首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An L1210 cell line (JT-1), which can grow in medium supplemented with 1 nM folate, has been isolated. These cells exhibit a slower growth rate than folate-replete parental cells and have a lower ability to transport folate or methotrexate via the reduced folate transport system. Measurements at nanomolar concentrations of folate revealed that the adapted cells have acquired a high-affinity folate-binding protein. Binding to this component at 37 degrees C was rapid and reached a maximum value after 30 min which corresponded in amount to 0.23 +/- 0.3 pmol/mg protein, and excess unlabeled folate added 30 min subsequent to the [3H]folate led to a rapid release of the bound substrate. Radioactivity bound to or released from the cells after 30 min at 37 degrees C remained as unmetabolized folic acid. Binding was also rapid at 0 degrees C but uptake at the plateau was only one-half the value obtained at 37 degrees C. Half-maximal saturation of the binding component (KD) occurred at a folate concentration of 0.065 nM at pH 7.4, while the affinity for folate decreased 30-fold when the pH was reduced to 6.2 (KD = 2.0 nM). 5-Methyltetrahydrofolate was also bound by this component (Ki = 13 nM at pH 7.4) but with a much lower affinity than for folate, while progressively weaker interactions were observed with 5-formyltetrahydrofolate (Ki = 45 nM) and methotrexate (Ki = 325 nM). When the same adaptation procedure was performed with limiting amounts of 5-formyltetrahydrofolate, two additional cell lines, JT-2 and JT-3, were isolated which expressed elevated levels of the folate-binding protein. The binding activity of the latter cells was 0.46 and 1.4 pmol/mg protein, respectively. When the level of binding protein was compared in cells grown at different concentrations of folate, an increase in medium folate from 1 to 500 nM caused a sevenfold reduction in binding activity in the JT-3 cell line, while these same growth conditions had no effect on binding by the other cells. These results indicate that L1210 cells adapted to low concentrations of folate or 5-formyltetrahydrofolate contain elevated levels of a high-affinity binding protein and that this protein is able to mediate the intracellular accumulation of folate compounds. L1210 cells thus appear to have two potential uptake routes for folate compounds, the previously characterized anion-exchange system and a second route mediated by a high-affinity binding protein.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Summary We previously reported that3H-folate uptake by rabbit jejunal brush-border membrane (BBM) vesicles was markedly stimulated by an outwardly directed OH gradient (pHin 7.7, pHout 5.5), inhibited by anion exchange inhibitors (DIDS, SITS, furosemide), and saturable (folateK m=0.19 m) suggesting carrier-mediated folate/OH exchange (or H+/folate cotransport). In the present study, the anion specificity of this transport process was examined. Under conditions of an outwardly directed OH gradient, DIDS-sensitive folate uptake wascis inhibited (>90%) by reduced folate analogues: dihydrofolate (IC50=0.40 m), folinic acid (IC50=0.50 m), 5-methyltetrahydrofolate (IC50=0.53 m), and (+)amethopterin (IC50=0.93 M). In contrast, 10 m (–)amethopterin had only a modest effect on folate uptake (18% inhibition) suggesting stereospecificity of the folate/OH exchanger. The nonpteridine compounds which are transported by the folate carrier in L1210 leukemic cells (phthalate, thiamine pyrophosphate, and PO 4 –3 ) did not inhibit jejunal folate uptake. Furthermore, folate uptake was not inhibited by SO 4 –2 (4mm) or oxalate (4mm) thereby distinguishing this carrier from the previously described intestinal SO 4 –2 /OH and oxalate/Cl exchangers. After BBM vesicles were loaded with3H-folate, the initial velocity of3H-folate efflux was stimulated by unlabeled folate in the efflux medium. The transstimulation of3H-folate efflux by unlabeled folate was furosemide (or DIDS) inhibitable and temperature sensitive. Half-maximal stimulation of furosemide-sensitive3H-folate efflux was observed with 0.25±0.05 m unlabeled folate, a concentration similar to theK m for folate uptake. These data suggest that folate-stimulated3H-folate efflux is mediated by the folate/OH exchanger. With the exception of (–) amethopterin, reduced folate analogues also transstimulated furosemide-sensitive3H-folate efflux in a concentration-dependent manner suggesting stereospecific transport of these analogues by the folate/OH exchanger. In summary, folate transport by the jejunal folate/OH exchanger demonstrates bothcis inhibition and transstimulation by reduced folate analogues, but not by other inorganic or organic anions suggesting bidirectional transport of folate and a high degree of anion specificity.  相似文献   

3.
The presence of a folate binding protein of high-affinity type (affinity constant 5 · 109M–1, maximum folate binding 3 nM) in human amniotic fluid was demonstrated in equilibrium dialysis experiments (37°C, pH 7.4) with the radioligand3H-folate. Dissociation of3H-folate from the binding protein was slow at pH 7.4 but rapid at pH 3.5. By use of rabbit antibodies against low molecular weight folate binding protein from human milk we determined the concentration of folate binding protein in 5 amniotic fluids (range 1.5–2.3 nM) in an Enzyme-Linked Immunosorbent Assay (ELISA). ultrogel AcA 44 chromatography of amniotic fluid showed that immunoreactive and radioligand bound folate binding protein coeluted in two peaks: a major one (M r 25 000) and a minor one (M r 100 000).  相似文献   

4.
The presence of a folate binding protein of high-affinity type (affinity constant 3.1010M–1, maximum folate binding 1.4 nM) in human semen was demonstrated in equilibrium dialysis experiments (37°C, pH 7.4) with the radioligand3H-folate. Radioligand dissociation from the binding protein was slow at pH 7.4, but rapid at pH 3.5. By use of rabbit antibodies against 25 kDa human milk folate binding protein we determined the concentration of folate binding protein in 16 speciments of human semen in an enzyme-linked immunosorbent assay. The concentration of immunoreactive folate binding protein was independent of the number of spermatozoa in individual specimens. Gel filtration showed that immunoreactive and radioligand bound folate binding protein coeluted in two peaks: a major one of 100 kDa and a minor one of 25 kDa.  相似文献   

5.
A binding component with a high affinity for 5-methyltetrahydrofolate (KD = 0.11μm) is present on the external surface of L1210 cells. The amount of binder (1 pmol/mg protein) corresponds to 8 × 104 sites per cell. The participation of this component in the high-affinity 5-methyltetrahydrofolate/methotrexate transport system is supported by similarities in the KD values for 5-methyltetrahydrofolate and methotrexate binding and the Kt values of these compounds for transport. Relative affinities for other folate substrates (aminopterin, 5-formyltetrahydrofolate, and folate) and various competitive inhibitors (thiamine pyrophosphate, ADP, AMP, arsenate, and phosphate) are also similar for both the binding component and the transport system. The measured binding activity does not represent low-temperature transport of substrate into cells, since it is readily saturable with time and is eliminated by either washing the cells with buffer or by the addition of excess unlabeled substrate.  相似文献   

6.
Activated folate formed by reaction of folic acid and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide irreversibly inhibits the folate transport system of Lactobacillus casei. Complete inhibition of both folate binding to the carrier protein and folate transport was achieved by pretreatment of the cells at low temperature (4 °C) and at neutral pH with 200 nm activated folate. Fifty percent inhibition of binding and transport occurred at 35 and 40 nm activated folate, respectively. Specificity was demonstrated by the fact that excess nonactivated folate added during the pretreatment step afforded complete protection of the binding protein against inhibition, and that activated folate had no effect on the binding or transport of thiamine. Rapid measurements at 4 °C were employed to show that, prior to the appearance of irreversible inhibition, activated folate (Ki = 15 nM) interacted reversibly with the binding site for folate (Kd = 0.8 nM). Cells treated with activated [3H]folate incorporated 1 mol of folate per mole of binding protein. Purification of the labeled protein followed by digestion with Pronase led to the isolation of a compound identified as ?-N-folyl lysine. The ?-amino group of a lysyl residue thus appears to be the nucleophilic group at the binding site that reacts with activated folate.  相似文献   

7.
Summary The transport of [3H] 1,l 5-formyltetrahydrofolate, [3H] folic acid, and [3H]methotrexate by L1210 cell plasma membrane vesicles exhibited multicompartmental behavior. Two separate vesicular compartments (parallel relationship) of approximately equal volume were revealed during measurements of influx and efflux. Flux in one compartment was rapid, saturable, highly temperature-sensitive, and inhibited by pCMBS. Flux in the other compartment exhibited all of the characteristics of passive diffusion. These results imply that our plasma membrane vesicle preparations consist of a mixture of two functional species. Transport of folate into one of these species occurs by passive diffusion alone, whereas transport into the other kind of vesicle occurs by both passive diffusion and carrier-facilitated transport.  相似文献   

8.
Summary Equilibrium binding of [3H]dipyridamole identified high-affinity (K i 10nm) binding sites on human erythrocytes (5×105 sites/cell) and on HeLa cells (5×106 sites/cell). The equilibration of dipyridamole with these sites on human erythrocytes was compatible with a second-order process which proceeded at 22°C with a rate constant of about 6×106 m –1 sec–1. Binding of dipyridamole to these sites correlated kinetically with the inhibition of the equilibrium exchange of 500 m uridine in these cells and was inhibited in a concentration-dependent manner by nucleosides and other inhibitors of nucleoside transport, such as nitrobenzylthioinosine, dilazep and lidoflazine, but not by hypoxanthine, which is not a substrate for the nucleoside transporter of human erythrocytes. The results indicate that the substrate binding site of the transporter is part of the high-affinity dipyridamole binding site. Bound [3H]dipyridamole became displaced from these sites on human erythrocytes by incubation with an excess of unlabeled dipyridamole or high concentrations of nucleosides and inhibitors of nucleoside transport, but neither by hypoxanthine nor sugars. Dissociation of [3H]dipyridamole behaved as a simple first-order process, but the rate constant was about one order of magnitude lower (about 3×10–3 sec–1) than anticipated for typical ligand-protein binding on the basis of the measured association rate and equilibrium constants. The reason for this discrepancy has not been resolved. No high-affinity dipyridamole binding sites were detected on Novikoff rat hepatoma cells, P388, L1210 and S49 mouse leukemia cells or Chinese hamster ovary cells, and their absence correlated with a greater resistance of nucleoside transport in these cells to inhibition by dipyridamole. All cells expressed considerable low affinity (K d>0.5 m) and nonspecific binding of dipyridamole.  相似文献   

9.
Binding of folate (pteroylglutamate) and 5-methyltetrahydrofolate, the major endogenous form of folate, to folate binding protein purified from cow's milk was studied at 7°C to avoid degradation of 5-methyltetrahydrofolate. Both folates dissociate rapidly from the protein at pH 3.5, but extremely slowly at pH 7.4, most likely due to drastic changes in protein conformation occurring after folate binding. Dissociation of 5-methyltetrahydrofolate showed no increase at 37°C suggesting that protein-bound-5-methyltetrahydrofolate is protected against degradation. Binding displayed two characteristics, positive cooperativity and a binding affinity that increased with decreasing concentrations of the protein. The binding affinity of folate was somewhat greater than that of 5-methyl tetrahydrofolate, in particular at pH 5.0. Ligand-bound protein exhibited concentration-dependent polymerization (8-mers formed at 13 M) at pH 7.4. At pH 5.0, only folate-bound forms showed noticeable polymerization. The fact that folate at pH 5.0 surpasses 5-methyltetrahydrofolate both with regard to binding affinity and ability to induce polymerization suggests that ligand binding is associated with conformational changes of the protein which favor polymerization.  相似文献   

10.
Summary The nucleoside transport activity of human placental syncytiotrophoblast brush-border and basal membrane vesicles was compared. Adenosine and uridine were taken up into an osmotically active space. Adenosine was rapidly metabolized to inosine, metabolism was blocked by preincubating vesicles with 2-deoxycoformycin, and subsequent adenosine uptake studies were performed in the presence of 2-deoxycoformycin. Adenosine influx by brush-border membrane vesicles was fitted to a two-component system consisting of a saturable system with apparent Michaelis-Menten kinetics (apparentK m approx. 150 m) and a linear component. Adenosine uptake by the saturable system was blocked by nitrobenzylthioinosine (NBMPR), dilazep, dipyridamole and other nucleosides. Inhibition by NBMPR was associated with high-affinity binding of NBMPR to the brush-border membrane vesicles (apparentK d 0.98±0.21nm). Binding of NBMPR to these sites was blocked by adenosine, inosine, uridine, thymidine, dilazep and dipyridamole, and the respective apparentK i values were 0.23±0.012, 0.36±0.035, 0.78±0.1, 0.70±0.12 (mm), and 0.12 and 4.2±1.4 (nm). In contrast, adenosine influx by basal membrane vesicles was low (less than 10% of the rate observed with brush-border membrane vesicles under similar conditions), and hence no quantitative studies of adenosine uptake could be performed with these vesicles. Nevertheless, high-affinity NBMPR binding sites were demonstrated in basal membrane vesicles with similar properties to those in brushborder membrane vesicles (apparentK d 1.05±0.13nM and apparentK i values for adenosine, inosine, uridine, thymidine, dilazep and dipyridamole of 0.14±0.045, 0.54±0.046, 1.26±0.20, 1.09±0.18mm and 0.14 and 3.7±0.5nm, respectively). Exposure of both membrane vesicles to UV light in the presence of [3H]NBMPR resulted in covalent labeling of a membrane protein(s) with a broad apparentM r on SDS gel electropherograms of 77,000–45,000, similar to that previously reported for many other tissues, including human erythrocytes. We conclude that the maternal (brush-border) and fetal (basal) surface of the human placental syncytiotrophoblast posses broad-specificity, facilitated-diffusion, NBMPR-sensitive nucleoside transporters.  相似文献   

11.
High-affinity3H-folate binding in Triton X-100 solubilized human mammary gland tissue displayed characteristics, e.g. apparent positive cooperativity and increasing affinity with decreasing concentration of folate binding protein, shown to be typical of specific folate binding. Radioligand dissociation was slow at pH 7.4. A major fraction of the bound radioligand dissociated rapidly at pH 3.5, while a residual binding of 20% persisted even after prolonged dialysis at pH 3.5. Gel chromatography revealed two major folate binding proteins (Mr100 kDa and 25 kDa). However, only one single band was detectable on SDS-PAGE immunoblotting. The highest folate binding activity per g protein was associated with the upper triglyceride-containing layer of the 1000 g supernatant of the homogenate. The folate binding protein extracted from this layer had a low cross-reactivity (<5%) with rabbit antibodies against 25 kDa human milk folate binding protein. The folate binding protein in the 1000 g pellet and the aqueous phase of the 1000 g supernatant was present at a low concentration and had a cross-reactivity of 100%.  相似文献   

12.
We have characterized the folate receptor in normal and malignant tissue from male gonads. Radioligand binding displayed characteristics typical of other folate receptors. Those included a high-affinity type of binding (K = 1010 M–1), apparent positive cooperativity changing into non-cooperativity at low receptor concentrations, a tendency to increased binding affinity with decreasing receptor concentrations, a slow dissociation at pH 7.4 becoming rapid at pH 3.5 and inhibition by folates, in particular oxidized forms. The gel filtration profile of Triton X-100 solubilized tissue contained a 25 and 100 kDa peak of radioligand-receptor. The latter peak could represent receptor equipped with a hydrophobic membrane anchor that inserts into Triton X-100 micelles. The concentration of radiolabelled receptor ranged from 0.41 nmol/g protein to 1.68 nmol/g protein in specimens of normal testicular tissue from patients with prostatic carcinomas and from 1.54 nmol/g protein to 3.82 nmol/g protein in testicular tissue from young individuals. Compared to normal testicular tissue the concentration of receptor in seminoma tissue was low (0.38–1.27 nmol/g protein) but showed a higher degree of immunoreactivity in the presence of antibodies against human milk folate binding protein as evidenced by ELISA and immunohistochemistry data. Hence a folate receptor isoform homologous to human milk folate binding protein is apparently expressed in seminomas where the total expression of receptor, however, seems to be lower than in normal testicles.  相似文献   

13.
Summary Madin-Darby canine kidney (MDCK) cells kept in suspension culture for 12–15 hr displayed high-affinity binding sites for125I-lathyritic (soluble) collagen (120,000/cell,K D =30nm) and preferred collagens types I and IV over laminin or fibronectin as substrates during the first hour of attachment. On the other hand, after 4 hr, attachment to all four substrates was equally efficient. Upon challenge with a collagen substrate, the high-affinity sites were rapidly recruited on it (T1/2=6 min). Their occupancy by soluble collagen triggered the exocytosis of a second large population of low-affinity collagen binding sites that included laminin and seems to be involved in a second cell-attachment mechanism. These results are compatible with a twostep model of MDCK cell attachment to the substrate: first, via high-affinity collagen binding sites, and second, via laminin of cellular origin.  相似文献   

14.
Binding of [3H]folate to proteins in serum of pregnant women was studied in equilibrium dialysis experiments (pH 7.4, 37°C). A Scatchard analysis revealed the presence of high-affinity (Kass = 1010M?1, N = 0.4 nM folate) and low-affinity sites. The high-affinity folate binding protein (Mr ≈ 30 000–35 000) appeared in front effluent after application of serum to a DEAE-Sepharose CL-6B column equilibrated with 0.05 M imidazole buffer (pH 6.3)/ 30 mM NaCl. Low-affinity binding protein eluted from the column after a rise in NaCl concentration to 1 M was mainly similar to albumin. A minor part was, however, associated with a large molecular size (Mr > 200 000) protein, probably α2-macroglobulin.High-affinity binding which displayed positive cooperatively was saturated at folate concentrations above 10?10 M. Folate dissociation was a complex process consisting of an initial rapid phase (terminated within 48 h) followed by a slow release. At pH 3.5 dissociation became rapid and complete. Purified methotrexate had no effect on high-affinity binding, whereas N10-methylfolate (an impurity in the methotrexate preparation) acted as a potent inhibitor. Low-affinity binding was proportional to the folate concentration within the range 10?10–10?7 M. Dissociation of folate was rapid.  相似文献   

15.
Summary The interaction between chloride and the anion transport inhibitor DNDS (4,4-dinitro stilbene-2,2-disulfonate) at the external anion binding site of the human erythrocyte anion transporter was examined by two techniques: a) chloride tracer flux experiments in the presence of varying concentrations of DNDS, and b) DNDS equilibrium binding experiments in the presence of varying concentrations of intracellular and extracellular chloride, Cl i and Cl o . DNDS inhibited competitively the Cl o -stimulated chloride efflux from intact red cells at 0°C and pH 7.8 with an inhibitor constant of 90nm. Under the same conditions DNDS bound reversibly to one class of binding sites on intact cells with a capacity of 8.5×105 molecules/cell. Cl o competitively inhibited DNDS binding with an inhibitor constant of 6mm. In the absence of Cl o the DNDS binding constant was 84mm. The competition between chloride and DNDS was also tested in nystatintreated cells in which Cl o always equaled Cl i . Under these conditions the values of the DNDS binding constant and the chloride inhibitor constant were significantly larger. All these data were in quantitative agreement with a single-site, alternating access kinetic scheme with ping-pong-type kinetics that we have previously developed for modeling chloride exchange transport. The data also served to rule out special cases of an alternative two-sited sequential-type kinetic scheme. DNDS binding experiments were also performed at 10 and 20°C. We found that neither the DNDS binding constant nor the Cl o inhibitor constant were significantly changed compared to 0°C.  相似文献   

16.
Rat placenta contains virtually no unsaturated (i.e., apo-form) folate binding protein. However, by lowering the pH of a solubilized membrane preparation of this tissue to 3.5, the endogenous bound folate was dissociated from the protein and adsorbed to charcoal. The apo-form of the folate binding protein thus obtained was purified by affinity chromatography using pteroylglutamic acid covalently coupled to Sepharose 4B. A single protein band with an apparent Mr of 36 000 was observed by SDS-polyacrylamide gel electrophoresis of the eluate from the affinity matrix. Western blot of this preparation using a rabbit antiserum raised with the affinity eluate also identified a single 36 kDa protein band. However, peptide sequencing of the N-terminal region of the proteins in the affinity eluate established that it contained two homologous proteins. Computer alignment of the first 22 N-terminal amino acids of each rat placental protein with human, bovine milk and mouse folate binding proteins showed 50–64% identical homology and 27% homology when the eight proteins were aligned together. The affinity of both rat proteins is highest for pteroylglutamic acid (Ka = 1.6 − 109 l/mol) lower for N5-methyltetrahydrofolate and substantially lower for N5-formyltetrahydrofolate. In the dose-response range studied there was no apparent affinity for methotrexate. The folate binding proteins could be released from a preparation of placental membranes using phospholipase C indicating that these proteins belong to the class of proteins anchored to the plasma membrane by a glycosyl phosphatidylinositol adduct.  相似文献   

17.
Summary [14C]Phthalate is transported into L1210 cells via two separate routes, an anion exchange system whose primary substrates are folate compounds, and a second less active system which is sensitive to bromosulfophthalein. When the principal uptake component was blocked by a specific irreversible inhibitor of this system, the remaining route (at pH 7.4) appeared to be saturable and was inhibited by several anions in addition to bromosulfophthalein (K i =2 m), including 8-anilino-1-naphthalein sulfonate (K i =25 m), unlabeled phthalate (K i =500 m), and chloride (K i =3500 m). A pronounced effect by pH was also observed. Influx and total uptake of phthalate both increased progressively with decreasing pH and reached values that were 20-fold higher at pH 6.0, compared with pH 7.4. This pH-dependent increase could be blocked, however, by the addition of compounds (nigericin and carbonylcyanidem-chlorophenylhydrazone) which, in combination, collapse proton gradients. Phthalate efflux was relatively insensitive to changes in extracellular pH but could be inhibited (up to 90%) by bromosulfophthalein. Several other anions also inhibited efflux, but to a lesser extent, while chloride, phthalate, lactate, glycolate and acetate enhanced efflux up to 1.8-fold. Efflux also increased at pH 6.0, but not at pH 7.5, upon addition of nigericin and carbonylcyanidem-chlorophenylhydrazone. These results suggest that phthalate is a nonphysiological substrate for a carrier system which mediates transport via an anion/H+ symport mechanism. This system is not the lactate/H+ symport carrier of L1210 cells since: (A) phthalate and lactate influx were inhibited to differing degrees by various anions; and (B) lactic anhydride inhibited the influx and efflux of lactate but had no effect on the transmembrane movement of phthalate. The specificity of this system suggests that its primary anion substrate may be chloride.  相似文献   

18.
High-affinity folate binding in human prostate   总被引:1,自引:0,他引:1  
Binding of3H-folate in Triton X-100 solubilized human prostate homogenate was of a high-affinity type and displayed apparent positive cooperativity typical of specific folate binding. Radioligand dissociation was slow at pH 7.4, but rapid at pH 3.5. Gel chromatography reveled two major folate binding proteins (Mr100 and 25kDa), but only one single band (Mr65–70 kDa) was detectable on SDS-PAGE and immunoblotting with rabbit-anti human milk folate binding protein. Concentration of folate binding protein in prostate homogenate expressed as maximum3H-folate binding was 1.10 nmol/g protein, and the cross-reactivity with rabbit-anti human milk folate binding protein serum was 15% as determined by an enzyme-linked immunosorbent assay (median values; n=6).  相似文献   

19.
Uptake of folate by L1210 cells in mediated by a transport system whose primary substrate is adenine. This conclusion is based upon the following evidence: (a) Folate uptake is inhibited competitively by adenine; (b) The Kt for folate transport (430 μM) is comparable to the Ki (450 μM) for folate inhibition of adenine transport; (c) The Kt for adenine transport (21 μM) agrees with the Ki (17 μM) for inhibition of folate transport by adenine; (d) The adenine analogs, 1-methyl-3-isobutylxanthine and 6-mercapto-purine, each inhibit folate and adenine transport to a comparable degree; and (e) Rates of folate and adenine uptake vary in parallel fashion during growth of L1210 cells.  相似文献   

20.
Summary The specific binding of [3H]corticosterone to hepatocytes is a nonsaturable, reversible and temperature-dependent process. The binding to liver purified plasma membrane fraction is also specific, reversible and temperature dependent but it is saturable. Two types of independent and equivalent binding sites have been determined from hepatocytes. One of them has high affinity and low binding capacity (K D=8.8nm andB max=1477 fmol/mg protein) and the other one has low affinity and high binding capacity (K D=91nm andB max=9015 fmol/mg). In plasma membrane only one type of binding site has been characterized (K D=11.2nm andB max=1982 fmol/mg). As it can be deduced from displacement data obtained in hepatocytes and plasma membrane the high affinity binding sites are different from the glucocorticoid, progesterone nuclear receptors and the Na+,K+-ATPase digitalis receptor. Probably it is of the same nature that the one determinate for [3H]cortisol and [3H]corticosterone in mouse liver plasma membrane. Beta-and alpha-adrenergic antagonists as propranolol and phentolamine did not affect [3H]corticosterone binding to hepatocytes and plasma membranes; therefore, these binding sites are independent of adrenergic receptors. The binding sites in hepatocytes and plasma membranes are not exclusive for corticosterone but other steroids are also bound with very different affinities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号