首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The CYC7-H2 mutation in the yeast Saccharomyces cerevisiae was caused by insertion of a Ty1 transposable element in front of the iso-2-cytochrome c structural gene, CYC7. The Ty1 insertion places iso-2-cytochrome c production under control of regulatory signals that are normally required for mating functions in yeast cells. We have investigated the regions of the Ty1 insertion that are responsible for the aberrant production of iso-2-cytochrome c in the CYC7-H2 mutant. Five alterations of the CYC7-H2 gene were obtained by specific restriction endonuclease cleavage of the cloned DNA and ligation of appropriate fragments. The CYC7+, CYC7-H2, and modified CYC7-H2 genes were each inserted into the yeast vector YIp5 and used to transform a cytochrome c-deficient yeast strain. Expression and regulation of each allele integrated at the CYC7 locus have been compared in vivo by determination of the amount of iso-2-cytochrome c produced. These results show that distal regions of the Ty1 element are not essential for the CYC7-H2 overproducing phenotype. In contrast, alterations in the vicinity of the proximal Ty1 junction abolish the CYC7-H2 expression and give rise to different phenotypes.  相似文献   

2.
Some insertion mutations in Saccharomyces cerevisiae activate the expression of adjacent structural genes. The CYC7-H2 mutation is a Ty1 insertion 5' to the iso-2-cytochrome c coding region of CYC7. The Ty1 insertion causes a 20-fold increase in CYC7 expression in a and alpha haploid cell types of S. cerevisiae. This activation is repressed in the a/alpha diploid cell type. Previous computer analysis of the CYC7-H2 Ty1 activator region identified two related sequences with homology both to mammalian enhancers and to a yeast a/alpha control site. A 112-base-pair (bp) DNA fragment encompassing one of these blocks of homology functioned as one component of the Ty1 activator. A 28-bp synthetic oligonucleotide with the wild-type homology block sequence was also functional. A single base pair mutation within the enhancer core of the synthetic 28-bp regulatory element reduced its activation ability to near background amounts. In addition, the 112-bp Ty1 fragment by itself functioned as a target for repression of adjacent gene expression in a/alpha diploid cells.  相似文献   

3.
An extensive deletion causing overproduction of yeast iso-2-cytochrome c   总被引:27,自引:0,他引:27  
G L McKnight  T S Cardillo  F Sherman 《Cell》1981,25(2):409-419
CYC7-H3 is a cis-dominant regulatory mutation that causes a 20-fold overproduction of yeast iso-2-cytochrome c. The CYC7-H3 mutation is an approximately 5 kb deletion with one breakpoint located in the 5' noncoding region of the CYC7 gene, approximately 200 base from the ATG initiation codon. The deletion apparently fuses a new regulatory region to the structural portion of the CYC7 locus. The CYC7-H3 deletion encompasses the RAD23 locus, which controls UV sensitivity and the ANP1 locus, which controls osmotic sensitivity. The gene cluster CYC7-RAD23-ANP1 displays striking similarity to the gene cluster CYC1-OSM1-RAD7, which controls, respectively, iso-1-cytochrome c, osmotic sensitivity and UV sensitivity. We suggest that these gene clusters are related by an ancient transpositional event.  相似文献   

4.
Chromosomal rearrangements associated with one Ty1 element in the iso-1-cytochrome c (CYC1) region of Saccharomyces cerevisiae yeast cells were examined. Most of the rearrangements were deletions of the three linked genes, CYC1, OSM1, and RAD7, and resulted from recombination involving the single Ty1 element and a solo delta in the same orientation. These deletions differed by the number of Ty1 elements (zero, one, or two) remaining after deletion and by restriction site heterogeneities associated with these elements. A single Ty1 element remained at the deletion junction point much more frequently than no Ty1. Apparently the Ty1-associated delta element nearer to the solo delta was involved more often in recombination than the more distal Ty1-associated delta element. The restriction site data implicate gene conversion and suggest that site-specific recombination within the deltas, if occurring, is not the only mechanism of delta-delta recombination. Three other rearrangements bore deletions which began at the end of the Ty1 element and extended into regions not bearing Ty1 or delta sequences. Two of these deletions eliminated 7 kilobases of DNA, although they differed by an associated reciprocal translocation. The third involved a deletion of 14.7 kilobases of DNA associated with an overlapping inversion.  相似文献   

5.
A series of BAL31 deletions were constructed in vitro in the upstream region of the Saccharomyces cerevisiae CYC7 gene, encoding the iso-2-cytochrome c protein. These deletions identified two sites which play a role in governing the expression of this gene. A positive site, the deletion of which led to decreased CYC7 expression, lay ca. 240 base pairs 5' to the translational initiation codon (-240). A negative site, the deletion of which led to greatly increased levels of CYC7 expression, lay at ca. -300 bp. Deletion of both these sites resulted in low wild-type-like expression of the gene. Therefore, these two sites appear to act antagonistically to give the low wild-type levels of CYC7 expression. Within the region defined as containing the positive site, there is a sequence which bears some homology to the upstream activation sites in the regulated gene, CYC1, encoding the iso-1-cytochrome c protein.  相似文献   

6.
7.
8.
The CYC7–1 mutation in the yeast Saccharomyces cerevisiae causes the production of approximately 30 times the normal amount of iso-2-cytochrome c. Genetic analysis established that the CYC7–1 mutation is a reciprocal translocation involving the left arm of chromosome V and the right arm of chromosome XVI. The chromosome V arm was broken adjacent to the gene CYC7, which determines the primary structure of iso-2-cytochrome c, and this fragment containing the CYC7 gene was joined to the segment of chromosome XVI. It appears as though the elevation of iso-2-cytochrome c is caused by an abnormal controlling region adjacent to the structural region of the CYC7 gene.  相似文献   

9.
10.
11.
12.
13.
Five chromosomal genes, CYPI to CYP5 involved in the regulation of the synthesis of iso-1-cytochrome c, iso-2-cytochrome c and cytochrome b2 are described. The function of these genes was studied either by varying the proportion of the mutated and wild type alleles in the cell vy varing the growth conditions, or else by transforming the mutants into sigma-cytoplasmic petites. We have shown a network of genetic interactions which regulate the synthesis of three structurally different proteins : iso-1-cytochrome c, iso-2-cytochrome c and cytochrome b2, by two unlinked genes : CYC1 and CYP1, one of which (CYC1) is the structural gene by iso-1-cytochrome c. Within this network the interactions are proportional to the gene dosage and are either antagonistic or synergistic depending on the allele combination and the protein studied. The mutated alleles cyp1 stimulate the synthesis of iso-2-cytochrome c, inhibit the synthesis of iso-1-cytochrome c, while the cytochrome b2 synthesis is also inhibited but by a combination of cyp1 mutated alleles CYC1 wild type allele. Other loci, CYP2, CYP3, CYP4 and CYP5 were also studied in various allelic combinations. They show some interactions between them or with CYC1 locus but these interactions are different and less pronounced than those involving loci CYP1 and CYC1.  相似文献   

14.
In order to identify and characterize sequences within Ty1 elements which are required in cis for transposition, a series of mini-Ty1 plasmids were constructed and tested for transposition. Mini-Ty1s are deletion mutants of the Ty1-H3 element; Ty1 gene products required for transposition are supplied in trans from a helper Ty1 which has intact open reading frames but lacks a 3' long terminal repeat (LTR) and therefore cannot transpose itself. Up to 5 kilobase pairs of internal sequences of the 6-kilobase-pair-long Ty1 element can be deleted without a significant effect on transposition. The smallest mini-Ty1 element capable of transposition contains the 3' LTR and the transcribed portion of the 5' LTR, 285 base pairs (bp) of internal sequence 3' to the 5' LTR, and 23 bp of internal sequence 5' to the 3' LTR. We conclude that Ty1-encoded proteins can act in trans and that cis-acting sequences in Ty1-H3 are all within or near the LTRs. Further deletion of the 285-bp internal sequence adjacent to the 5' LTR significantly reduced transposition frequency, and the mini-Ty1 RNA produced failed to be packaged into the viruslike particles efficiently. Surprisingly, several nonhomologous cellular mRNAs were also associated with viruslike particles.  相似文献   

15.
The CYC7-H3 mutation is a 5-kb deletion that causes overproduction of iso-2 cytochrome c. Unlike most mutations in yeast, the CYC7-H3 mutation is preferentially lost when it is involved in a gene conversion event. We have shown that cloned copies of CYC7-H3 DNA that are inserted into the yeast genome are associated with a high frequency of recombination and aberrant segregation events. Since parity in conversion frequency was observed when the extensive insertion/deletion heterozygosity at this locus was eliminated, we conclude that the CYC7-H3 sequences are inherently capable of acting as donors or recipients in gene conversion events, although they are unlikely to act as donors when they are located opposite a large heterology. DNA sequence comparisons revealed similarities between the CYC7-H3 junction region and the 2-micron circle DNA region that is involved in site-specific recombination.  相似文献   

16.
Yeast respond to a variety of stresses through a global stress response that is mediated by a number of signal transduction pathways and the cis-acting STRE DNA sequence. The CYC7 gene, encoding iso-2-cytochrome c, has been demonstrated to respond to heat shock, glucose starvation, approach-to-stationary phase, and, as we demonstrate here, to osmotic stress. This response was delayed in a the hog1-Δ1 strain implicating the Hog1 mitogen-activated protein kinase cascade, a known component of the global stress response. Deletion analysis of the CYC7 regulatory region suggested that three STRE elements were each capable of inducing the stress response. Mutations in the ROX3 gene prevented CYC7 RNA accumulation during heat shock and osmotic stress. ROX3 RNA levels were shown to be induced by stress through a novel regulatory element. A selection for high-copy suppressors of a ROX3 temperature-sensitive allele resulted in the isolation of RTS1, encoding a protein with homology to the B' regulatory subunit of protein phosphatase 2A(0). Deletion of RTS1 caused temperature and osmotic sensitivity and increased accumulation of CYC7 RNA under all conditions. Over-expression of this gene caused increased CYC7 RNA accumulation in rox3 mutants but not in wild-type cells.  相似文献   

17.
18.
The four mutant genes, cyc2, cyc3, cyc8 and cyc9, that affect the levels of the two iso-cytochromes c in the yeast Saccharomyces cerevisiae have been characterized and mapped. Both cyc2 and cyc3 lower the amount of iso-1-cytochrome c and iso-2-cytochrome c; whereas, cyc8 and cyc9 increase the amount of iso-2-cytochrome c. The cyc2, cyc3, cyc8 and cyc9 genes are located, respectively, on chromosomes XV, I, II and III, and are, therefore, unlinked to each other and unlinked to CYC1, the structural gene of iso-1-cytochrome c and to CYC7, the structural gene of iso-2-cytochrome c. While some cyc3 mutants are completely or almost completely deficient in cyotchromes c, none of the cyc2 mutants contained less than 10% of parental level of cytochrome c even though over one-half of the mutants contain UAA or UAG nonsense mutations. Thus, it appears as if a complete block of the cyc2 gene product still allows the formation of a residual fraction of cytochrome c. The cyc2 and cyc3 mutant genes cause deficiencies even in the presence of CYC7, cyc8 and cyc9, which normally cause overproduction of iso-2-cytochrome c. We suggest that cyc2 and cyc3 may be involved with the regulation or maturation of the iso-cytochromes c. In addition to having high levels of iso-2-cytochromes c, the cyc8 and cyc9 mutants are associated with flocculent cells and other abnormal phenotypes. The cyc9 mutant was shown to be allelic with the tup1 mutant and to share its properties, which include the ability to utilize exogenous dTMP, a characteristic flocculent morphology, the lack of sporulation of homozygous diploids and low frequency of mating and abnormally shaped cells of alpha strains. The diverse abnormalities suggest that cyc8 and cyc9 are not simple regulatory mutants controlling iso-2-cytochrome c.  相似文献   

19.
Structural gene for yeast iso-2-cytochrome c.   总被引:14,自引:0,他引:14  
Protein analysis and genetic studies have led to the identification of the structural genes of iso-1-cytochrome c and iso-2-cytochrome c, which constitute, respectively, 95% and 5% of the total amount of cytochrome c in the yeast Saccharomyces cerevisiae. The structural gene CYC1 for iso-1-cytochrome c was previously identified by Sherman et al. (1966) and the structural gene CYC7 for iso-2-cytochrome c is identified in this investigation. A series of the following mutations were selected by appropriate procedures and shown by genetic tests to be allelic: CYC7+ →CYC7-1 →cyc7-1-1 →CYC7-1-1-A, etc., where CYC7 + denotes the wild-type allele determining iso-2-cytochrome c; CYC7-1 denotes a dominant mutant allele causing an approximately 30-fold increase of iso-2-cytochrome c with a normal sequence, and was used as an aid in selecting deficient mutants; cyc7-1-1 denotes a recessive mutant allele causing complete deficiency of iso-2-cytochrome c; and CYC7-1-1-A denotes an intragenic revertant having an altered iso-2-cytochrome c at the same level as iso-2-cytochrome c in the CYC7-1 strains. The suppression of cyc7-1-1 with the known amber suppressor SUP7-a indicated that the defect in cyc7-1-1 was an amber (UAG) nonsense codon. Sequencing revealed a single amino acid replacement of a tyrosine residue for the normal glutamine residue at position 24 in iso-2-cytochrome c from the suppressed cyc7-1-1 strain and also in five revertants of cyc7-1-1, of which three were due to extragenic suppression and two to intragenic reversion. The nature of the mutation that elevated the level of normal iso-2-cytochrome c in the CYC7-1 strain was not identified, although it occurred at or very near the CYC7 locus but outside the translated portion of the gene and it may be associated with a chromosomal aberration. Genetic studies demonstrated that CYC7 is not linked to CYC1, the structural gene for iso-1-cytochrome c.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号