首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sexual antagonism (SA) arises when male and female phenotypes are under opposing selection, yet genetically correlated. Until resolved, antagonism limits evolution toward optimal sex‐specific phenotypes. Despite its importance for sex‐specific adaptation and existing theory, the dynamics of SA resolution are not well understood empirically. Here, we present data from Drosophila melanogaster, compatible with a resolution of SA. We compared two independent replicates of the “LHM” population in which SA had previously been described. Both had been maintained under identical, controlled conditions, and separated for around 200 generations. Although heritabilities of male and female fitness were similar, the intersexual genetic correlation differed significantly, being negative in one replicate (indicating SA) but close to zero in the other. Using population sequencing, we show that phenotypic differences were associated with population divergence in allele frequencies at nonrandom loci across the genome. Large frequency changes were more prevalent in the population without SA and were enriched at loci mapping to genes previously shown to have sexually antagonistic relationships between expression and fitness. Our data suggest that rapid evolution toward SA resolution has occurred in one of the populations and open avenues toward studying the genetics of SA and its resolution.  相似文献   

2.
When selection differs between the sexes for traits that are genetically correlated between the sexes, there is potential for the effect of selection in one sex to be altered by indirect selection in the other sex, a situation commonly referred to as intralocus sexual conflict (ISC). While potentially common, ISC has rarely been studied in wild populations. Here, we studied ISC over a set of morphological traits (wing length, tarsus length, bill depth and bill length) in a wild population of great tits (Parus major) from Wytham Woods, UK. Specifically, we quantified the microevolutionary impacts of ISC by combining intra‐ and intersex additive genetic (co)variances and sex‐specific selection estimates in a multivariate framework. Large genetic correlations between homologous male and female traits combined with evidence for sex‐specific multivariate survival selection suggested that ISC could play an appreciable role in the evolution of this population. Together, multivariate sex‐specific selection and additive genetic (co)variance for the traits considered accounted for additive genetic variance in fitness that was uncorrelated between the sexes (cross‐sex genetic correlation = ?0.003, 95% CI = ?0.83, 0.83). Gender load, defined as the reduction in a population's rate of adaptation due to sex‐specific effects, was estimated at 50% (95% CI = 13%, 86%). This study provides novel insights into the evolution of sexual dimorphism in wild populations and illustrates how quantitative genetics and selection analyses can be combined in a multivariate framework to quantify the microevolutionary impacts of ISC.  相似文献   

3.
ABSTRACT

The Ostracoda – ubiquitous aquatic micro-crustaceans – show an exceptionally high incidence of female-biased adult sex ratio. Intraspecific sex ratio is known to vary in extant species and yet in the fossil record a species’ adult sex ratio can be highly stable across time. Sex ratio conditions the intensity of sexual selection and influences which sex undergoes stronger selective pressure. However, the impact of variation in spatial and temporal intraspecific sex ratio on the evolution of sexual selection remains an open question, calling for further investigations on the factors controlling adaptive sex ratio. This mini-review aims to introduce the system, and explores some of the key literature addressing factors influencing intraspecific variation in adult sex ratio (ASR) and its implication in the intensity of sexual selection and evolution of mating systems.  相似文献   

4.
In accordance with the consensus that sexual selection is responsible for the rapid evolution of display traits on macroevolutionary scales, microevolutionary studies suggest sexual selection is a widespread and often strong form of directional selection in nature. However, empirical evidence for the contemporary evolution of sexually selected traits via sexual rather than natural selection remains weak. In this study, we used a novel application of quantitative genetic breeding designs to test for a genetic response to sexual selection on eight chemical display traits from a field population of the fly, Drosophila serrata. Using our quantitative genetic approach, we were able to detect a genetically based difference in means between groups of males descended from fathers who had either successfully sired offspring or were randomly collected from the same wild population for one of these display traits, the diene (Z,Z)‐5,9‐C27 : 2. Our experimental results, in combination with previous laboratory studies on this system, suggest that both natural and sexual selection may be influencing the evolutionary trajectories of these traits in nature, limiting the capacity for a contemporary evolutionary response.  相似文献   

5.
Whether the changes brought about by sexual selection are, on the whole, congruent or incongruent with the changes favored by natural selection is a fundamentally important question in evolutionary biology. Although a number of theoretical models have assumed that sexual selection reinforces natural selection [1, 2], others assume these forces are in opposition [3-5]. Empirical results have been mixed (see reviews in [1, 6-8]) and the reasons for the differences among studies are unclear. Variable outcomes are expected if populations differ in their evolutionary histories and therefore harbor different amounts and types of segregating genetic variation. Here, we constructed populations of Drosophila melanogaster that differed in this regard to directly test this hypothesis. In well-adapted populations, sexually successful males sired unfit daughters, indicating sexual and natural selection are in conflict. However, in populations containing an influx of maladaptive alleles, attractive males sired offspring of high fitness, suggesting that sexual selection reinforces natural selection. Taken together, these results emphasize the importance of evolutionary history on the outcome of sexual selection. Consequently, studies based on laboratory populations, cultured for prolonged periods under homogeneous conditions, may provide a skewed perspective on the relationship between sexual and natural selection.  相似文献   

6.
Prey often reduce predation risk at the cost of lower resource intake. The cumulative effects of such tradeoffs can alter resource allocation, demography and evolutionary processes. We show how the accumulation of risk effects reduces the growth rate of wild North American porcupines Erethizon dorsatum, and simulate three evolutionary responses related to lifetime reproductive success. Individual porcupines experiencing predation risk from fishers Pekania pennanti grew slower and gave birth to fewer offspring. Simulations show that predation risk alone can lead to population declines, and that a female can replace herself by investing more energy into reproduction or adult survival; females that only invest energy in juvenile survival cannot. We show that the accumulation of predation risk can reduce lifetime reproductive success in natural ecosystems. Estimating the contribution of predation risk, and how evolutionary responses can mediate consequences associated with predation risk, is necessary to understand the evolution of predator–prey systems.  相似文献   

7.
A proposed benefit to sexual selection is that it promotes purging of deleterious mutations from populations. For this benefit to be realized, sexual selection, which is usually stronger on males, must purge mutations deleterious to both sexes. Here, we experimentally test the hypothesis that sexual selection on males purges deleterious mutations that affect both male and female fitness. We measured male and female fitness in two panels of spontaneous mutation‐accumulation lines of the fly, Drosophila serrata, each established from a common ancestor. One panel of mutation accumulation lines limited both natural and sexual selection (LS lines), whereas the other panel limited natural selection, but allowed sexual selection to operate (SS lines). Although mutation accumulation caused a significant reduction in male and female fitness in both the LS and SS lines, sexual selection had no detectable effect on the extent of the fitness reduction. Similarly, despite evidence of mutational variance for fitness in males and females of both treatments, sexual selection had no significant impact on the amount of mutational genetic variance for fitness. However, sexual selection did reshape the between‐sex correlation for fitness: significantly strengthening it in the SS lines. After 25 generations, the between‐sex correlation for fitness was positive but considerably less than one in the LS lines, suggesting that, although most mutations had sexually concordant fitness effects, sex‐limited, and/or sex‐biased mutations contributed substantially to the mutational variance. In the SS lines this correlation was strong and could not be distinguished from unity. Individual‐based simulations that mimick the experimental setup reveal two conditions that may drive our results: (1) a modest‐to‐large fraction of mutations have sex‐limited (or highly sex‐biased) fitness effects, and (2) the average fitness effect of sex‐limited mutations is larger than the average fitness effect of mutations that affect both sexes similarly.  相似文献   

8.
Flight, fitness, and sexual selection   总被引:1,自引:1,他引:0  
  相似文献   

9.
The immediate capacity for adaptation under current environmental conditions is directly proportional to the additive genetic variance for fitness, VA(W). Mean absolute fitness, , is predicted to change at the rate , according to Fisher's Fundamental Theorem of Natural Selection. Despite ample research evaluating degree of local adaptation, direct assessment of VA(W) and the capacity for ongoing adaptation is exceedingly rare. We estimated VA(W) and in three pedigreed populations of annual Chamaecrista fasciculata, over three years in the wild. Contrasting with common expectations, we found significant VA(W) in all populations and years, predicting increased mean fitness in subsequent generations (0.83 to 6.12 seeds per individual). Further, we detected two cases predicting “evolutionary rescue,” where selection on standing VA(W) was expected to increase fitness of declining populations (< 1.0) to levels consistent with population sustainability and growth. Within populations, inter‐annual differences in genetic expression of fitness were striking. Significant genotype‐by‐year interactions reflected modest correlations between breeding values across years, indicating temporally variable selection at the genotypic level that could contribute to maintaining VA(W). By directly estimating VA(W) and total lifetime , our study presents an experimental approach for studies of adaptive capacity in the wild.  相似文献   

10.
Whether sexual selection increases or decreases female fitness is determined by the occurrence and relative importance of sexual-conflict processes and the ability of females to choose high-quality males. Experimentally enforced polyandry and monogamy have previously been shown to cause rapid evolution in the yellow dung fly Scathophaga stercoraria. Flies from polyandrous lines invested more in reproductive tissue, and this investment influenced paternity in sperm competition, but came at a cost to immune function. While some fitness consequences of enforced polyandry or monogamy have been examined when flies mate multiply, the consequences for female fitness when singly copulated remain unexplored. Under a good-genes scenario females from polyandrous lines should be of higher general quality and should outperform females from monogamous lines even with a single copulation. Under sexual conflict, costly adaptations will afford no advantages when females are allowed to mate only once. We investigate the lifetime reproductive success and longevity of females evolving under enforced monogamy or polyandry when mating once with males from these selection regimes. Females from polyandrous lines were found to have lower fitness than their monogamous counterparts when mating once. They died earlier and produced significantly fewer eggs and offspring. These results suggest that sexual conflict probably drove evolution under enforced polyandry as female fitness did not increase overall as expected with purely good-genes effects.  相似文献   

11.
12.
When females mate multiply, postcopulatory sexual selection can occur via sperm competition and cryptic female choice. Although postcopulatory selection has the potential to be a major force in driving evolution, few studies have estimated its strength in natural populations. Likewise, although polyandry is widespread across taxa and is the focus of a growing body of research, estimates of natural female mating rates are still limited in number. Microsatellites can be used to estimate the number of mates represented in females' sperm stores and the number of sires contributing to their offspring, enabling comparisons both of polyandry and of two components of postcopulatory selection: the proportion of males that mate but fail to sire offspring, and the degree of paternity skew among the males that do sire offspring. Here, we estimate the number of mates and sires among wild females in the Hawaiian swordtail cricket Laupala cerasina. We compare these estimates to the actual mating rates and paternity shares we observed in a semi‐natural population. Our results show that postcopulatory sexual selection operates strongly in this species: wild females mated with an average minimum of 3.6 males but used the sperm from only 58% of them. Furthermore, among the males that did sire offspring, paternity was significantly skewed. These patterns were similar to those observed in the field enclosure, where females mated with an average of 5.7 males and used the sperm from 62% of their mates, with paternity significantly skewed among the sires.  相似文献   

13.
Mallet MA  Chippindale AK 《Heredity》2011,106(6):994-1002
Stronger selection on males has the potential to lower the deleterious mutation load of females, reducing the cost of sex. However, few studies have directly quantified the strength of selection for both sexes. As the magnitude of inbreeding depression (ID) is related to the strength of selection, we measured the cost of inbreeding for both males and females in a laboratory population of Drosophila melanogaster. Using a novel technique for inbreeding, we found significant ID for both juvenile viability and adult fitness in both sexes. The genetic variation responsible for this depression in fitness appeared to be recessive for adult fitness (h=0.11) and partially additive for juvenile viability (h=0.29). ID was identical across the sexes in terms of juvenile viability but was significantly more deleterious for males than females as adults, even though female X-chromosome homogamety should predispose them to a higher inbreeding load. We estimated the strength of selection on adult males to be 1.24 greater than on adult females, and this appears to be a consequence of selection arising from competition for mates. Combined with the generally positive intersexual genetic correlation for inbred lines, our results suggest that the mutation load of sexual females could be meaningfully reduced by stronger selection acting on males.  相似文献   

14.
Sexually selected traits display substantial genetic variance [1, 2], in conflict with the expectation that sexual selection will deplete it [3-5]. Condition dependence is thought to resolve this paradox [5-7], but experimental tests that relate the direction of sexual selection to the availability of genetic variance are lacking. Here, we show that condition-dependent expression is not sufficient to maintain genetic variance available to sexual selection in multiple male sexually selected traits. We employed an experimental design that simultaneously determined the quantitative genetic basis of nine male cuticular hydrocarbons (CHCs) of Drosophila bunnanda, the extent of condition dependence of these traits, and the strength and direction of sexual selection acting upon them. The CHCs of D. bunnanda are condition dependent, with 18% of the genetic variance in male body size explained by genetic variance in CHCs. Despite the presence of genetic variance in individual male traits, 98% of the genetic variance in CHCs was found to be orientated more than 88 degrees away from the direction of sexual selection and therefore unavailable to selection. A lack of genetic variance in male traits in the direction of sexual selection may represent a general feature of sexually selected systems, even in the presence of condition-dependent trait expression.  相似文献   

15.
Abstract The existence of a direct link between intensity of sexual selection and mating-system type is widely accepted. However, the quantification of sexual selection has proven problematic. Several measures of sexual selection have been proposed, including the operational sex ratio (OSR), the breeding sex ratio (BSR), and the opportunity for sexual selection (I(mates)). For a wild population of pronghorn (Antilocapra americana), we calculated OSR and BSR. We estimated I(mates) from census data on the spatial and temporal distribution of receptive females in rut and from a multigenerational genetic pedigree. OSR and BSR indicated weak sexual selection on males, but census and pedigree I(mates) suggested stronger sexual selection on males than on females. OSR and BSR correlated with census but not pedigree estimates of I(mates), and census I(mates) did not correlate with pedigree estimates. This suggests that the behavioral mating system, as deduced from the spatial and temporal distribution of females, does not predict the genetic mating system of pronghorn. The differences we observed between estimators were primarily due to female mate sampling and choice and to the sex ratio. For most species, behavioral data are not perfectly accurate and therefore will be an insufficient alternative to using multigenerational pedigrees to quantify sexual selection.  相似文献   

16.
The effect of simultaneous selection on the genetic correlation   总被引:1,自引:0,他引:1  
The theoretical effect of simultaneous selection on the genetic correlations between two traits over 20 generations was examined using simulation. For each generation, a population of 50 male and 50 female diploid gen otypes with 15 loci, each with two alleles, was synthesized. None of the loci exhibited dominance. Five loci affected only trait 1, 5 loci only trait 2 and 5 were pleiotropic (affected both traits). Initial allelic frequencies were equal at each locus. Phenotypes were created by adding a random normal deviation for each trait to the genotype. The size of this deviation for each trait determined its heritability (h2). Index selection with h2 combinations of (0.15, 0.15), (0.15,0.45) and (0.45,0.45) and relative economic weights of (1, 1) and (1, 3) for each h2 combination was employed. In each generation, the highest ranking 25 genotypes of each sex were used to generate the next generation with single-pair matings, each producing two male and two female offspring. One hundred replicates were run for both negative and positive correlations. With a positive initial value, the genetic correlation tended to decline (toward zero). The rates of change were moderately affected by index weights and h2. With a negative initial value, the genetic correlation tended to decrease (towards -1). However, unequal heritabilities and unequal relative economic weights slowed the rate of change with the greatest imbalances tending to hold the correlation constant or move it toward zero. These simulations illustrate that changes in parameters over time can affect the selection practiced. Under some of the conditions simulated, the use of initial genetic parameter values without change could have potentially negative effects on overall genetic gain.  相似文献   

17.
Components of genetic variation for postweaning growth traits were estimated for both control and growth stocks of mice. The effect of phenotypic selection for gain, which genetically combines selection for additive direct and maternal effects, on additive genetic variance components, heritability, and additive genetic correlationsis discussed. Quantitative genetic theory predicts that simultaneous selection for two metric traits in the same direction will cause the genetic correlation between the two traits to become more negative. The results presented in this paper conflict with this theory. The direct-maternal additive genetic correlation was more negative in the control line (with 356 mice) than in the growth-selected line (with 320 mice) for the three traits analyzed (0.310 vs 0.999 for 21-day weight, 0.316 vs 1.000 for 42-day weight, and 0.506 vs 1.000 for gain from 21–42 days). Estimates were obtained by restricted maximum likelihood (REML) computed under a derivative free algorithm (DFREML).  相似文献   

18.
19.
The potential viability costs of sexually selected traits are central to hypotheses about the evolution of exaggerated traits. Estimates of these costs in nature can come from selection analyses using multiple components of fitness during the same time frame. For a population of tree crickets (Oecanthus nigricornis: Gryllidae), we analyzed viability and sexual selection on male traits by comparing Oecanthus prey of a solitary wasp to those that survived, and comparing mating individuals to solitary males. We measured forewing width (sexually size dimorphic and used for singing), head width, pronotum length, and size of hind jumping legs as potential targets of selection. Supporting the hypothesis that sexually selected traits have viability costs, we found that significant directional sexual selection for wider heads was opposed by significant viability selection for narrower heads. Nonlinear selection revealed that individuals with wide heads and small legs were most attractive, but individuals with narrow heads, large legs, and intermediate pronotum length were most likely to survive. Successful mating may put males at greater risk of predation, especially if copulation per se is risky. Such balancing selection in tree crickets may have constrained the evolution of sexual dimorphism in head size—a condition seen in other gryllids and orthopterans.  相似文献   

20.
An unresolved question in sexual selection research is whetherdifferent secondary sexual traits are developmentally independentor instead whether their degree of expression is a manifestationof a general resource pool (i.e., condition) within the organism.If degree of expression of different sexual traits reflectsability to accumulate condition, then covariation should existacross genotypes in the expression of these traits, even ifthey are very different in kind. Here we present evidence forpredicted covariation between morphological (sex comb size)and behavioral (courtship song) sexual traits among geneticlines of Drosophila bipectinata Duda extracted from a naturalpopulation. There is evidence that both these traits in Drosophilaare condition dependent and subject to sexual selection. Wedetected significant body size–independent differencesin comb size among 32 lines. Replicate lines exhibiting relativelyhigh and low values of comb size were then subjected to analysesof courtship song. High sex comb lines exhibited shorter meanburst period and shorter mean burst duration than low sex comblines. These song differences occurred only during the distantpursuit phase of male courtship and existed despite factoringout individual variations in sex comb size, the trait on thebasis of which test lines were originally chosen. The resultsverify the prediction of an association between condition-dependentsecondary sexual traits across genotypes and, therefore, supportthe existence of an overall genetic quality related to conditionacquisition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号