首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetically mediated taste responsiveness to 6-n-propylthiouracil (PROP) has been linked to reduced acceptance of some bitter foods. In this community-based study male (n = 364) and female (n = 378) adults enrolled in a self-help dietary intervention trial were screened for PROP taster status. Respondents, aged 18--70 years, were mailed filter papers impregnated with PROP or with aspartame solutions. They received instructions to rate taste intensity and hedonic preference using nine point category scales. Women rated PROP as more bitter than did men. Both sweetness and bitterness ratings were lower for older adults. Taste responsiveness to PROP was unrelated to body mass index in women or men. Higher bitterness ratings for PROP were weakly associated with higher sweetness ratings for aspartame, but were unrelated to sweet taste preferences. Successful administration of PROP filter papers by mail suggests new avenues for the screening of taste phenotypes in epidemiological studies.  相似文献   

2.
Genetically mediated sensitivity to the bitter taste of 6-n-propylthiouracil(PROP) has been associated with greater acuity for bitter andfor some sweet tastes. Thus far, few studies have explored therelationship between PROP taste sensitivity and hedonic responsesto bitter and sweet. In this study, 87 normal-weight young womenwere divided into PROP non-tasters (n = 18), regular tasters(n = 49), and supertasters (n = 20), based on their PROP detectionthresholds and the scaling of five suprathreshold solutionsof PROP and NaCl. Non-tasters had thresholds >1.8 x 10–4mol/l PROP. Supertasters had thresholds <3.2 x 10–5mol/l PROP and PROP/NaCl ratios >1.70. As expected, dislikeof the bitter taste of PROP was determined by its perceivedintensity, which was greater among supertasters than among regulartasters or non-tasters. Significant correlations were observedbetween PROP taste thresholds and the sum of intensity ratings(r = –0.61) and between summed intensity and summed hedonicratings (r = –0.80). PROP taste sensitivity was weaklylinked to enhanced perception of sweet taste, but did not predicthedonic responses to sucrose or to saccharin solutions. Giventhat the dislike of PROP solutions is determined by their perceivedintensity, hedonic responses to PROP solutions may provide arapid way of screening for PROP taster status. Chem. Senses22: 27–37, 1997.  相似文献   

3.
The genetic predisposition to taste 6-n-propylthiouracil (PROP) varies among individuals and is associated with salivary levels of Ps-1 and II-2 peptides, belonging to the basic proline-rich protein family (bPRP). We evaluated the role of these proteins and free amino acids that selectively interact with the PROP molecule, in modulating bitter taste responsiveness. Subjects were classified by their PROP taster status based on ratings of perceived taste intensity for PROP and NaCl solutions. Quantitative and qualitative determinations of Ps-1 and II-2 proteins in unstimulated saliva were performed by HPLC-ESI-MS analysis. Subjects rated PROP bitterness after supplementation with Ps-1 and II-2, and two amino acids (L-Arg and L-Lys) whose interaction with PROP was demonstrated by 1H-NMR spectroscopy. ANOVA showed that salivary levels of II-2 and Ps-1 proteins were higher in unstimulated saliva of PROP super-tasters and medium tasters than in non-tasters. Supplementation of Ps-1 protein in individuals lacking it in saliva enhanced their PROP bitter taste responsiveness, and this effect was specific to the non-taster group.1H-NMR results showed that the interaction between PROP and L-Arg is stronger than that involving L-Lys, and taste experiments confirmed that oral supplementation with these two amino acids increased PROP bitterness intensity, more for L-Arg than for L-Lys. These data suggest that Ps-1 protein facilitates PROP bitter taste perception and identifies a role for free L-Arg and L-Lys in PROP tasting.  相似文献   

4.
It is generally assumed that the mutual, but asymmetric, suppression of the components in binary taste mixtures is an invariant property of the human psychophysical response to such mixtures. However, taste intensities have been shown to vary as a function of individual differences in sensitivity, indexed by the perceived bitterness of 6-n-propylthiouracil (PROP). To determine if these variations in taste perception influence taste mixture interactions, groups of PROP super-, medium- and non-tasters assessed four binary taste mixtures: sweet-bitter [sucrose/quinine hydrochloride (QHCl)], sweet-sour (sucrose/citric acid), salty-bitter (NaCl/QHCl) and salty-sour (NaCl/citric acid). In each experiment, subjects received factorial combinations of four levels of each of two tastants and rated individual taste intensities and overall mixture intensity. For each taste quality, super-tasters typically gave higher ratings than either medium- or non-tasters, who tended not to differ. There were also group differences in the interactions of the mixtures' components. Super-tasters rated the overall intensity of the mixtures, most likely reflecting integration of the taste components, as greater than medium- and non-tasters, who again showed few differences. In sweet-bitter mixtures, non-tasters failed to show the suppression of sweetness intensity by the highest QHCl concentration that was evident in super- and medium-tasters. These data show that the perception of both tastes and binary taste mixture interactions varies as a function of PROP taster status, but that this may only be evident when three taster groups are clearly distinguished from one another.  相似文献   

5.

PURPOSE:

Genetic factor to bitter taste perception appears to be largely mediated by the TAS2R38 gene. The insensitivity to bitter compounds like 6-n-propylthiouracil (PROP) is mediated by this gene. PROP, a pharmacological drug used in treatment of Graves’ disease, proved to be useful tool in determining the genetic sensitivity levels to bitter and sweet taste. The purpose of this study is to show much simpler PROP sensitivity technique for the clinical examiner and its application as a diagnostic aid in Early Childhood Caries (ECC) detection among preschool children.

MATERIALS AND METHODS:

A total of 119 children belonging to the age group of 36 to 71 months of both sexes, were recruited from A. J. Institute of Dental Sciences, Mangalore (Karnataka). PROP sensitivity test was carried out to determine the inherent genetic ability to taste a bitter or sweet substance. This study used simpler scaling method to find out genetic sensitivity to bitter taste; one who tasted bitter as taster and one who was not able to differentiate/tasted like paper as non-taster. A questionnaire was provided to evaluate their dietary habits and caries experience was recorded. Collected data were tabulated and subjected to statistical analysis.

RESULTS:

In the total of 119 children the mean dmfs was definitely higher in non-taster children compared to tasters. The tasters had a mean dmfs value of 9.5120 (S.D. 7.0543) and non-tasters had a value of 7.7250 (S.D. 8.33147), which was statistically significant. The results suggested that there was increase in caries experience among the group of non-tasters as compared to tasters. Tasters tended to be sweet dislikers and non-tasters tended to be sweet likers. On the whole, tasters had a bad dentition as compared to non tasters.

CONCLUSION:

The PROP sensitivity test (filter paper test) proved to be a useful diagnostic tool in determining the genetic sensitivity levels of bitter taste. The knowledge of a child''s taste perception can help us in identifying the children who are at higher risk for ECC.  相似文献   

6.
Genetic variation in the ability to taste the bitterness of 6-n-propylthiouracil (PROP) is a complex trait that has been used to predict food preferences and eating habits. PROP tasting is primarily controlled by polymorphisms in the TAS2R38 gene. However, a variety of factors are known to modify the phenotype. Principle among them is the salivary protein Ps-1 belonging to the basic proline-rich protein family (bPRP). Recently, we showed that oral supplementation with Ps-1 as well as its related free amino acids (L-Arg and L-Lys) enhances PROP bitterness perception, especially for PROP non-tasters who have low salivary levels of Ps-1. Here, we show that salivary L-Arg levels are higher in PROP super-tasters compared to medium tasters and non-tasters, and that oral supplementation with free L-Arg enhances PROP bitterness intensity as well as reduces bitterness latency in a dose-dependent manner, particularly in individuals with low salivary levels of both free L-Arg and Ps-1 protein. Supplementation with L-Arg also enhanced the bitterness of caffeine. We also used 1H-NMR spectroscopy and quantum-mechanical calculations carried out by Density Functional Theory (DFT) to characterize the chemical interaction between free L-Arg and the PROP molecule. Results showed that the –NH2 terminal group of the L-ArgH+ side chain interacts with the carbonyl or thiocarbonyl groups of PROP by forming two hydrogen bonds with the resulting charged adduct. The formation of this PROP•ArgH+ hydrogen-bonded adduct could enhance bitterness intensity by increasing the solubility of PROP in saliva and its availability to receptor sites. Our data suggest that L-Arg could act as a ‘carrier’ of various bitter molecules in saliva.  相似文献   

7.
It was recently shown that in some subjects capsaicin can evoke bitterness as well as burning and stinging, particularly in the circumvallate (CV) region of the tongue. Because perception of bitterness from capsaicin is characterized by large individual differences, the main goal of the present study was to learn whether people who taste capsaicin as bitter also report bitterness from structurally similar sensory irritants that are known to stimulate capsaicin-sensitive neurons. The irritancy and taste of capsaicin and two of its most commonly studied congeners, piperine and zingerone, were measured in individuals who had been screened for visibility of, and reliable access to, the CV papillae. Approximately half of these individuals reported tasting bitterness from all three irritants when the stimuli were swabbed directly onto the CV papillae. Concentrations that produced similar levels of burning sensation across subjects also produced similar (though lower) levels of bitter taste. These results are consistent with the hypothesis that capsaicin and its congeners stimulate bitterness via a common sensory receptor that is distributed differentially among individuals. Additionally, bitter tasters rated gustatory qualities (but not burning and stinging) slightly but significantly higher than did bitter non-tasters, which suggests that perception of capsaicin bitterness is associated with a higher overall taste responsiveness (but not chemesthetic responsiveness) in the CV region.  相似文献   

8.
Evidence supporting a taste component for dietary fat has prompted study of plausible transduction mechanisms. One hypothesizes that long-chain, unsaturated fatty acids block selected delayed-rectifying potassium channels, resulting in a sensitization of taste receptor cells to stimulation by other taste compounds. This was tested in 17 male and 17 female adult (mean +/- SE age = 23.4 +/- 0.7 yr) propylthiouracil tasters with normal resting triglyceride concentrations (87.3 +/- 5.6 mg/day) and body mass index (23.3 +/- 0.4 kg/m(2)). Participants were tested during two approximately 30-min test sessions per week for 8 wk. Eight stimuli were assessed in duplicate via an ascending, three-alternative, forced-choice procedure. Qualities were randomized over weeks. Stimuli were presented as room-temperature, 5-ml portions. They included 1% solutions of linoleic acid with added sodium chloride (salty), sucrose (sweet), citric acid (sour), and caffeine (bitter) as well as solutions of these taste compounds alone. Participants also rated the intensity of the five strongest concentrations using the general labeled magnitude scale. The suprathreshold samples were presented in random order with a rinse between each. Subjects made the ratings self-paced while wearing nose clips. It was hypothesized that taste thresholds would be lower and absolute intensity ratings or slopes of intensity functions would be higher for the stimuli mixed with the linoleic acid. Thresholds were compared by paired t-tests and intensity ratings by repeated measures analysis of variance. Thresholds were significantly higher (i.e., lower sensitivity) for the sodium chloride, citric acid, and caffeine solutions with added fatty acid. Sweet, sour, and salty intensity ratings were lower or unchanged by the addition of a fatty acid. The two highest concentrations of caffeine were rated as weaker in the presence of linoleic acid. These data do not support a mechanism for detecting dietary fats whereby fatty acids sensitize taste receptor cells to stimulation by taste compounds.  相似文献   

9.
Polymorphisms in the TAS2R38 gene provide insight to phenotypes long associated 6-n-propylthiouracil (PROP) and phenylthiocarbamide bitterness. We tested relationships between TAS2R38 genotype, taste phenotype, and fungiform papillae (FP) number in 139 females and 59 males (age range 21-60 years), primarily of European ancestry. DNA was analyzed for 3 polymorphic sites, identifying common (alanine-valine-isoleucine [AVI/AVI], heterozygotes, proline-alanine-valine [PAV/PAV]) and rare (proline-valine-isoleucine, alanine-alanine-valine, AAI) forms. Individuals with PROP threshold >0.15 mM were almost exclusively AVI/AVI; those with threshold <0.1 mM could have any genotype. PAV/PAVs were more difficult to identify with PROP taste measures, although perceived bitterness of moderate PROP concentrations (0.32, 1 mM) had better correspondence with genotype than did threshold. For AVI/AVIs, increases in bitterness from 1 to 3.2 mM PROP nearly paralleled those of TAS2R38 heterozygotes and PAV/PAVs. Some bitterness gains were related to FP number sampled from a standard area on the tongue tip, yet the PROP bitterness-FP relationship differed across genotype. Among homozygotes, FP was a significant determinant of PROP bitterness; heterozygotes showed a flat relationship. Those tasting concentrated PROP as more bitter also tasted concentrated sucrose, citric acid, sodium chloride, and quinine as more intense, even after statistically controlling for TAS2R38 genotype, FP, and intensity of tones (nonoral standard). To summarize, although PROP threshold generally exhibited single-gene complete dominance, PROP bitterness may involve additional bitter receptors as evidenced by misclassification of some nontaster homozygotes and the bitterness functions for concentrated PROP. Variability in receptor expression may explain attenuated bitterness-FP relationships. PROP bitterness does associate with heightened taste sensations (i.e., supertasting), but this is not due to TAS2R38 polymorphisms.  相似文献   

10.
Lim J  Urban L  Green BG 《Chemical senses》2008,33(6):493-501
Previous reports that the sensitivity to the bitter tasting substance 6-n-propylthiouracil (PROP) is related to the sensitivity to other tastes, to chemical irritants, and to fats and oils have led to adoption of PROP as a measure of general oral sensitivity and as a predictor of dietary habits that could impact health. The results, however, have not been consistent. It was recently discovered that the ability to perceive "thermal taste" (i.e., sweetness from thermal stimulation alone) was associated with higher responsiveness to 4 prototypical taste stimuli but not to PROP. This finding implied that individual differences in taste perception are determined in large part by factors other than those related to genetic expression of the PROP receptor. The present study followed up this observation by comparing individual differences in perception of 4 prototypical taste stimuli (sucrose, NaCl, citric acid, and quinine) and PROP under conditions that also enabled assessment of the reliability of individual intensity ratings of taste. Creaminess ratings of 3 milk products that had different fat contents were also collected to investigate further the relationship between taste and oral somatosensory perception. The results showed that intensity ratings across 2 trials were significantly correlated for all 5 taste stimuli and that averaging across replicates led to significant correlations among the 4 prototypical stimuli. In contrast, the bitterness of PROP was correlated only with the bitterness of quinine. None of the taste stimuli, including PROP, was significantly correlated with ratings of creaminess. These results imply 1) that with the exception of PROP, as few as 2 intensity ratings of common taste stimuli can reveal individual differences in overall taste perception and 2) that any relationship between taste and oral sensation is too weak to be detected under the same conditions. Accordingly, the results support other evidence that the genetic factors which determine the ability to perceive PROP do not play a major role in overall taste and oral somatosensory perception.  相似文献   

11.
Hayes JE  Duffy VB 《Chemical senses》2007,32(3):225-236
Genetic variation in oral sensation presumably influences ingestive behaviors through sensations arising from foods and beverages. Here, we investigated the influence of taste phenotype [6-n-propylthiouracil (PROP) bitterness, fungiform papillae (FP) density] on sweet and creamy sensations from sugar/fat mixtures. Seventy-nine subjects (43 males) reported the sweetness and creaminess of water or milk (skim, whole, heavy cream) varying in sucrose (0-20% w/v) on the general Labeled Magnitude Scale. Sweetness grew with sucrose concentration and when shifting from water to milk mixtures--the growth was greatest for those tasting PROP as most bitter. At higher sucrose levels, increasing fat blunted the PROP-sweet relationship, whereas at lower levels, the relationship was effectively eliminated. Perceived sweetness of the mixture exceeded that predicted from the sum of components at low sucrose concentrations (especially for those tasting PROP most bitter) but fell below predicted at high concentrations, irrespective of fat level. Creaminess increased greatly with fat level and somewhat with sucrose. Those tasting PROP most bitter perceived greater creaminess in the heavy cream across all sucrose levels. Perceived creaminess was somewhat lower than predicted, irrespective of PROP bitterness. The FP density generally showed similar effects as PROP on sweetness and creaminess, (but to a lesser degree) and revealed potential taste-somatosensory interactions in weakly sweet stimuli. These data support that taste phenotype affects the nature of enhancement or suppression of sweetness and creaminess in liquid fat/sugar mixtures. Taste phenotype effects on sweetness and creaminess likely involve differential taste, retronasal olfactory, and somatosensory contributions to these perceptual experiences.  相似文献   

12.
Leach  E.Jane; Noble  A.C. 《Chemical senses》1986,11(3):339-345
Temporal bitterness sequences elicited by four equi-bitter concentrationsof caffeine and quinine were evaluated by a time – intensityprocedure. For both compounds, the increase in bitterness intensitywas highly correlated with an increased duration of aftertaste,although the time to maximum intensity did not change. For equi-bittersolutions, the duration of aftertaste was influenced by thespecific tastant, and was longer for caffeine. Caffeine eliciteda faster maximum rate of onset and slower maximum rate of decayof bitterness. Only one significant difference between subjectswho were sensitive to l-phenyl-2-thiourca (PTC) and those whowere non-tasters was found. Tasters rated the maximum intensityof quinine solutions higher than non-tasters.  相似文献   

13.
The perceived bitterness intensity for bitter solutions of propylthiouracil (PROP), sucrose octa-acetate (SOA), quinine HCl and caffeine were examined in a genetically informative sample of 392 females and 313 males (mean age of 17.8 +/- 3.1 years), including 62 monozygotic and 131 dizygotic twin pairs and 237 sib pairs. Broad-sense heritabilities were estimated at 0.72, 0.28, 0.34, and 0.30 for PROP, SOA, quinine, and caffeine, respectively, for perceived intensity measures. Modeling showed 1) a group factor which explained a large amount of the genetic variation in SOA, quinine, and caffeine (22-28% phenotypic variation), 2) a factor responsible for all the genetic variation in PROP (72% phenotypic variation), which only accounted for 1% and 2% of the phenotypic variation in SOA and caffeine, respectively, and 3) a modest specific genetic factor for quinine (12% phenotypic variation). Unique environmental influences for all four compounds were due to a single factor responsible for 7-22% of phenotypic variation. The results suggest that the perception of PROP and the perception of SOA, quinine, and caffeine are influenced by two distinct sets of genes.  相似文献   

14.
Keast RS  Roper J 《Chemical senses》2007,32(3):245-253
Detection thresholds and psychophysical curves were established for caffeine, quinine-HCl (QHCl), and propylthiouracil (PROP) in a sample of 33 subjects (28 female mean age 24 +/- 4). The mean detection threshold (+/-standard error) for caffeine, QHCl, and PROP was 1.2 +/- 0.12, 0.0083 +/- 0.001, and 0.088 +/- 0.07 mM, respectively. Pearson product-moment analysis revealed no significant correlations between detection thresholds of the compounds. Psychophysical curves were constructed for each bitter compound over 6 concentrations. There were significant correlations between incremental points of the individual psychophysical curves for QHCl and PROP. Regarding caffeine, there was a specific concentration (6 mM) below and above which the incremental steps in bitterness were correlated. Between compounds, analysis of psychophysical curves revealed no correlations with PROP, but there were significant correlations between the bitterness of caffeine and QHCl at higher concentrations on the psychophysical curve (P<0.05). Correlation analysis of detection threshold and suprathreshold intensity within a compound revealed a significant correlation between PROP threshold and suprathreshold intensity (r=0.46-0.4, P<0.05), a significant negative correlation for QHCl (r=-0.33 to -0.4, P<0.05), and no correlation for caffeine. The results suggest a complex relationship between chemical concentration, detection threshold, and suprathreshold intensity.  相似文献   

15.
The study determined the 6-n-propylthiouracil (PROP) status of Filipino adults and how it relates to their body mass indices (BMI) and food preferences. Self-reported food preference checklists were administered to 100 male and female adults aged 18–60, classified according to BMI. Increasing concentrations of PROP and NaCl solutions were rated in labeled magnitude scale to establish the PROP taster status of the selected respondents. The Filipino adult respondents were composed of 12% nontasters, 45% medium tasters and 43% supertasters. No association ( P >  0.05) between BMI and PROP taster status was found. Sweet-tasting foods were the most preferred and bitter-tasting foods were the least preferred within each taster status. Furthermore, medium tasters and supertasters had the highest acceptance for meats, fish and poultry, and least acceptance for beverages, which were mostly bitter. Decreased preferences for fats and oils, sugars and confectionery, and beverages were correlated ( P <  0.05) with responsiveness to PROP.

PRACTICAL APPLICATIONS


The research provides a general baseline data of the PROP taster status of Filipino adults. The findings from this study can be used as a reference and can be compared to similar studies conducted in other countries. Likewise, the information from the study can add to the scarce data for taste genetics specifically for the Asian population. The relationship of PROP taster status with body mass index and food preferences can be a guide in the design of products and dietary plans. Likewise, the study would be a means to understand why people vary in liking for particular food items and how these can be reflected in their food consumption and nutritional status.  相似文献   

16.
The relationships among suprathreshold taste responses to acesulfame-K, Na-saccharin and 6-n-propylthiouracil (PROP) were examined in two studies. In the first study, the labeled magnitude scale was used with the high anchor labeled as 'strongest imaginable oral sensation' and in the second study, it was labeled as 'strongest imaginable sensation of any kind'. Results from the two procedures were similar. Individual differences among 65 subjects were seen in bitter responses to acesulfame-K and saccharin. Bitter responses to acesulfame-K ands accharin were positively correlated, but showed no significant relationship with responses to PROP bitterness or with PROP taster groups. Saccharin and acesulfame-K may share a common mechanism for bitter taste reception and transduction, one that varies across individuals and is different from mechanisms mediating bitter responses to PROP. Changing the instructions of the labeled magnitude scale induced a context effect. Ratings of sweetness referenced to the 'strongest imaginable sensationof any kind' were lower than ratings referenced to just oral sensations.  相似文献   

17.
Anderson's (1981) information integration approach was usedto examine taste mixture integration for intensity and hedonicjudgments of sucrose/sodium chloride and sucrose/citnc acidsolutions. In Experiment I, total intensity and hedonic ratingswere made for factorial combinations of sucrose and sodium chlorideor citric acid. The total intensity judgments produced an integrationpattern characterized by extreme subadditivity at high soluteconcentrations. (Subadditivity refers to the tendency for totalmixture intensity to be rated as less than the sum of the unmixedcomponent intensities.) The intensity judgment integration patternswere essentially identical for the two mixture types. However,the pattern of integration for the sucrose/sodium chloride andsucrose/citric acid mixtures differed for the hedonic ratings.Sucrose tended to eliminate the unpleasantness associated withincreasing concentrations of citric acid, while it only modulatedthis trend for sodium chloride. In Experiment II, subjects ratedthe individual sweet, salty and sour components of the mixturesto determine whether mixture suppression of the component tastescould account for the subadditivity of the total intensity judgmentsand/or the pattern of results for the hedonic ratings. It wasfound that sucrose suppressed the sour component of the sucrose/citricacid mixtures more than the salty component of the sucrose/sodiumchloride solutions This difference in component suppressionseemed to account for the hedonic integration patterns of thetwo mixture types which suggests that mixture suppression isan important factor to consider when predicting the pleasantnessof simple taste mixtures.  相似文献   

18.
Bitter taste intensity: the effect of tastant and thiourea taster status   总被引:3,自引:3,他引:0  
Mela  David J. 《Chemical senses》1989,14(1):131-135
Thiourea tasters and nontasters did not significantly differin their ratings of intensity of caffeine or quinine HCl, butsignificant group x concentration interactions were noted fordenatonium benzoate, sucrose octaacetate and urea.  相似文献   

19.
Some components of bitterness make key flavor contributions to promote the palatability of foods, whereas other components are recognized as aversive signals to avoid consuming harmful substances. These contradictory behaviors suggest that humans tolerate tastes of bitterants based on certain criteria. Here, we investigated human taste tolerance and sensory cues leading to diverse taste tolerance of bitter compounds. Tolerance of eight bitter compounds, which are typically contained in foods, was evaluated by measuring detection and rejection thresholds. The results revealed that the level of tolerance of each compound was variable, and some compounds showed an acceptable concentration regarding the suprathreshold intensity. Tolerance did not depend on the nutritive value or attenuation and accumulation characteristics of bitterness and bitter taste receptors. These results suggest that the criteria controlling tolerance of bitter compounds may be derived from a complex relationship between the taste quality and cognitive process.  相似文献   

20.
Capsaicin is viewed as a purely chemesthetic stimulus that selectively stimulates the somatosensory system. Here we show that when applied to small areas of the tongue, capsaicin can produce a bitter taste as well as sensory irritation. In experiment 1, individuals were screened for the ability to perceive bitterness from capsaicin on the circumvallate papillae. Fifteen of 25 subjects who reported at least weak bitterness rated the intensity of taste, irritation and coolness produced by 100-320 microM capsaicin and 100-320 mM menthol applied via cotton swabs to the tip (fungiform region), the posterior edge (foliate region), and the dorsal posterior surface (circumvallate region) of the tongue. Sucrose, citric acid, sodium chloride and quinine hydrochloride were applied to the same areas to assess tastes responsiveness. On average, capsaicin and menthol produced "moderate" bitterness (and no other significant taste qualities) in the circumvallate region, and weaker bitterness on the side and tip of the tongue. Sensory irritation from capsaicin was rated significantly higher at the tongue tip, whereas menthol coolness was rated higher in the circumvallate region. In experiment 2 we applied sucrose and quinine hydrochloride together with capsaicin to investigate the effects other taste stimuli might have on capsaicin's reported bitterness. As expected, adding quinine produced stronger bitterness in the circumvallate and fungiform regions, and adding sucrose significantly reduced the bitterness of capsaicin in the circumvallate region. Overall, the results suggest that capsaicin and menthol are capable of stimulating a subset of taste neurons that respond to bitter substances, perhaps via receptor-gated ion channels like those recently found in capsaicin- and menthol-sensitive trigeminal ganglion neurons, and that the glossopharyngeal nerve may contain more such neurons than the chorda tympani nerve. That some people fail to perceive bitterness from capsaicin further implies that the incidence of capsaicin-sensitive taste neurons varies across people as well as between gustatory nerves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号