首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human erythrocytes have been treated with different agents producing oxidative stress. Diamide, tetrathionate, chromate, cystamine and iodate preferentially influenced the cellular redox state by oxidation of free and protein thiol groups leaving the redox state of hemoglobin virtually unaffected. None of these compounds was able to stimulate the proteolysis. By contrast, phenylhydrazine, nitrite, hydrogen peroxide, ter-butylhydroperoxide, cumene hydroperoxide and copper-ascorbate caused a noticeable oxidation of hemoglobin to methemoglobin. These latter agents, except nitrite and copper-ascorbate, triggered proteolysis. Identical results have been obtained in a ghost-free hemolysate. The fraction containing the proteolytic activity was isolated from hemolysate and tested on native or oxidant-treated hemoglobin. The proteolysis was stimulated by all agents able to produce methemoglobin. It is concluded that proteolysis correlated to an unbalance of cellular redox state. The results obtained with isolated and recombined fractions suggests that increased proteolysis does not depend on the removal of the effect of protease(s) inhibitor(s). Since all agents stimulating proteolysis are able to generate free radicals, it seems that protein breakdown is triggered by the direct effect of these intermediates on proteins (mostly hemoglobin) without the involvement of radical species produced in the membranes by action of organic hydroperoxides. In addition, since nitrite and copper-ascorbate, which also oxidize hemoglobin by radical generation, are unable to stimulate proteolysis, it should be concluded that protein degradation induced by oxidative stress is a complex event induced only by specific agents.  相似文献   

2.
R T Dean 《FEBS letters》1987,220(2):278-282
I propose that limited free radical attack upon proteins, occurring continuously in cells, creates new N-termini (notably aspartate and glutamate) which render the proteins more susceptible to proteolysis by the ubiquitin conjugation system. I suggest that these reactions are a significant part of the previously described ‘N-end’ and ‘PEST’ rules, which indicate amino acid termini or sequences which tend to dictate short protein half-lives. I also argue that the N-end rule may apply to sequestered intracellular sites, such as mitochondria, these also being sites of radical generation.  相似文献   

3.
Mehlhase J  Gieche J  Ullrich O  Sitte N  Grune T 《IUBMB life》2000,50(4-5):331-335
Exposure of proteins to oxidants leads to increased oxidation followed by preferential degradation by the proteasomal system. The role of the biological oxidant production in microglial BV-2 cells in the oxidation and turnover of endogenous proteins was measured. It could be demonstrated, that BV-2 cells are relatively resistant to fluxes of oxidants, but nevertheless protein oxidation occurs due to activation by LPS. This protein oxidation is followed by an enhanced degradation of endogenous proteins. Using PBN, a free radical scavenger and antioxidant, we could demonstrate the involvement of free radicals in the increased proteolysis in BV-2 cells after LPS-treatment. A slight but significant up-regulation of the proteasomal system after LPS activation takes place, indicating the importance of his proteolytic system in the maintenance of the protein pool of microglial cells.  相似文献   

4.
The state ofperoxidation processes in the basal nuclei (the nucleus caudatus, globus pallidus, nucleus accumbens, amigdaloid complex) of the rat's brain under conditions of an altered photoperiod has been studied. A disturbance of regular photoperiodicity was shown to result in metabolic changes in the mentioned structures of the brain. Enhancement of the processes of lipid and protein peroxidation was observed in the basal nuclei under constant light, the intensity of fibrinolysis and proteolysis increases, the activity of the enzymes of antioxidant defense decreases. Heterodirectional changes of fibrinolysis and proteolysis in individual structures, a decrease of free radical processes against a background of accumulation of modified proteins were observed under conditions of constant darkness.  相似文献   

5.
Limited proteolysis experiments can be successfully used to probe conformational features of proteins. In a number of studies it has been demonstrated that the sites of limited proteolysis along the polypeptide chain of a protein are characterized by enhanced backbone flexibility, implying that proteolytic probes can pinpoint the sites of local unfolding in a protein chain. Limited proteolysis was used to analyze the partly folded (molten globule) states of several proteins, such as apomyoglobin, alpha-lactalbumin, calcium-binding lysozymes, cytochrome c and human growth hormone. These proteins were induced to acquire the molten globule state under specific solvent conditions, such as low pH. In general, the protein conformational features deduced from limited proteolysis experiments nicely correlate with those deriving from other biophysical and spectroscopic techniques. Limited proteolysis is also most useful for isolating protein fragments that can fold autonomously and thus behave as protein domains. Moreover, the technique can be used to identify and prepare protein fragments that are able to associate into a native-like and often functional protein complex. Overall, our results underscore the utility of the limited proteolysis approach for unravelling molecular features of proteins and appear to prompt its systematic use as a simple first step in the elucidation of structure-dynamics-function relationships of a novel and rare protein, especially if available in minute amounts.  相似文献   

6.
An important strategy for "shotgun proteomics" profiling involves solution proteolysis of proteins, followed by peptide separation using multidimensional liquid chromatography and automated sequencing by mass spectrometry (LC-MS/MS). Several protocols for extracting and handling membrane proteins for shotgun proteomics experiments have been reported, but few direct comparisons of different protocols have been reported. We compare four methods for preparing membrane proteins from human cells, using acid labile surfactants (ALS), urea, and mixed organic-aqueous solvents. These methods were compared with respect to their efficiency of protein solubilization and proteolysis, peptide and protein recovery, membrane protein enrichment, and peptide coverage of transmembrane proteins. Overall, approximately 50-60% of proteins recovered were membrane-associated, identified from Gene Ontology annotations and transmembrane prediction software. Samples extracted with ALS, extracted with urea followed by dilution, or extracted with urea followed by desalting yielded comparable peptide recoveries and sequence coverage of transmembrane proteins. In contrast, suboptimal proteolysis was observed with organic solvent. Urea extraction followed by desalting may be a particularly useful approach, as it is less costly than ALS and yields satisfactory protein denaturation and proteolysis under conditions that minimize reactivity with urea-derived cyanate. Spectral counting was used to compare datasets of proteins from membrane samples with those of soluble proteins from K562 cells, and to estimate fold differences in protein abundances. Proteins most highly abundant in the membrane samples showed enrichment of integral membrane protein identifications, consistent with their isolation by differential centrifugation.  相似文献   

7.
The Salmonella Feo system consists of the FeoA, FeoB, and FeoC proteins and mediates ferrous iron [Fe(II)] import. FeoB is an inner membrane protein that, along with contributions from two small hydrophilic proteins, FeoA and FeoC, transports Fe(II). We previously reported that FeoC binds to and protects the FeoB transporter from FtsH-mediated proteolysis. In the present study, we report proteolytic regulation of FeoC that occurs in an oxygen-dependent fashion. While relatively stable under low-oxygen conditions, FeoC was rapidly degraded by the Lon protease under high-oxygen conditions. The putative Fe-S cluster of FeoC seemed to function as an oxygen sensor to control FeoC stability, as evidenced by the finding that mutation of the putative Fe-S cluster-binding site greatly increased FeoC stability under high-oxygen conditions. Salmonella ectopically expressing the feoB and feoC genes was able to accumulate FeoB and FeoC only under low-oxygen conditions, suggesting that FeoC proteolysis prevents Salmonella from accumulating the FeoB transporter under high-oxygen conditions. Finally, we propose that Lon-mediated FeoC proteolysis followed by FtsH-mediated FeoB proteolysis helps Salmonella to avoid uncontrolled Fe(II) uptake during the radical environmental changes encountered when shifting from low-iron anaerobic conditions to high-iron aerobic conditions.  相似文献   

8.
Ubiquitin-dependent proteolysis of cellular proteins is one of the major pathways to regulate protein function posttranslationally. Here we demonstrate a potentially general method of degrading any targeted proteins by the ubiquitin-dependent proteolysis in living cells, using small-molecule proteolysis inducer (SMPI).  相似文献   

9.
The pesticinogenicity 9.5 kb plasmid from Yersinia pestis strain EV76 has been marked by the kanamycin phosphotransferase gene inserted into PstI site and designated pP3. The obtained plasmid pP3 determines the synthesis of 45 kd pesticin, alpha and beta-forms of fibrinolysin coagulase (37 and 35 kd) and the 29, 19 and 13 kd proteins in Escherichia coli mini cells. When transferred into Yersinia pseudotuberculosis strain 6933 the plasmid causes the proteolysis of outer membrane proteins. The 150 kd protein is reduced to 138 kd, the 48.5 kd protein is reduced to 45 kd. The proteins secreted into the cultural medium (51 and 38 kd) are also cleaved. The proteolysis of the 150 kd protein was found to occur at the stage of secretion via the inner membrane. The purified fibrinolysin coagulase from Escherichia coli strain JM83 harbouring the plasmid pP3 induces the proteolysis in vitro of the isolated membrane proteins from Yersinia pseudotuberculosis strain 6953 similar to the proteolysis registered in vivo.  相似文献   

10.
Unless the native conformation has an unstructured region, proteases cannot effectively digest a protein under native conditions. Digestion must occur from a higher energy form, when at least some part of the protein is exposed to solvent and becomes accessible by proteases. Monitoring the kinetics and denaturant dependence of proteolysis under native conditions yields insight into the mechanism of proteolysis as well as these high-energy conformations. We propose here a generalized approach to exploit proteolysis as a tool to probe high-energy states in proteins. This "native state proteolysis" experiment was carried out on Escherichia coli ribonuclease HI. Mass spectrometry and N-terminal sequencing showed that thermolysin cleaves the peptide bond between Thr92 and Ala93 in an extended loop region of the protein. By comparing the proteolysis rate of the folded protein and a peptidic substrate mimicking the sequence at the cleavage site, the energy required to reach the susceptible state (Delta G(proteolysis)) was determined. From the denaturant dependence of Delta G(proteolysis), we determined that thermolysin digests this protein through a local fluctuation, i.e. localized unfolding with minimal change in solvent assessable surface area. Proteolytic susceptibilities of proteins are discussed based on the finding of this local fluctuation mechanism for proteolysis under native conditions.  相似文献   

11.
We have suggested that red blood cell proteolytic systems can degrade oxidatively damaged proteins, and that both damage and degradation are independent of lipid peroxidation (Davies, K. J. A., and Goldberg, A. L. (1987) J. Biol. Chem. 262, 8220-8226. These ideas have now been tested in cell-free extracts of rabbit erythrocytes and reticulocytes. Exposure to oxygen radicals or H2O2 increases the degradation of endogenous proteins in cell-free extracts, as in intact cells. Various radical-generating systems (acetaldehyde or xanthine + xanthine oxidase, ascorbic acid + iron, H2O2 + iron) and H2O2 alone enhanced the rates of proteolysis severalfold. Since these extracts were free of membrane lipids, protein damage and degradation must be independent of lipid peroxidation. An antioxidant buffer consisting of HEPES, glycerol, and dithiothreitol inhibited the increased proteolysis by 60-100%. Mannitol caused a 50-80% reduction in proteolysis suggesting that the hydroxyl radical (.OH), or a species with similar reactivity, may be the initiator of protein damage. When casein or bovine serum albumin were exposed to .OH (generated by H2O2 + Fe2+, or COCo radiation) these proteins were degraded up to 50 times faster than untreated proteins during subsequent incubations with red cell extracts. Mannitol inhibited this increase in proteolysis only if present during .OH exposure; mannitol did not affect the degradative system. Although ATP increased the degradation of untreated proteins 4- to 6-fold in reticulocyte extracts, it had little or no effect on the degradation of proteins exposed to .OH. ATP also did not stimulate hydrolysis of .OH-treated proteins in erythrocyte extracts. Leupeptin did not affect the degradative processes in either extract; thus lysosomal or Ca2+-activated thiol proteases were not involved. We propose that red cells contain a soluble, ATP-independent proteolytic pathway which may protect against the accumulation of proteins damaged by .OH or other active oxygen species.  相似文献   

12.
Technical challenges have greatly impeded the investigation of membrane protein folding and unfolding. To develop a new tool that facilitates the study of membrane proteins, we tested pulse proteolysis as a probe for membrane protein unfolding. Pulse proteolysis is a method to monitor protein folding and unfolding, which exploits the significant difference in proteolytic susceptibility between folded and unfolded proteins. This method requires only a small amount of protein and, in many cases, may be used with unpurified proteins in cell lysates. To evaluate the effectiveness of pulse proteolysis as a probe for membrane protein unfolding, we chose Halobacterium halobium bacteriorhodopsin (bR) as a model system. The denaturation of bR in SDS has been investigated extensively by monitoring the change in the absorbance at 560 nm (A560). In this work, we demonstrate that denaturation of bR by SDS results in a significant increase in its susceptibility to proteolysis by subtilisin. When pulse proteolysis was applied to bR incubated in varying concentrations of SDS, the remaining intact protein determined by electrophoresis shows a cooperative transition. The midpoint of the cooperative transition (Cm) shows excellent agreement with that determined by A560. The Cm values determined by pulse proteolysis for M56A and Y57A bRs are also consistent with the measurements made by A560. Our results suggest that pulse proteolysis is a quantitative tool to probe membrane protein unfolding. Combining pulse proteolysis with Western blotting may allow the investigation of membrane protein unfolding in situ without overexpression or purification.  相似文献   

13.
Investigation of protein unfolding kinetics of proteins in crude samples may provide many exciting opportunities to study protein energetics under unconventional conditions. As an effort to develop a method with this capability, we employed “pulse proteolysis” to investigate protein unfolding kinetics. Pulse proteolysis has been shown to be an effective and facile method to determine global stability of proteins by exploiting the difference in proteolytic susceptibilities between folded and unfolded proteins. Electrophoretic separation after proteolysis allows monitoring protein unfolding without protein purification. We employed pulse proteolysis to determine unfolding kinetics of E. coli maltose binding protein (MBP) and E. coli ribonuclease H (RNase H). The unfolding kinetic constants determined by pulse proteolysis are in good agreement with those determined by circular dichroism. We then determined an unfolding kinetic constant of overexpressed MBP in a cell lysate. An accurate unfolding kinetic constant was successfully determined with the unpurified MBP. Also, we investigated the effect of ligand binding on unfolding kinetics of MBP using pulse proteolysis. On the basis of a kinetic model for unfolding of MBP•maltose complex, we have determined the dissociation equilibrium constant (Kd) of the complex from unfolding kinetic constants, which is also in good agreement with known Kd values of the complex. These results clearly demonstrate the feasibility and the accuracy of pulse proteolysis as a quantitative probe to investigate protein unfolding kinetics.  相似文献   

14.
Metal-catalyzed oxidation of proteins has been implicated in a variety of biological processes, particularly in the marking of proteins for subsequent proteolytic degradation. The metal-catalyzed oxidation of bacterial glutamine synthetase causes conformational, covalent, and functional alterations in the protein. To understand the structural basis of the functional changes, the time course of oxidative modification of glutamine synthetase was studied utilizing a nonenzymic model oxidation system consisting of ascorbate, oxygen, and iron. The structural modifications induced included: decreased thermal stability; weakening of subunit interactions; decrease in isoelectric point; introduction of carbonyl groups into amino acid side chains; and loss of two histidine residues. These changes did not denature the protein, but instead induced relatively subtle changes. Indeed, even the most extensively modified protein had a sedimentation velocity which was identical to that of the native enzyme. Comparison of the time courses of the structural and functional changes established that: (i) Loss of the metal binding site and of catalytic activity occurred with loss of one histidine per subunit; (ii) increased susceptibility to proteolysis occurred with loss of two histidine residues per subunit. Thus, oxidation at one site suffices to inactivate the enzyme, but two sites must be modified to induce susceptibility to proteolysis. The limited and specific changes induced by metal-catalyzed oxidation are consistent with a site-specific free radical mechanism.  相似文献   

15.
Defined radical species generated radiolytically were allowed to attack proteins in solution. The hydroxyl radical (OH.) in the presence of O2 degraded bovine serum albumin (BSA) to specific fragments detectable by SDS/polyacrylamide-gel electrophoresis; fragmentation was not obvious when the products were analysed by h.p.l.c. In the absence of O2 the OH. cross-linked the protein with bonds stable to SDS and reducing conditions. The superoxide (O2-.) and hydroperoxyl (HO2.) radicals were virtually inactive in these respects, as were several other peroxyl radicals. Fragmentation and cross-linking could also be observed when a mixture of biosynthetically labelled cellular proteins was used as substrate. Carbonyl and amino groups were generated during the reaction of OH. with BSA in the presence of O2. Changes in fluorescence during OH. attack in the absence of O2 revealed both loss of tryptophan and changes in conformation during OH. attack in the presence of O2. Increased susceptibility to enzymic proteolysis was observed when BSA was attacked by most radical systems, with the sole exception of O2-.. The transition-metal cations Cu2+ and Fe3+, in the presence of H2O2, could also fragment BSA. The reactions were inhibited by EDTA, or by desferal and diethylenetriaminepenta-acetic acid ('DETAPAC') respectively. The increased susceptibility to enzymic hydrolysis of radical-damaged proteins may have biological significance.  相似文献   

16.
Protein synthesis is depressed during mammalian hibernation in concordance with metabolic demands. In the absence of significant protein synthesis, continued proteolysis would rapidly deplete protein pools. Since ubiquitin-dependent proteolysis is implicated in the turnover of most regulatory proteins, we examined the fate of this system during hibernation. Ubiquitin-dependent proteolysis consists of two major steps: (1) the tagging of a protein substrate by ubiquitin and (2) the protein substrates subsequent degradation by the 26S proteasome. An earlier study revealed a two to threefold elevation of ubiquitin conjugate concentrations during hibernation: an unexpected result that seemingly would suggest increased proteolytic activity. A more likely explanation for these data would be that proteolysis per se was depressed and that the increased levels of ubiquitylated proteins reflect an inability to degrade tagged proteins. We employed an assay based on the cleavage of fluorogenic substrates to address the well characterized proteolytic activities of the proteasome. All activities show little to no activity at temperatures associated with deep torpor. Coordinated depression of proteolytic activities by low temperature supports the hypothesis that the increased levels of ubiquitylated proteins during hibernation is explained by a net accumulation due to an inability to degrade the tagged proteins.  相似文献   

17.
Native states of proteins are flexible, populating more than just the unique native conformation. The energetics and dynamics resulting from this conformational ensemble are inherently linked to protein function and regulation. Proteolytic susceptibility is one feature determined by this conformational energy landscape. As an attempt to investigate energetics of proteins on a proteomic scale, we challenged the Escherichia coli proteome with extensive proteolysis and determined which proteins, if any, have optimized their energy landscape for resistance to proteolysis. To our surprise, multiple soluble proteins survived the challenge. Maltose binding protein, a survivor from thermolysin digestion, was characterized by in vitro biophysical studies to identify the physical origin of proteolytic resistance. This experimental characterization shows that kinetic stability is responsible for the unusual resistance in maltose binding protein. The biochemical functions of the identified survivors suggest that many of these proteins may have evolved extreme proteolytic resistance because of their critical roles under stressed conditions. Our results suggest that under functional selection proteins can evolve extreme proteolysis resistance by modulating their conformational energy landscapes without the need to invent new folds, and that proteins can be profiled on a proteomic scale according to their energetic properties by using proteolysis as a structural probe.  相似文献   

18.
The protease Pim1/LON, a member of the AAA+ family of homo-oligomeric ATP-dependent proteases, is responsible for the degradation of soluble proteins in the mitochondrial matrix. To establish the molecular parameters required for the specific recognition and proteolysis of substrate proteins by Pim1, we analyzed the in organello degradation of imported reporter proteins containing different structural properties. The amino acid composition at the amino-terminal end had no major effect on the proteolysis reaction. However, proteins with an amino-terminal extension of less than 60 amino acids in front of a stably folded reporter domain were completely resistant to proteolysis by Pim1. Substrate proteins with a longer amino-terminal extension showed incomplete proteolysis, resulting in the generation of a defined degradation fragment. We conclude that Pim1-mediated protein degradation is processive and is initiated from an unstructured amino-terminal segment. Resistance to degradation and fragment formation was abolished if the folding state of the reporter domain was destabilized, indicating that Pim1 is not able to unravel folded proteins for proteolysis. We propose that the requirement for an exposed, large, non-native protein segment, in combination with a limited unfolding capability, accounts for the selectivity of the protease Pim1 for damaged or misfolded polypeptides.  相似文献   

19.
Protein-bound 3,4-dihydroxyphenylalanine (DOPA) can be generated in mammalian cells by both controlled enzymatic pathways, and by uncontrolled radical reactions. Protein-bound DOPA (PB-DOPA) has reducing activity and the capacity to inflict secondary damage on other important biomolecules such as DNA. This may be mediated through replenishment of transition metals or from catechol-quinone-catechol redox cycles in the presence of cellular components such as ascorbate or cysteine, resulting in amplification of radical damaging events. The generation of PB-DOPA confers on protein the ability to chelate transition metals generating protein 'oxychelates'; this may be amongst the factors, which localise such damage. Tissue levels of PB-DOPA are increased in a number of age-related pathologies such as atherosclerosis and cataract formation. We discuss the detoxification, and the subsequent proteolysis and excretion of components of PB-DOPA. We contrast the fact that in marine organisms, and particularly in extracellular proteins, PB-DOPA and other DOPA-polymers can play important functional roles in adhesion and the provision of tensile properties.  相似文献   

20.
Reticulocytes contain a nonlysosomal, ATP-dependent system for degrading abnormal proteins and normal proteins during cell maturation. Vanadate, which inhibits several ATPases including the ATP-dependent proteases in Escherichia coli and liver mitochondria, also markedly reduced the ATP-dependent degradation of proteins in reticulocyte extracts. At low concentrations (K1 = 50 microM), vanadate inhibited the ATP-dependent hydrolysis of [3H]methylcasein and denatured 125I-labeled bovine serum albumin, but it did not reduce the low amount of proteolysis seen in the absence of ATP. This inhibition by vanadate was rapid in onset, reversed by dialysis, and was not mimicked by molybdate. Vanadate inhibits proteolysis at an ATP-stimulated step which is independent of the ATP requirement for ubiquitin conjugation to protein substrates. When the amino groups on casein and bovine serum albumin were covalently modified so as to prevent their conjugation to ubiquitin, the derivatized proteins were still degraded by an ATP-stimulated process that was inhibited by vanadate. In addition, vanadate did not reduce the ATP-dependent conjugation of 125I-ubiquitin to endogenous reticulocyte proteins, although it markedly inhibited their degradation. In intact reticulocytes vanadate also inhibited the degradation of endogenous proteins and of abnormal proteins containing amino acid analogs. This effect was rapid and reversible; however, vanadate also reduced protein synthesis and eventually lowered ATP levels in the intact cells. Vanadate (10 mM) has also been reported to decrease intralysosomal proteolysis in hepatocytes. However, in liver extracts this effect on lysosomal proteases required high concentrations of vanadate (K1 = 500 microM) and was also observed with molybdate, unlike the inhibition of ATP-dependent proteolysis in reticulocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号