首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Inflammation is a crucial element of the host response to cellular insult. Pathogen-induced inflammation includes a molecular pathway which proceeds through activation of the protease caspase-1 to the release of the inflammatory cytokines interleukin-1 (IL-1) and IL-18. Importantly, pathogens may also induce forms of cell death that have inherently pro-inflammatory features. Here, we review recent evidence demonstrating that NLR (nucleotide-binding domain, leucine-rich repeat containing) family proteins serve as a common component of both caspase-1-activated apoptotic pathways and caspase-independent necrotic pathways. Parallels are drawn between NLR protein function and the activity of structurally similar proteins involved in cell death: the apoptotic mediator APAF1 (apoptotic-protease-activating factor 1) and the plant disease resistance NBS-LRR (nucleotide-binding site leucine-rich repeats) proteins.  相似文献   

2.
Life's smile, death's grin: vital functions of apoptosis-executing proteins   总被引:14,自引:0,他引:14  
Apoptosis is executed by caspases as well as caspase-independent death effectors. Caspases are expressed as inactive zymogens in virtually all animal cells and are activated in cells destined to undergo apoptosis. However, there are many examples where caspase activation is actually required for cellular processes not related to cell death, namely terminal differentiation, activation, proliferation, and cytoprotection. Several caspase-independent death effectors including apoptosis-inducing factor, endonuclease G and a serine protease (Omi/HtrA2) are released from the mitochondrial intermembrane space upon permeabilization of the outer membrane. Such proteins also have important roles in cellular redox metabolism and/or mitochondrial biogenesis. As a general rule, it thus appears that cell-death-relevant proteins, especially those involved in the core of the executing machinery, have a dual function in life and death. This has important implications for pathophysiology. The fact that the building blocks of the apoptotic machinery have normal functions not related to cell death may mean that essential parts of the apoptotic executioner cannot be lost and thus reduces the possibility of oncogenic mutations that block the apoptotic program. Moreover, therapeutic suppression of unwarranted cell death must be designed to target only the lethal (and not the vital) role of death effectors.  相似文献   

3.
Emerging roles of caspase-3 in apoptosis   总被引:1,自引:0,他引:1  
Caspases are crucial mediators of programmed cell death (apoptosis). Among them, caspase-3 is a frequently activated death protease, catalyzing the specific cleavage of many key cellular proteins. However, the specific requirements of this (or any other) caspase in apoptosis have remained largely unknown until now. Pathways to caspase-3 activation have been identified that are either dependent on or independent of mitochondrial cytochrome c release and caspase-9 function. Caspase-3 is essential for normal brain development and is important or essential in other apoptotic scenarios in a remarkable tissue-, cell type- or death stimulus-specific manner. Caspase-3 is also required for some typical hallmarks of apoptosis, and is indispensable for apoptotic chromatin condensation and DNA fragmentation in all cell types examined. Thus, caspase-3 is essential for certain processes associated with the dismantling of the cell and the formation of apoptotic bodies, but it may also function before or at the stage when commitment to loss of cell viability is made.  相似文献   

4.
Signal transduction pathways linking polyamines to apoptosis   总被引:3,自引:0,他引:3  
Summary. Polyamines are important multifunctional cellular components and are classically considered as mediators of cell growth and division. Recently polyamines have been also implicated in cell death. Now it appears that polyamines are bivalent regulators of cellular functions, promoting proliferation or cell death depending on the cell type and on environmental signals. This review draws a picture about the role of polyamines in signalling pathways related to apoptotic cell death and the proposed molecular targets of these polycations at the level of the apoptotic cascade. Solid evidence indicates that polyamines may affect the mitochondrial and postmitochondrial phases of apoptosis, by modulating cytochrome c release from mitochondria and activation of caspases. Recently, polyamines have been also implicated in the regulation of the premitochondrial phase of apoptosis, during which upstream apoptotic signal transduction pathways are activated. The studies reviewed here suggest that polyamines may participate in loops involving interaction with signal transduction pathways and activation/expression of proteins that may control cell death or cell growth.  相似文献   

5.
Park IC  Park MJ  Woo SH  Lee KH  Lee SH  Rhee CH  Hong SI 《Cytokine》2001,15(3):166-170
We examined the role of caspases and serine protease(s) in cell death induced by tumour necrosis factor-related apoptosis-inducing ligand (TRAIL). After incubation of adenocarcinoma cells with TRAIL, caspase-3, -8 were activated and the cleavage of Bid induced the release of cytochrome c, from the mitochondria to the cytosol. Tetrapeptide inhibitors of caspase-1, -2, -3, and -8 suppressed DNA fragmentation and attenuated the release of cytochrome c, whereas inhibitors of caspase-5 did not. Interestingly, the general serine protease(s) inhibitor 4-(2-aminoethyl)benzylsulfonyl fluoride (AEBSF) resulted in the arrest of apoptosis. However, the AEBSF did not prevent the release of mitochondrial cytochrome c during TRAIL-induced apoptosis. From these results, we postulate that serine protease(s) may be involved in post-mitochondrial apoptotic events, that lead to the activation of the initiator, caspase-9.  相似文献   

6.
Ribosome inactivating proteins and apoptosis   总被引:10,自引:0,他引:10  
Ribosome inactivating proteins (RIPs) are protein toxins that are of plant or microbial origin that inhibit protein synthesis by inactivating ribosomes. Recent studies suggest that RIPs are also capable of inducing cell death by apoptosis. Though many reports are available on cell death induced by RIPs, the mechanism involved is not well studied. Comparison of pathways of apoptosis and cellular events induced by various RIPs suggests a central role played by mitochondria, probably acting as an integrator of cellular stress and cell death. The purpose of this review is to compare the various apoptotic pathways that may be involved and propose a general pathway in RIP-induced cell death.  相似文献   

7.
Growing evidence suggests that two modes of cell death, known as apoptosis and necrosis, are involved in postanoxic injury. The current opinion on these two types of cell death is that apoptosis and necrosis are not always the uniform and distinct events. The aim of this study was to determine ultrastructural criteria of postanoxic neuronal changes in model of anoxia in vitro . The organotypic cultures of rat hippocampus exposed to 10- and 20-min of anoxic insult revealed the morphological features classic for both necrotic and apoptotic neuronal cell injury. Some neurones exhibited the typical necrotic lysis whereas others clearly reflected an active apoptotic form of cell death consisting of nuclear condensation with early preservation of cell membranes. However, numerous damaged cells shared both apoptotic and necrotic ultrastructural characteristics. These results evidenced the morphological continuum between apoptosis and necrosis under anoxia in vitro .  相似文献   

8.
9.
The membrane-permeant oxidizing agent 2,2'-dithiodipyridine (DTDP) can induce Zn(2+) release from metalloproteins in cell-free systems. Here, we report that brief exposure to DTDP triggers apoptotic cell death in cultured neurons, detected by the presence of both DNA laddering and asymmetric chromatin formation. Neuronal death was blocked by increased extracellular potassium levels, by tetraethylammonium, and by the broad-spectrum cysteine protease inhibitor butoxy-carbonyl-aspartate-fluoromethylketone. N,N,N', N'-Tetrakis-(2-pyridylmethyl)ethylenediamine (TPEN) and other cell-permeant metal chelators also effectively blocked DTDP-induced toxicity in neurons. Cell death, however, was not abolished by the NMDA receptor blocker MK-801, by the intracellular calcium release antagonist dantrolene, or by high concentrations of ryanodine. DTDP generated increases in fluorescence signals in cultured neurons loaded with the zinc-selective dye Newport Green. The fluorescence signals following DTDP treatment also increased in fura-2- and magfura-2-loaded neurons. These responses were completely reversed by TPEN, consistent with a DTDP-mediated increase in intracellular free Zn(2+) concentrations. Our studies suggest that under conditions of oxidative stress, Zn(2+) released from intracellular stores may contribute to the initiation of neuronal apoptosis.  相似文献   

10.
Stroke, the loss of neurons after ischemic insult to the brain, is one of the leading causes of death and disability worldwide. Despite its prevalence and severity, current therapy is extremely limited, highlighting the importance of further understanding the molecular events underlying ischemia-induced neuronal cell death. An ischemic area can be subdivided into two separate pathophysiological regions: the rapidly dying necrotic core, and the potentially salvageable apoptotic penumbra. Understanding molecular events occurring in the apoptotic ischemic penumbra may give greater insight into mechanisms controlling this salvageable tissue. miRNAs are known to have key roles in the regulation of gene expression in numerous pathological conditions, including the modulation of distinct pathways in stroke. However, previous studies have profiled miRNAs in the whole ischemic infarct, and do not differentiate between miRNA regulation in the necrotic core versus the apoptotic penumbra. We asked if there were unique miRNAs that are differentially regulated following ischemic insults in the salvageable apoptotic penumbra. miRNA expression profiles were compared in the whole infarct from in vivo stroke models, using the three vessel occlusion approach, to an in vitro model of the ischemic penumbra, prior to apoptotic induction. Multiple miRNAs were found to be differentially regulated following ischemic insults in each system. However, miR-19b, miR-29b-2* and miR-339-5p were significantly up-regulated in both model systems. Further, we confirmed these results in a neuroblastoma cell line subjected to a penumbra-like ischemic insult that induced the apoptotic cell death pathway. The data show that miR-19b, miR-29b-2* and miR-339-5p are up-regulated following ischemic insults and may be regulating gene expression to control important cellular pathways in the salvageable ischemic penumbra. Further investigation of their role and mRNA target identification may lead to new insights into the molecular mechanisms taking place in the salvageable apoptotic penumbra.  相似文献   

11.
We have previously reported that ricin, a toxic lectin that inhibits protein synthesis induced apoptotic cell death. In this study, we have found that isolated ricin CM-B-chain, which has no effect on cellular protein synthesis, induced DNA fragmentation in U937 cells in a dose- and time-dependent manner, albeit it required a longer incubation time and higher concentration than those of holotoxin ricin. Z-Asp-CH2-DCB, a caspase family inhibitor and serine protease inhibitor, 3,4-dichloroisocoumarine (DCI) effectively inhibited the CM-B-chain-mediated DNA fragmentation as well as in ricin. Thus, like ricin, multiple proteases with different substrate specificity may also be involved in the CM-B-chain-mediated apoptotic pathway. Furthermore, BFA inhibited both ricin- and CM-B-chain-mediated DNA fragmentation, suggesting an intracellular vesicle transport system through the Golgi complex may be involved in the apoptotic induction by these proteins as a common feature. On the other hand, cycloheximide (CHA) strongly increased the CM-B-chain-mediated DNA fragmentation, but inhibited ricin-mediated DNA fragmentation. The opposite effects of CHA may reflect the difference in the apoptotic mechanism between ricin and CM-B-chain. In conclusion, our results suggest that ricin-B-chain can induce apoptosis through its lectin activity, but the underlying mechanism may be distinct from that of ricin in which the A-chain contributes profoundly to the apoptotic induction.  相似文献   

12.
Some studies have shown that dietary intake of polyunsaturated fatty acids of the n-3 series may have inhibitory effect on the growth of tumor cells both in vivo and in vitro. However, the cellular and molecular mechanisms by which n-3 fatty acids reduce the growth of tumor cells remain poorly understood. In the present studies, we compared the potency of a variety of n-3 and n-6 fatty acids in modulating the apoptotic cell death in HT-29 colon cancer cells. Of all fatty acids examined, we found that docosahexaenoic acid (22:6n-3; DHA) is a potent inducer of apoptosis in a time- and dose-dependent manner. Indomethacin, a cyclooxygenase inhibitor, is ineffective in blocking the apoptosis induced by DHA, suggesting that DHA-induced apoptosis in HT-29 cells is not mediated through the cyclooxygenase pathway. In contrast, the DHA-induced apoptosis is partially reversed by a synthetic antioxidant, butylated hydroxytoluene, indicating that lipid peroxidation may be involved in apoptotic signaling pathway induced by DHA. DHA treatment decreased bcl-2 levels in association with apoptosis, whereas bax levels remained unchanged. These results suggest that decreased expression of bcl-2 by DHA might increase the sensitivity of cells to lipid peroxidation and to programmed cell death.  相似文献   

13.
Upon activation, cell surface death receptors, Fas/APO-1/CD95 and tumor necrosis factor receptor-1 (TNFR-1), are attached to cytosolic adaptor proteins, which in turn recruit caspase-8 (MACH/FLICE/Mch5) to activate the interleukin-1 beta-converting enzyme (ICE)/CED-3 family protease (caspase) cascade. However, it remains unknown whether these apoptotic proteases are generally involved in apoptosis triggered by other stimuli such as Myc and p53. In this study, we provide lines of evidence that a death protease cascade consisting of caspases and serine proteases plays an essential role in Myc-mediated apoptosis. When Rat-1 fibroblasts stably expressing either s-Myc or c-Myc were induced to undergo apoptosis by serum deprivation, a caspase-3 (CPP32)-like protease activity that cleaves a specific peptide substrate, Ac-DEVD-MCA, appeared in the cell lysates. Induction of s-Myc- and c-Myc-mediated apoptotic cell death was effectively prevented by caspase inhibitors such as Z-Asp-CH2-DCB and Ac-DEVD-CHO. Furthermore, exposing the cells to a serine protease inhibitor, 4-(2-aminoethyl)benzenesulfonyl fluoride (AEBSF), also significantly inhibited s-Myc- and c-Myc-mediated apoptosis and the appearance of the caspase-3-like protease activity in vivo. However, AEBSF did not directly inhibit caspase-3-like protease activity in the apoptotic cell lysates in vitro. Together, these results indicate that caspase-3-like proteases play a critical role in both s-Myc- and c-Myc-mediated apoptosis and that caspase-3-like proteases function downstream of the AEBSF-sensitive step in the signaling pathway of Myc-mediated apoptosis.  相似文献   

14.
Recent evidence suggests that mitochondrial apoptosis regulators and executioners may regulate differentiation, without being involved in cell death. However, the involved factors and their roles in differentiation and apoptosis are still not fully determined. In the present study, we compared mitochondrial pathway of cell death during early neural differentiation from human embryonic stem cells (hESCs). Our results demonstrated that ROS generation, cytosolic cytochrome c release, caspases activation and rise in p53 protein level occurred upon either neural or apoptosis induction in hESCs. However, unlike apoptosis, no remarkable increase in apoptotic protease activating factor-1 (Apaf-1) level at early stages of differentiation was observed. Also the caspase-like activity of caspase-9 and caspase-3/7 were seen less than apoptosis. The results suggest that low levels of Apaf-1 as an adaptor protein might be considered as a possible regulatory barrier by which differentiating cells control cell death upon rise in ROS production and cytochrome c release from mitochondria. Better understanding of mechanisms via which mitochondria-mediated apoptotic pathway promote neural differentiation can result in development of novel therapeutic approaches.  相似文献   

15.
A potential role for apoptosis in neurodegeneration and Alzheimer's disease   总被引:23,自引:0,他引:23  
Previous studies have shown that β-amyloid (Aβ) peptides are neurotoxic. Recent data suggest that neurons undergoing Aβ-induced cell death exhibit characteristics that correspond to the classical features of apoptosis, suggesting that these cells may initiate a program of cell death. This chapter explores the criteria and precautions that must be applied to evaluate mechanisms of cell death in vitro and in vivo, discusses the evidence supporting an apoptotic mechanism of cell death in response to Aβ in cultured neurons, and describes potential correlations for these findings in the Alzheimer's disease brain. In addition, cellular signaling pathways that may be associated with apoptosis in response to Aβ are examined, and support for apoptosis as a mechanism of cell death for other neurodegeneration-inducing stimuli (e.g., oxidative injury) is described. The connection of multiple stimuli that induce neuronal cell death to an apoptotic mechanism suggests that apoptosis could play a central role in neurodegeneration in the brain.  相似文献   

16.
Recent evidence indicates that a profound alteration in mitochondrial function constitutes an obligatory early event of the apoptotic process. The molecular mechanism accounting for this alteration is mitochondrial permeability transition (PT). PT is both sufficient and necessary for apoptosis to occur. Experiments performed in cell-free systems of apoptosis demonstrate that mitochondria undergoing PT release protease activators that can trigger nuclear manifestations of apoptosis. Bcl-2 and its homologs are endogenous regulators of PT. It appears that some types of necrosis, those inhibited by Bcl-2, involve PT. If PT is a rate-limiting event of both apoptosis and necrosis, then downstream events including caspase activation and the bioenergetic consequences of PT must determine the choice between both modes of cell death. PT without caspase activation would cause necrosis. These findings have important implications for the comprehension of the apoptotic process, for the dichotomy between apoptosis and necrosis, and for the phylogeny of programmed cell death. Apoptosis may have evolved together with the endosymbiotic incorporation of aerobic bacteria (the precursors of mitochondria) into ancestral unicellular eukaryotes.  相似文献   

17.
18.
Programmed cell death is an active process wherein the cell initiates a sequence of events culminating in the fragmentation of its DNA, nuclear collapse, and disintegration of the cell into small, membrane-bound apoptotic bodies. Examination of the death program in various models has shown common themes, including a rise in cytoplasmic calcium, cytoskeletal changes, and redistribution of membrane lipids. The calcium-dependent neutral protease calpain has putative roles in cytoskeletal and membrane changes in other cellular processes; this fact led us to test the role of calpain in a well-known model of apoptotic cell death, that of thymocytes after treatment with dexamethasone. Assays for calcium-dependent proteolysis in thymocyte extracts reveal a rise in activity with a peak at about 1 hr of incubation with dexamethasone, falling to background at approximately 2 hr. Western blots indicate autolytic cleavage of the proenzyme precursor to the calpain I isozyme, providing additional evidence for calpain activation. We have also found that apoptosis in thymocytes, whether induced by dexamethasone or by low-level irradiation, is blocked by specific inhibitors of calpain. Apoptosis of metamyelocytes incubated with cycloheximide is also blocked by calpain inhibitors. These studies suggest a required role for calpain in both “induction” and “release” models of apoptotic cell death. © 1994 wiley-Liss, Inc.  相似文献   

19.
Necrotic cell death yields the release of cellular components that can function in the initiation of cellular immune responses. Given the established capacity of the endoplasmic reticulum chaperone GRP94 (gp96) to elicit CD8(+) T cell activation, we have investigated the cellular fate and antigenicity of GRP94 in differing scenarios of cell death. Virally induced cell death or mechanical cell death, elicited by freeze/thaw treatment of cell suspensions, yielded GRP94 release into the extracellular space; apoptotic cell death occurring in response to serum deprivation did not elicit GRP94 release. To assess the antigenicity of GRP94 released following virally induced cell death (lethal infection of cells with rVV ES-OVA(Met258-265), a recombinant, ovalbumin epitope-expressing vaccinia virus) or mechanical cell death (freeze/thaw of ovalbumin-expressing cells), tissue culture supernatant fractions were pulsed onto antigen-presenting cells, and antigen re-presentation was assayed as activation of an ovalbumin-specific T cell hybridoma. For both cell death scenarios, released GRP94 elicited a dose-dependent, ovalbumin-specific, hybridoma activation. In contrast, calreticulin derived from rVV ES-OVA(Met258-265)-infected cell extracts did not stimulate B3Z activity. These data identify GRP94 as an antigenic component released upon pathological, but not apoptotic, cell death and provide an assay system for the identification of cellular components of related activity.  相似文献   

20.
BACKGROUND: There are two fundamental forms of cell death: apoptosis and necrosis. Molecular studies of cell death thus far favor a model in which apoptosis and necrosis share very few molecular regulators. It appears that apoptotic processes triggered by a variety of stimuli converge on the activation of a member of the caspase family, such as caspase 3, which leads to the execution of apoptosis. It has been suggested that blocking of caspase activation in an apoptotic process may divert cell death to a necrotic demise, suggesting that apoptosis and necrosis may share some upstream events. Activation of caspase is preceded by the release of mitochondrial cytochrome C. MATERIALS AND METHODS: We first studied cell death induced by beta-lapachone by MTT and colony-formation assay. To determine whether the cell death induced by beta-lapachone occurs through necrosis or apoptosis, we used the PI staining procedure to determine the sub-G1 fraction and the Annexin-V staining for externalization of phophatidylserine. We next compared the release of mitochondrial cytochrome C in apoptosis and necrosis. Mitochondrial cytochrome C was determined by Western blot analysis. To investigate changes in mitochondria that resulted in cytochrome C release, the mitochondrial membrane potential (delta psi) was analyzed by the accumulation of rhodamine 123, a membrane-permeant cationic fluorescent dye. The activation of caspase in apoptosis and necrosis were measured by using a profluorescent substrate for caspase-like proteases, PhiPhiLuxG6D2. RESULTS: beta-lapachone induced cell death in a spectrum of human carcinoma cells, including nonproliferating cells. It induced apoptosis in human ovary, colon, and lung cancer cells, and necrotic cell death in four human breast cancer cell lines. Mitochondrial cytochrome C release was found in both apoptosis and necrosis. This cytochrome C release occurred shortly after beta-lapachone treatment when cells were fully viable by trypan blue exclusion and MTT assay, suggesting that cytochrome C release is an early event in beta-lapachone induced apoptosis as well as necrosis. The mitochondrial cytochrome C release induced by beta-lapachone is associated with a decrease in mitochondrial transmembrane potential (delta psi). There was activation of caspase 3 in apoptotic cell death, but not in necrotic cell death. This lack of activation of CPP 32 in human breast cancer cells is consistent with the necrotic cell death induced by beta-lapachone as determined by absence of sub-G1 fraction, externalization of phosphatidylserine. CONCLUSIONS: beta-lapachone induces either apoptotic or necrotic cell death in a variety of human carcinoma cells including ovary, colon, lung, prostate, and breast, suggesting a wide spectrum of anti-cancer activity in vitro. Both apoptotic and necrotic cell death induced by beta-lapachone are preceded by a rapid release of cytochrome C, followed by the activation of caspase 3 in apoptotic cell death but not in necrotic cell death. Our results suggest that beta-lapachone is a potential anti-cancer drug acting on the mitochondrial cytochrome C-caspase pathway, and that cytochrome C is involved in the early phase of necrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号