首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Appropriate experimental conditions for the estimation of hydroxyl radical generation by salicylate hydroxylation were determined for multiple organs of X-irradiated mice in vivo. The in vitro experiments showed that there were significant correlations between the salicylic acid (SA) concentration, the amount of 2,3-dihydroxy benzoic acid (2,3-DHBA) and the X-ray exposure dose, and we obtained two linear-regression equations to calculate the amounts of hydroxyl radicals generated by the X-irradiation. The optimum dosage of SA and the appropriate sampling time for in vivo experiments was determined, and significant increases in the ratio of 2,3-DHBA to SA were detected in several organs of mice after X-irradiation. The hydroxyl radical equivalents of the 2,3-DHBA increases were also calculated. Our results clearly demonstrated the usefulness of the salicylate hydroxylation method in estimating hydroxyl radical generation in multiple organs in vivo.  相似文献   

2.
In vivo antioxidant activity seems to be quite complicate due to multiple interaction with biomaterials and differs from results by in vitro experiments. In vivo estimation of antioxidant activity is performed by measuring TBA reactive substances in blood or hydrocarbon gases in breath, but these systems do not measure free radical reaction but the final products of oxidative reaction. In the present study, we applied in vivo ESR to evaluate antioxidant activity by monitoring the redox reaction of nitroxide radical and clearly found that the nitroxide is very susceptible to oxidative stress in vivo and quite useful to evaluate antioxidant activity non-invasively.  相似文献   

3.
The occurrence of aluminosilicate deposits within the cerebral plaques in Alzheimer's senile dementia sufferers has prompted further consideration of the possible role of such materials in the aetiology and pathogenesis of the disease. We have monitored the ability of various natural and synthetic model aluminosilicate particulates of differing morphological and chemical composition to stimulate the generation of phagocyte-derived free radical reactive oxygen metabolites (ROM) using an in vitro chemilumines-cent technique on purified human blood-derived polymorphonuclear leukocytes (PMN). The results indicate that an enhanced chemiluminescent response is produced by calcium-bearing fibriform particulates. It is proposed that an analogous in vivo particle-induced and phagocyte-mediated oxidative stress could provide a potential pathogenic mechanism in the development of Alzheimer's disease.  相似文献   

4.
Transient co-transfection of receptor cDNA and suitable reporter genes was used to study human glucocorticoid receptor (hGR) function in a neutral mammalian cell background. A variety of natural and synthetic steroids were analyzed for their ability to activate gene expression through the hGR and to bind to extracts of cells expressing the hGR cDNA. There was very good correlation between these two in vitro parameters for these compounds. Furthermore, correlation of these data with reported in vivo anti-inflammatory potencies was surprisingly close, with two exceptions. The in vitro data suggest an explanation for the discrepant compounds, consistent with published data on their metabolic fate in vivo. The co-transfection assay has utility as a quantitative predictor of in vivo glucocorticoid pharmacology.  相似文献   

5.
The metabolism of dihydrotachysterol (DHT), a hydrogenated analogue of vitamin D, has been studied in vivo using man and rat and in vitro using the perfused rat kidney, and hepatoma (3B) and osteosarcoma (UMR-106) cell lines. In vivo a large number of metabolites appeared in the plasma of rats given DHT2 and DHT3. Of particular interest was a compound more polar than 25-hydroxy-DHT, which has been designated compound H. Further study of this compound showed that it was composed of two components, one (Ha) being in much lower concentration than the other (Hb). The production of T2/H (peak H from DHT2) was demonstrated in human plasma after administration of oral DHT2. Comparison of the metabolites formed in vivo with those isolated from the rat kidney perfused with 25-hydroxy-DHT3 in vitro showed that 25-hydroxy-DHT3 was metabolized along two metabolic pathways previously described for vitamin D, culminating in the production of 25-hydroxy-DHT3-23,26-lactone and 23,25-dihydroxy-24-oxo-DHT3. The osteosarcoma cell line metabolized 25-OH-DHT3 in vitro along the same two metabolic pathways already demonstrated in the perfused rat kidney. More polar metabolites than compound H seen in rat plasma in vivo were shown to be metabolites of compound H and similar metabolites were also produced in the osteosarcoma cell line from chemically synthesized 1,25-dihydroxy-DHT3. The hepatoma cell line 25-hydroxylated DHT and no feed-back inhibition was observed. Use of the hepatoma cell to 25-hydroxylate a number of chemically synthesized 1-hydroxy-DHTs indicated that compound Ha was indistinguishable from 1,25-dihydroxy-DHT whereas compound Hb is possibly 1β,25-dihydroxy-DHT. Studies with the VDR in both chick gut and calf thymus indicated that 1,25-dihydroxy-DHT is very effective in displacing radiolabelled 1,25-dihydroxyvitamin-D3 and is thus most likely to be the calcaemic metabolite of DHT.  相似文献   

6.
Ischaemia-reperfusion (I/R) injury is a model system of oxidative stress and a potential anti-cancer therapy. Tumour cytotoxicity follows oxygen radical damage to the vasculature which is modulated by tumour production of the vasoactive agent, nitric oxide (NO*). in vivo hydroxylation of salicylate, to 2,3- and 2,5-dihydroxybenzoate (DHBs), was used to measure the generation of hydroxyl radicals (OH*) following temporary vascular occlusion in two murine tumours (with widely differing capacity to produce NO*) and normal skin. Significantly greater OH* generation followed I/R of murine adenocarcinoma CaNT tumours (low NO* production) compared to round cell sarcoma SaS tumours (high NO* production) and normal skin. These data suggest that tumour production of NO* confers resistance to I/R injury, in part by reducing production of oxygen radicals and oxidative stress to the vasculature. Inhibition of NO synthase (NOS), during vascular reperfusion, significantly increased OH* generation in both tumour types, but not skin. This increase in cytotoxicity suggests oxidative injury may be attenuation by tumour production of NO*. Hydroxyl radical generation following I/R injury correlated with vascular damage and response of tumours in vivo, but not skin, which indicates a potential therapeutic benefit from this approach.  相似文献   

7.
The detection of hydroxyl radicals in vivo   总被引:1,自引:0,他引:1  
Several indirect methods have been developed for the detection and quantification of highly reactive oxygen species (hROS), which may exist either as free hydroxyl radicals, bound “crypto” radicals or Fe(IV)-oxo species, in vivo. This review discusses the strengths and weaknesses associated with those most commonly used, which determine the hydroxylation of salicylate or phenylalanine. Chemical as well as biological arguments indicate that neither the hydroxylation of salicylate nor that of phenylalanine can guarantee an accurate hydroxyl radical quantitation in vivo. This is because not all hydroxylated product-species can be used for detection and the ratio of these species strongly depends on the chemical environment and on the reaction time. Furthermore, at least in the case of salicylate, the high concentrations of the chemical trap required (mM) are known to influence biological processes associated with oxidative stress.

Two, newer, alternative methods described, the 4-hydroxy benzoic acid (4-HBA) and the terephthalate (TA) assays, do not have these drawbacks. In each case reaction with hROS leads to only one hydroxylated product. Thus, from a chemical viewpoint, they should provide a better hROS quantitation. Further work is needed to assess any possible biological effects of the required millimolar (4-HBA) and micromolar (TA) concentrations of the chemical traps.  相似文献   


8.
Mounting evidence has emphasized the potential of cell therapies in treating various diseases by restoring damaged tissues or replacing defective cells in the body. Cell therapies have become a strong therapeutic modality by applying noninvasive in vivo molecular imaging for examining complex cellular processes, understanding pathophysiological mechanisms of diseases, and evaluating the kinetics/dynamics of cell therapies. In particular, mesenchymal stem cells (MSCs) have shown promise in recent years as drug carriers for cancer treatment. They can also be labeled with different probes and tracked in vivo to assess the in vivo effect of administered cells, and to optimize therapy. The exact role of MSCs in oncologic diseases is not clear as MSCs have been shown to be involved in tumor progression and inhibition, and the exact interactions between MSCs and specific cancer microenvironments are not clear. In this review, a multitude of labeling approaches, imaging modalities, and the merits/demerits of each strategy are outlined. In addition, specific examples of the use of MSCs and in vivo imaging in cancer therapy are provided. Finally, present limitations and future outlooks in terms of the translation of different imaging approaches in clinics are discussed.  相似文献   

9.
We investigated the protective effects of Glycyrrhizae Radix extract against peroxynitrite (ONOO-)-induced oxidative stress under in vivo as well as in vitro conditions. The extract showed strong ONOO- and nitric oxide (NO) scavenging effects under in vitro system, in particular higher activity against ONOO-. Furthermore, elevations of plasma 3-nitrotyrosine levels, indicative of in vivo ONOO- generation and NO production, were shown using a rat in vivo ONOO--generation model of lipopolysaccharide injection plus ischemia-reperfusion. The administration of Glycyrrhizae Radix extract at doses of 30 and 60 mg/kg body weight/day for 30 days significantly reduced the concentrations of 3-nitrotyrosine and NO and decreased inducible NO synthase activity. In addition, the nitrated tyrosine protein level and myeloperoxidase activity in the kidney were significantly lower in rats given Glycyrrhizae Radix extract than in control rats. However, the administration of Glycyrrhizae Radix extract did not result in either significant elevation of glutathione levels or reduction of lipid peroxidation in renal mitochondria. Moreover, the in vivo ONOO- generation system resulted in renal functional impairment, reflected by increased plasma levels of urea nitrogen and creatinine, whereas the administration of Glycyrrhizae Radix extract reduced these levels significantly, implying that the renal dysfunction induced by ONOO- was ameliorated. The present study suggests that Glycyrrhizae Radix extract could protect the kidneys against ONOO- through scavenging ONOO- and/or its precursor NO, inhibiting protein nitration and improving renal dysfunction caused by ONOO-.  相似文献   

10.
The ability of a range of dietary flavonoids to inhibit low-density lipoprotein (LDL) oxidation in vitro was tested using a number of different methods to assess oxidative damage to LDL. Overall quercetin was the most effective inhibitor of oxidative damage to LDL in vitro. On this basis, a diet enriched with onions and black tea was selected for a dietary intervention study that compared the effect on the Cu2+ ion-stimulated lag-time of LDL oxidation ex vivo in healthy human subjects of a high flavonoid diet compared with a low flavonoid diet. No significant difference was found in the Cu2+ ion-stimulated lag-time of LDL oxidation ex vivo between the high flavonoid and low flavonoid dietary treatments (48 ± 1.6 min compared to 49 ± 2.1 min).  相似文献   

11.
It is widely recognized that tests using mammalian cell sytems are essential for assessing mutagenic hazard (Ishidate and Yoshikawa 1980). The micre nucleus test (Von Ledebur and Schmid 1973, Schmid 1973) is a convenient in vivo technique to overcome the shortcomings of in vitro bacterial methods. However, this assay requires high quality smears, for the production of which the solution used to avoid cell damage is critical.  相似文献   

12.
Hydroxylation of salicylate to2, 3- and2, 5-dihydroxy-benzoates (DHBs) is widely used as an index of hydroxyl radical (OH) formation in vivo and in vitro. Several recent studies indicate that peroxynitrite can lead to generation of DHBs from salicylate and it is uncertain as to whether or not OH' is involved. A similar problem may occur in the use of phenylalanine as an OH' detector. Hence formation of hydroxylation products from salicylate (or phenylalanine) may not in itself be a definitive index of OH' generation, especially in cases where such generation in physiological systems is decreased by inhibitors of nitric oxide syn-thase. Determination of salicylate (or phenylalanine) nitration products can allow distinction between peroxynitrite-dependent aromatic hydroxylation and that involving “real” OH.  相似文献   

13.
Investigators use both in vitro and in vivo models to better understand infectious disease processes. Both models are extremely useful in research, but there exists a significant gap in complexity between the highly controlled reductionist in vitro systems and the largely undefined, but relevant variability encompassing in vivo animal models. In an effort to understand how Salmonella initiates disease at the intestinal epithelium, in vitro models have served a useful purpose in allowing investigators to identify molecular mechanisms responsible for Salmonella invasion of host cells and stimulation of host inflammatory responses. Identification of these molecular mechanisms has generated hypotheses that are now being tested using in vivo models. Translating the in vitro findings into the context of an animal model and subsequently to human disease remains a difficult challenge for any disease process.  相似文献   

14.
The effect of a variety of proteins and amino acids was investigated on oxygen free radical activity as assessed by copper/hydrogen peroxide induced benzoate hydroxylation as well as copper-catalysed ascor-bate autoxidation. Serum albumins from a variety of species (human, bovine and dog) had both inhibitory and stimulatory effects depending on the molar copper to protein ratio; low ratios were inhibitory and high stimulatory. Some other proteins tested (lysozyme, soybean trypsin inhibitor and conalbumin) also had dual (inhibitory and stimulatory) effects, as did both histidine and polyhistidine, but all effects occurred at different molar ratios presumably dependent on the relative affinities for the copper ions. In contrast, metallolhioncin and cacruloplasmin, proteins specialised to bind copper in vivo had no stimulatory effects. In this paper we show that in addition to their fairly well documented inhibitory effects, under certain conditions some proteins also stimulate radical reactions. The possible role of this phenomenon in vivo is discussed.  相似文献   

15.
Exposure of human plasma to ozone produces oxidative protein damage, measured as protein carbonyl formation. Isolated human albumin or creatine phosphokinase are oxidized much faster than are total proteins. Consideration must be given to proteins as targets of oxidative injury by ozone in vivo.  相似文献   

16.
Salicylate hydroxylation has often been used as an assay of hydroxyl radical production in vivo. We have examined here if hydroxylation of salicylate might also occur by its reaction with peroxynitrite. To test this hypothesis, we exposed salicylate to various concentrations of peroxynitrite, in vitro. We observed the hydroxylation of salicylate at 37°C by peroxynitrite at pH 6, 7 and 7.5, where the primary products had similar retention times on HPLC to 2,3- and 2,5-dihydroxy-benzoic acid. The product yields were pH dependent with maximal amounts formed at pH 6. Furthermore, the relative concentration of 2,3- to 2,5-dihydroxyben-zoic acid increased with decreasing pH. Nitration of salicylate was also observed and both nitration and hydroxylation reaction products were confirmed independently by mass spectrometry. The spin trap N-t-butyl-a-phenylnitrone (PBN), with or without dimethyl sulfoxide (DMSO), was incapable of trapping the peroxynitrite decomposition intermediates. Moreover, free radical adducts of the type PBN/'CH3 and PBN/ 'OH were susceptible to destruction by peroxynitrite (pH 7, 0.1 M phosphate buffer). These results suggest direct peroxynitrite hydroxylation of salicylate and that the presence of hydroxyl radicals is not a prerequisite for hydroxylation reactions.  相似文献   

17.
Hydroxyl radical (·OH) generation in the kidney of mice treated with ferric nitrilotriacetate (Fe-NTA) or potassium bromate (KBrO3) in vivo was estimated by the salicylate hydroxylation method, using the optimal experimental conditions we recently reported. Induction of DNA lesions and lipid peroxidation in the kidney by these nephrotoxic compounds was also examined. The salicylate hydroxylation method revealed significant increases in the ·OH generation after injection of Fe-NTA or KBrO3 in the kidneys. A significant increase in 8-hydroxy-2'-deoxyguanosine in nuclei of the kidney was detected only in the KBrO3 treated mice, while the comet assay showed that the Fe-NTA and KBrO3 treatments both resulted in significant increases in DNA breakage in the kidney. With respect to lipid peroxidation, the Fe-NTA treatment enhanced lipid peroxidation and ESR signals of the alkylperoxy radical adduct. These DNA breaks and lipid peroxidation mediated by ·OH were diminished by pre-treatment with salicylate in vivo. These results clearly demonstrated the usefulness of the salicylate hydroxylation method as well as the comet assay in estimating the involvement of ·OH generation in cellular injury induced by chemicals in vivo.  相似文献   

18.
The activities of two glial cell enzymes, glutamine synthetase (a marker for astrocytes) and 2′,3′-cyclic nucleotide 3′-phosphohydrolase (a marker for oligodendrocytes and myelination) were studied in the developing chick embryo brain in vivo and in cultures derived from chick embryos. The in vivo findings showed that the activities of both enzymes parallel the patterns of gliogenesis and myelination. Glutamine synthetase follows similar patterns in culture and in vivo, whereas the developmental profile of 2′,3′-cyclic nucleotide 3′-phosphohydrolase appears to be affected by the culture conditions.  相似文献   

19.
PAF antagonist 1 is susceptible to thiazolidine ring fragmentation in vitro and in vivo. The search for a more stable compound prompted the synthesis of a series of bicyclic analogs. Three classes of bicyclic thiazolidines (2: X = 0, CH2, NCH3) were prepared using a common synthetic pathway which generated all the possible diastereomers. The most potent PAF antagonists were the oxygen-substituted analogs which possessed receptor binding affinities largely dependent on stereochemistry.  相似文献   

20.
The oxidative modification of human LDL has been implicated in atherosclerosis, but the mechanisms by which such modification occurs in vivo are not fully understood. In the present study, we have isolated LDL from knee-joint synovial fluid of patients with rheumatoid arthritis. We demonstrate that such LDL is oxidatively modified as evidenced by an increased negative charge, distorted particulate nature and more rapid degradation by cultured macrophages. These results indicate that formation of oxidised LDL is associated with the local inflammatory response. Because the cellular interactions in rheumatoid arthritis have analogies with those in atherogenesis, we suggest that the rheumatoid joint is a useful model of atherosclerosis in which the in vivo process of LDL oxidation may be readily studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号