASHout MEFs). Of interest, although EEA1(+) endosomes were enlarged, collapsed, and devoid of filamentous-actin and Arp2/3 in WASHout MEFs, we did not observe elongated membrane tubules emanating from these disorganized endomembranes. However, collapsed WASHout endosomes harbored segregated subdomains, containing either retromer cargo recognition complex-associated proteins or EEA1. In addition, we observed global collapse of LAMP1(+) lysosomes, with some lysosomal membrane domains associated with endosomes. Both epidermal growth factor receptor (EGFR) and transferrin receptor (TfnR) exhibited changes in steady-state cellular localization. EGFR was directed to the lysosomal compartment and exhibited reduced basal levels in WASHout MEFs. However, although TfnR was accumulated with collapsed endosomes, it recycled normally. Moreover, EGF stimulation led to efficient EGFR degradation within enlarged lysosomal structures. These results are consistent with the idea that discrete receptors differentially traffic via WASH-dependent and WASH-independent mechanisms and demonstrate that WASH-mediated F-actin is requisite for the integrity of both endosomal and lysosomal networks in mammalian cells.  相似文献   

18.
The substrate specificity and subcellular location of the major sialidases of three types of rat blood cells were characterized and compared with those of the known three types of rat liver sialidase, which have been designated intralysosomal, cytosolic, and plasma membrane-associated sialidases. Platelets and leucocytes contain mainly an acid sialidase, which is highly active towards oligosaccharides and 4MU-NeuAc, and erythrocytes possess a high level of a sialidase acting on gangliosides. A Percoll gradient centrifugation study showed that the former is located in lysosomes and the latter in plasma membrane. When the sialidase was solubilized and partially purified from erythrocyte ghosts, the enzyme was found to hydrolyze actively gangliosides but only poorly other substrates such as 4MU-NeuAc, oligosaccharides, and glycoproteins. The sialidase partially purified from rat liver membrane fraction exhibited the same substrate specificity. It is concluded that the major sialidase of platelets and leucocytes corresponds to hepatic intralysosomal sialidase while erythrocytes contain almost exclusively a ganglioside sialidase which corresponds to hepatic plasma membrane sialidase.  相似文献   

19.
The plasma membrane-associated sialidase NEU3 is known to play important roles in different physiological and pathophysiological processes such as proliferation, cellular differentiation and tumorigenesis. Up-regulation of NEU3 has been associated to several tumors and recently it was demonstrated that its down-modulation in glioblastoma cells promotes cell invasiveness. To date, no information concerning the possible role played by NEU3 in relation to tumor radioresistance is available. Here we show that overexpression of NEU3 in glioblastoma U87MG cells activates PI3K/Akt signaling pathway resulting in an increased radioresistance capacity and in an improved efficiency of double strand DNA-repair mechanisms after irradiation. Our results demonstrate for the first time that NEU3 contributes to the radioresistance features of U87MG cells, bringing to evidence a novel rand peculiar role of the enzyme in cancer biology.  相似文献   

20.
This review summarizes the current research on human exo-alpha-sialidase (sialidase, neuraminidase). Where appropriate, the properties of viral, bacterial, and human sialidases have been compared. Sialic acids are implicated in diverse physiological processes. Sialidases, as enzymes acting upon sialic acids, assume importance as well. Sialidases hydrolyze the terminal, non-reducing, sialic acid linkage in glycoproteins, glycolipids, gangliosides, polysaccharides, and synthetic molecules. Therefore, a variety of assays are available to measure sialidase activity. Human sialidase is present in several organs and cells. Its cellular distribution could be cytosolic, lysosomal, or in the membrane. Human sialidase occurs in a high molecular-mass complex with several other proteins, including cathepsin A and beta-galactosidase. Multi-protein complexation is important for the in vivo integrity and catalytic activity of the sialidase. However, multi-protein complexation, the occurrence of isoenzymes, diverse subcellular localization, thermal instability, and membrane association have all contributed to difficulties in purifying and characterizing human sialidases. Human sialidase isoenzymes have recently been cloned and sequenced. Even though crystal structures for the human sialidases are not available, the highly conserved regions of the sialidase from various organisms have facilitated molecular modeling of the human enzyme and raise interesting evolutionary questions. While the molecular mechanisms vary, genetic defects leading to human sialidase deficiency are closely associated with at least two well-known human diseases, namely sialidosis and galactosialidosis. No therapy is currently available for either disease. A thorough investigation of human sialidases is therefore crucial to human health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号