首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
AIMS: To investigate the presence or absence of shiga toxin-producing Escherichia coli (STEC) in avian species in India. METHODS AND RESULTS: Faecal samples originating from 500 chicken and 25 free flying pigeons were screened for the presence of E. coli. A total of 426 (chicken, 401; pigeons, 25) E. coli strains were isolated. Of 426 E. coli strains, 387 were grouped into 77 serogroups, while 70 and 59 strains were untypable and rough, respectively. All isolates were subjected to multiplex polymerase chain reaction (m-PCR) for the detection of stx(1), stx(2), eaeA, hlyA and saa genes. None of the E. coli strains studied showed the presence of stx(1), stx(2) or their variants and saa genes. Overall 11 (2.74%) and seven (1.74%) strains from chickens possessed eaeA and hlyA genes, respectively, while as only six (1.49%) strains from chickens possessed both eaeA and hlyA genes. O9, O8, O60 and O25 serogroups were most predominant of which there were 24 (5.63%), 23 (5.39%), 23 (5.39%) and 20 (4.69%) strains, respectively. None of the isolates from pigeons showed the presence of any of the virulence genes studied. CONCLUSIONS: STEC are absent in chickens and pigeons. However, further studies are required in this direction to confirm or contradict our findings. E. coli strains originating from birds are carrying a low percentage eaeA or hlyA genes. SIGNIFICANCE AND IMPACT OF THE STUDY: The present study is the first attempt to investigate STEC in chickens and free flying pigeons in India. The chickens and pigeons cannot be considered as important carrier of STEC in India.  相似文献   

2.
The prevalence of Shiga toxin-producing Escherichia coli (STEC) in Japan was examined by using stool samples from 87 calves, 88 heifers, and 183 cows on 78 farms. As determined by screening with stx-PCR, the prevalence was 46% in calves, 66% in heifers, and 69% in cows; as determined by nested stx-PCR, the prevalence was 100% in all animal groups. Of the 962 isolates picked by colony stx hybridization, 92 isolates from 54 farms were characterized to determine their O serogroups, virulence factor genes, and antimicrobial resistance. Of these 92 isolates, 74 (80%) could be classified into O serogroups; 50% of these 74 isolates belonged to O serogroups O8, O26, O84, O113, and O116 and 1 isolate belonged to O serogroup O157. Locus of enterocyte effacement genes were detected in 24% of the isolates, and enterohemorrhagic E. coli (EHEC) hlyA genes were detected in 72% of the isolates. Neither the bundle-forming pilus gene nor the enteropathogenic E. coli adherence factor plasmid was found. STEC strains with characteristics typical of isolates from human EHEC infections, which were regarded as potential EHEC strains, were present on 11.5% of the farms.  相似文献   

3.
Three hundred and twenty-six Escherichia coli isolates recovered from 326 human faecal specimens from sporadic cases of diarrhoea in Kashmir valley, India, were investigated for the presence of stx(1), stx(2), eaeA, hlyA and lt virulence genes. None of the samples was positive for stx genes or Shiga toxins by PCR or enzyme-linked immunosorbent assay. Twenty-three E. coli isolates showed the presence of the eaeA gene, whereas three isolates harboured the lt gene. Enteropathogenic E. coli (EPEC) belonged to 10 different serogroups. Out of 23 EPEC isolates, the majority (78.26%) were atypical while five (21.73%) were typical. Only one of the typical EPEC harboured the EAF plasmid. Subtyping of the eaeA gene showed the presence of eaeA-alpha(1), eaeA-beta, eaeA-xi and eaeA-eta in one, two, four and two isolates, respectively. None of the E. coli isolates possessed eaeA-delta, eaeA-epsilon and eaeA-zeta. This study further upholds the opinion that Shiga toxin-producing E. coli do not pose a major threat to human health in India and eaeA-alpha(1), eaeA-beta, eaeA-xi and eaeA-eta could be common EPEC subtypes prevalent in humans with diarrhoea in India. The present study appears to be the first report of subtype analysis of the eaeA gene from India and also records the isolation of EPEC with the eaeA-xi gene from humans.  相似文献   

4.
Beef carcass sponge samples collected from July to August 1999 at four large processing plants in the United States were surveyed for the presence of non-O157 Shiga toxin-producing Escherichia coli (STEC). Twenty-eight (93%) of 30 single-source lots surveyed included at least one sample containing non-O157 STEC. Of 334 carcasses sampled prior to evisceration, 180 (54%) were found to harbor non-O157 STEC. Non-O157 STEC isolates were also recovered from 27 (8%) of 326 carcasses sampled after the application of antimicrobial interventions. Altogether, 361 non-O157 STEC isolates, comprising 41 different O serogroups, were recovered. O serogroups that previously have been associated with human disease accounted for 178 (49%) of 361 isolates. Although 40 isolates (11%) carried a combination of virulence factor genes (enterohemorrhagic E. coli hlyA, eae, and at least one stx gene) frequently associated with STEC strains causing severe human disease, only 12 of these isolates also belonged to an O serogroup previously associated with human disease. Combining previously reported data on O157-positive samples (R. O. Elder, J. E. Keen, G. R. Siragusa, G. A. Barkocy-Gallagher, M. Koohmaraie, and W. W. Laegreid, Proc. Natl. Acad. Sci. USA 97:2999-3003, 2000) with these data regarding non-O157-positive samples indicated total STEC prevalences of 72 and 10% in preevisceration and postprocessing beef carcass samples, respectively, showing that the interventions used by the beef-processing industry effected a sevenfold reduction in carcass contamination by STEC.  相似文献   

5.
[目的]揭示从我国部分地区仔猪腹泻或水肿病病猪体内分离到的300个大肠杆菌分离株所属病原型(pathotype)、毒力基因及其与O血清型的关系.[方法]O血清型采用常规的凝集试验进行测定,毒力基因采用PCR方法检测.[结果]通过对这300个分离株的O血清型及其毒素、紧密素和黏附素基因进行鉴定,结果显示除50株未定型、17株自凝外,测定出233个分离株的血清型,这些分离株覆盖了45个血清型,其中以0149、0107、0139、093和091为主,共133株,占定型菌株的57.1%;拥有est Ⅰ、estⅡ、elt、stx2e和eae A基因的菌株分别为102(34.0%)、190(63.3%)、81(27.0%)、57(19.0%)和54(18.0%)株;分离株中有51株K88基因阳性(其中菌毛表达率为100%),75株F18基因阳性(其中菌毛表达率为50.7%),在K88菌株中,0149血清型与est Ⅰ或estⅡ elt密切相关,在F18菌株中,0107血清型与est Ⅰ或estⅡ、0139血清型与stx2e紧密相关.依其毒力特征可将这些分离株分为以下6种类型:ETEC、STEC、AEEC、ETEC/STEC、AEEC/ETEC和AEEC/ETEC/STEC,分别拥有190、24、36、32、17和1个菌株,占分离株的63.3%、8.0%、12.0%、10.7%、5.7%和0.3%.通过分析这些分离株的O血清型、毒素类型和黏附素型之间的相关性:猪源ETEC以0149、0107、093和098等血清型为主,0149:K88菌株主要与estⅡ或estⅡ elt肠毒素相关,0107:F18菌株主要与estⅡ相关,093和098血清型菌株主要与estⅡ肠毒素相关;STEC菌株以0139:F18血清型为主,拥有stx2e;AEEC菌株拥有紧密素,无明显优势血清型;ETEC/STEC菌株以0107:F18和0116:F18血清型为主,主要与est Ⅰ stx2e或estⅡ stx2e密切相关,ETEC/AEEC菌株以091和0107血清型为主,全部拥有肠毒素est Ⅰ和紧密素基因.[结论]我国至少存在6种病原型的猪肠道致病性大肠杆菌,其中ETEC为我国部分地区猪大肠杆菌病的主要病原,同时其病原型日益复杂.  相似文献   

6.
The presence of Shiga toxin-producing Escherichia coli (STEC) strains in feces samples of cattle was determined using the cytotoxicity assay on Vero cells and a screening PCR system to detect stx genes. The STEC isolates were serotyped, tested for antimicrobial susceptibility, and analyzed for virulence genes using multiplex PCR. The verocytotoxin-producing E. coli - reverse passive latex agglutination (VTEC-RPLA) assay was also used to detect Shiga toxin production. The frequency of cattle shedding STEC was 36%. The isolates belonged to 33 different serotypes, of which O10:H42, O98:H41, and O159:H21 had not previously been associated with STEC. The most frequent serotypes were ONT:H7 (10%), O22:H8 (7%), O22:H16 (7%), and ONT:H21 (7%). Most of the strains (96%) were susceptible to all antimicrobial agents tested. Shiga toxin was detected by the VTEC-RPLA assay in most (89%) of the STEC strains. The frequency of virulence markers was as follows: stx1, 10%; stx2, 43%; stx1 plus stx2, 47%; ehxA, 44%; eae, 1%; and saa, 38%. Several strains belong to serotypes associated with human disease, and most of them carried a stx2-type gene, suggesting that they represent a risk to human health. The screening PCR assay showed fewer false-negative results for STEC than the Vero-cell assay and is suitable for laboratory routine.  相似文献   

7.
In line with recent reports of extended-spectrum beta-lactamases (ESBLs) in Escherichia coli isolates of highly virulent serotypes, such as O104:H4, we investigated the distribution of phylogroups (A, B1, B2, D) and virulence factor (VF)-encoding genes in 204 ESBL-producing E. coli isolates from diarrheic cattle. ESBL genes, VFs, and phylogroups were identified by PCR and a commercial DNA array (Alere, France). ESBL genes belonged mostly to the CTX-M-1 (65.7%) and CTX-M-9 (27.0%) groups, whereas those of the CTX-M-2 and TEM groups were much less represented (3.9% and 3.4%, respectively). One ESBL isolate was stx(1) and eae positive and belonged to a major enterohemorrhagic E. coli (EHEC) serotype (O111:H8). Two other isolates were eae positive but stx negative; one of these had serotype O26:H11. ESBL isolates belonged mainly to phylogroup A (55.4%) and, to lesser extents, to phylogroups D (25.5%) and B1 (15.6%), whereas B2 strains were quasi-absent (1/204). The number of VFs was significantly higher in phylogroup B1 than in phylogroups A (P = 0.04) and D (P = 0.02). Almost all of the VFs detected were found in CTX-M-1 isolates, whereas only 64.3% and 33.3% of them were found in CTX-M-9 and CTX-M-2 isolates, respectively. These results indicated that the widespread dissemination of the bla(CTX-M) genes within the E. coli population from cattle still spared the subpopulation of EHEC/Shiga-toxigenic E. coli (STEC) isolates. In contrast to other reports on non-ESBL-producing isolates from domestic animals, B1 was not the main phylogroup identified. However, B1 was found to be the most virulent phylogroup, suggesting host-specific distribution of virulence determinants among phylogenetic groups.  相似文献   

8.
Aims:  To examine stool specimens from children with diarrhea from Paraná State, southern Brazil, for presence of STEC.
Methods and Results:  A PCR screening assay for stx genes was used to examine a loopful of confluent colonies of 306 stool samples cultures. In six (1.96%) of them, DNA fragments of the expected size were observed, and the presence of stx was confirmed by DNA sequencing. Then up to 100 single colonies from each of the six stool cultures were analyzed using the same PCR protocol. However, stx -positive colonies were found only in two of the cultures. The E. coli strains belonged to serotypes O69:H11 and O178:H19, and presented genotypes stx 1 eae ehxA and stx 1 respectively. Shiga toxin production was confirmed using the VTEC Screen Seiken. Except ampicillin, they were susceptible to all the antimicrobials tested.
Conclusions:  These results show that STEC may be an important cause of diarrhea in children of Paraná State, and that they are present in low numbers in stools. The strains belonged to serotypes not commonly found associated with STEC and probably present low virulence.
Significance and Impact of Study:  These results indicate that molecular methods are required to diagnosis of STEC infections.  相似文献   

9.
AIMS: To determine the subtypes of stx and eae genes of Shiga toxin-producing Escherichia coli (STEC) and enteropathogenic Escherichia coli (EPEC) from calves and to ascertain the typical and atypical nature of EPEC. METHODS AND RESULTS: One hundred and eighty-seven faecal samples from 134 diarrhoeic and 53 healthy calves were investigated for the presence of stx, eae and ehxA virulence genes by polymerase chain reaction and enzyme-linked immunosorbent assay. Subtype analysis of stx(1) exhibited stx(1c) in 13 (31.70%) isolates, while that of stx(2) revealed stx(2c) in eight (24.24%) and stx(2d) in two (6.06%) isolates. Subtyping of eae gene showed the presence of eae-beta, eae-eta and eae-zeta in two, three and four isolates respectively. None of the E. coli isolates possessed stx(2e), stx(2f), eae-alpha, eae-delta, eae-epsilon and eae-xi. All EPEC isolates were atypical. CONCLUSIONS: stx(1), stx(1c), stx(2), stx(2c), stx(2d), eae-beta, eae-eta and eae-zeta subtypes are prevalent in STEC and EPEC isolates in India. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first subtype analysis of stx(2) and eae genes of animal E. coli isolates in India and emphasizes the need to investigate their transmission to humans.  相似文献   

10.
Ram S  Shanker R 《In silico biology》2005,5(5-6):499-504
Diarrheagenic E. coli strains contribute to water related diseases in urban and rural environment in developing and developed world. E. coli pathotype and pathogenicity varies due to complex multifactorial mechanism involving a large number of virulence factors. Rapid assessment of the virulence pattern of E. coli isolates is possible by Real-Time PCR probes like TaqMan. For designing TaqMan probes and primers for multiplex PCR selected E. coli gene sequences: stx1, stx2, hlyA, chuA, eae, lacZ, lamB and fimA were retrieved from NCBI's GenBank database. The alignment of the multiple sequences and analysis of conserved sequences was carried out using ClustalW and BLAST programs. The primers and Taqmen probes were designed using Beacon Designer software version 2.1 for two multiplexed PCR assays. In silico PCR simulation of these assays showed PCR products for stx2 (248bp) stx1 (102 bp), lacZ (228bp) and lamB (86 bp) in multiplex #1 and eae (200bp), chuA (147 bp), hlyA (141bp) and fimA (79 bp) in multiplex #2, respectively. These multiplexed PCR amplification products and probes can be used to identify and confirm presence of O157:H7/ H7-, O157:H43/45 and O26:H-/H11 serotypes. In conclusion, multiplex Real-Time Polymerase Chain Reaction oligomers and TaqMan probes designed and validated in silico will be helpful in management of water quality and outbreaks, by improving specificity and minimizing time needed for in vitro verification work.  相似文献   

11.
为了解产志贺毒素大肠埃希菌 (Shigatoxin producingEscherichiacoli ,STEC)stx1,stx2 ,eaeA ,hlyA 4种毒力基因的分布情况 ,以及分离株对 18种抗生素的敏感性 ,采用多重PCR(multiplexPCR ,mPCR)法对分离株进行毒力基因的分子生物学鉴定 ;用WHO推荐的K B法对分离株进行抗生素的敏感性测定。产志贺毒素的大肠埃希菌共有 4 6株 ,其中 2种毒素均产生的有 2 2株 (4 7.8% ) ;单纯产生stx1的有 16株 (36 .9% ) ,stx2 的有 8株 (17.4 % ) ;4种毒力基因均存在的有 19株 (4 1.3% ) ,血清型为O15 7∶H7,而非O15 7∶H7血清型的菌株 (2 3/46 )中 ,4种毒力基因同时存在的仅有 3株 (6 .6 % ) ,但有 13株 (5 6 .9% )hlyA基因阳性。全部STEC对复方新诺明耐药 ,对链霉素耐药率为 2 8.3% ,氨苄西林为 30 .4 % ,红霉素为 6 9.6 % ,而且有 5株对至少 4种以上抗生素多重耐药 ,耐药谱为复方新诺明 链霉素 红霉素 氨苄西林。非O15 7型STEC耐药菌次为 12 2 ,而O15 7型为 6 3。可见 ,mPCR法可以快速检测STEC特征性毒力基因 ,以判定其致病性能。非O15 7型STEC对抗生素较易形成耐药性。  相似文献   

12.
AIMS: To describe the occurrence and virulence gene pattern of shiga toxin-producing Escherichia coli (STEC) and enteropathogenic E. coli (EPEC) in healthy goats of Jammu and Kashmir, India. METHODS AND RESULTS: A total of 220 E. coli strains belonging to 60 different 'O' serogroups was isolated from 206 local (nonmigratory) and 69 migratory goats. All the 220 strains were screened for the presence of stx(1), stx(2), eaeA and hlyA genes. Twenty-eight E. coli (75.6%) strains from local and nine (24.3%) strains from migratory goats belonging to 18 different serogroups showed at least presence of one virulence gene studied. Twenty-eight strains (16.47%) (belonging to 13 different serogroups) from local goats carried stx(1) gene alone or in combination with stx(2) gene, while as only one strain (2%) from migratory goats possessed stx(2) gene alone. Interestingly in the present study none of the STEC strains carried eaeA gene. Similarly, none of the strains from local goats possessed eaeA and none of the migratory goats possessed stx(1) gene. Eight strains (16%) (belonging to four different serogroups) from migratory goats carried eaeA gene. Twenty-five (14.7%) and seven (14%) strains from local and migratory goats harboured hlyA gene respectively. CONCLUSIONS: Healthy goats of Jammu and Kashmir state serve as a reservoir of STEC and EPEC. Further studies in this direction are needed to work out whether or not they are transmitted to humans in this part of world. SIGNIFICANCE AND IMPACT OF THE STUDY: This study is the first report of isolation of STEC and EPEC strains from healthy goats in Jammu and Kashmir State of India, which could be a source of infection to humans.  相似文献   

13.
AIMS: To evaluate Shiga toxin-producing Eschericha coli (STEC) prevalence in 1039 French raw milk cheeses including soft, hard, unripened and blue mould cheeses, and to characterize the STEC strains isolated (virulence genes and serotypes). METHODS AND RESULTS: STEC strains were recovered from cheese samples by colony hybridization. These strains were then serotyped and genetically characterized. These strains (32 STEC) were then recovered from 18 of 136 stx-positive samples: 19 strains had stx2 variant genes stx(2vh-a) (n = 2), stx(2NV206) (n = 2), stx(2EDL933) (n = 4) and stx2d (n = 11). Thirty strains had the stx1 gene and one strain, the eae gene. Combinations of stx2 and stx1 genes were present in 17 (81%) of the STEC strains. Nineteen strains belonged to the O6 serogroup and the other strains belonged to the O174, O175, O176, O109, O76, O162 and O22 serogroups in decreasing frequency. CONCLUSIONS: No conclusion can be drawn at the moment concerning the potential risk to consumers because the O6:H1 serotype has already been found associated with the haemolytic uremic syndrome and almost no isolate had the eae gene. SIGNIFICANCE AND IMPACT OF THE STUDY: The large number of STEC strains recovered from the cheese samples evaluated in this study emphasizes the health risks associated with raw milk cheeses. This further emphasizes the immediate need to identify and implement effective pre- and postharvest control methods that decrease STEC carriage by dairy cattle and to eliminate contamination of their cheeses during processing.  相似文献   

14.
Enterohemorrhagic Escherichia coli (EHEC) are a physiologically, immunologically and genetically diverse collection of strains that pose a serious water-borne threat to human health. Consequently, immunological and PCR assays have been developed for the rapid, sensitive detection of presumptive EHEC. However, the ability of these assays to consistently detect presumptive EHEC while excluding closely related non-EHEC strains has not been documented. We conducted a 30-month monitoring study of a major metropolitan watershed. Surface water samples were analyzed using an immunological assay for E. coli O157 (the predominant strain worldwide) and a multiplex PCR assay for the virulence genes stx(1), stx(2) and eae. The mean frequency of water samples positive for the presence of E. coli O157, stx(1) or stx(2) genes, or the eae gene was 50%, 26% and 96%, respectively. Quantitative analysis of selected enriched water samples indicated that even in samples positive for E. coli O157 cells, stx(1)/stx(2) genes, and the eae gene, the concentrations were rarely comparable. Seventeen E. coli O157 strains were isolated, however, none were EHEC. These data indicate the presence of multiple strains similar to EHEC but less pathogenic. These findings have important ramifications for the rapid detection of presumptive EHEC; namely, that current immunological or PCR assays cannot reliably identify water-borne EHEC strains.  相似文献   

15.
AIMS: To characterize a number of Shiga toxin-producing Escherichia coli (STEC) isolates from sheep and to discuss the potential of these isolates as human pathogens. METHODS AND RESULTS: Twelve different O-groups and seven different H-types were identified by standard serotyping methods. The most common serotypes were O5:NM, O6:H10, O91:NM and O128:NM. Polymerase chain reaction (PCR) was used for the detection of virulence factor genes. Of 102 isolates, 86.3% carried stx1 and 83% of these were also positive in the stx1OX3-specific PCR. stx2 was carried by 55.9% of the isolates and 77.2% of these were also positive in the stx2d-specific PCR. The Vero cell assay showed high toxin production in 70.6% of the isolates. None of the isolates carried eae. CONCLUSIONS: The study supports the animal-host relationship suggested in other studies with STEC serogroups O5, O91 and O128 strongly associated with sheep. Most sheep STEC carry stx1OX3 (except O91) and the dominating stx2 variant is stx2d. One stx profile clearly dominates within a serotype. SIGNIFICANCE AND IMPACT OF THE STUDY: In spite of the predominance of certain sheep-associated STEC, sheep cannot be excluded as carriers of human pathogenic STEC.  相似文献   

16.
In Mellassine (a major city in the state of Tunis) and Ben Arous state (south east of Tunis), a total of 212 stool samples were collected from children and adults (symptomatic and asymptomatic groups) between November 2001 and November 2004. Three hundred and twenty-seven E. coli strains were isolated and studied, to look for shiga toxin-producing Escherichia coli (STEC) strains, which were further analysed to investigate and determine clonal relationship among Tunisian STEC strains isolated from different sources (diarrheal cases and food products). They were analysed to characterize their serotypes, virulence genes by PCR, cytotoxic effect on Vero cell, plasmid profiles, and pulsed-field gel electrophoresis (PFGE) patterns. Eleven isolates (10 nontypeable, one O157:H7) carried stx gene and shared Stx restriction fragment length polymorphism (RFLP) patterns (stx1 ( + ), stx2 ( + )). Seven of these strains were isolated from acute diarrheal cases, and four were isolated from a control group (among which the only isolated STEC O157:H7). Two of the STEC strains harboured both eae and ehxA genes. Analysis of the cytotoxic effect on Vero cells showed that a correlation exists between carrying stx1 ( + ), stx2 ( + ) genes and cytotoxicity. Also a correlation was noticed between STEC strains recovered from different sources regarding plasmid profiles and PFGE patterns. All stool samples positive for STEC were nonbloody. None of the STEC-positive patients developed severe diseases. These data demonstrate that although STEC is not a major cause of acute diarrhea in Tunis, it should not be overlooked. Measures should be taken to improve the detection and isolation of STEC from acute diarrheal cases as well as carriers.  相似文献   

17.
AIMS: To determine the potential for naturally occurring Shiga toxin-negative Escherichia coli O157 to acquire stx(2) genes. METHODS AND RESULTS: Multiple E. coli O157:H7 isolates positive for eae and ehxA, but not for stx genes, were isolated from cattle, water trough sediment, animal bedding and wild bird sources on several Ohio dairy farms. These isolates were experimentally lysogenized by stx(2)-converting bacteriophage. CONCLUSIONS: Shiga toxin-negative strains of E. coli O157 are present in multiple animal and environmental sources. SIGNIFICANCE AND IMPACT OF THE STUDY: Shiga toxin-negative strains of E. coli O157 present in the food production environment are able to acquire the stx genes, demonstrating their potential to emerge as new Shiga toxin-producing E. coli strains.  相似文献   

18.
We examined 219 Shiga toxin-producing Escherichia coli (STEC) strains from meat, milk, and cheese samples collected in Germany between 2005 and 2006. All strains were investigated for their serotypes and for genetic variants of Shiga toxins 1 and 2 (Stx1 and Stx2). stx(1) or variant genes were detected in 88 (40.2%) strains and stx(2) and variants in 177 (80.8%) strains. Typing of stx genes was performed by stx-specific PCRs and by analysis of restriction fragment length polymorphisms (RFLP) of PCR products. Major genotypes of the Stx1 (stx(1), stx(1c), and stx(1d)) and the Stx2 (stx(2), stx(2d), stx(2-O118), stx(2e), and stx(2g)) families were detected, and multiple types of stx genes coexisted frequently in STEC strains. Only 1.8% of the STEC strains from food belonged to the classical enterohemorrhagic E. coli (EHEC) types O26:H11, O103:H2, and O157:H7, and only 5.0% of the STEC strains from food were positive for the eae gene, which is a virulence trait of classical EHEC. In contrast, 95 (43.4%) of the food-borne STEC strains carried stx(2) and/or mucus-activatable stx(2d) genes, an indicator for potential high virulence of STEC for humans. Most of these strains belonged to serotypes associated with severe illness in humans, such as O22:H8, O91:H21, O113:H21, O174:H2, and O174:H21. stx(2) and stx(2d) STEC strains were found frequently in milk and beef products. Other stx types were associated more frequently with pork (stx(2e)), lamb, and wildlife meat (stx(1c)). The combination of serotyping and stx genotyping was found useful for identification and for assignment of food-borne STEC to groups with potential lower and higher levels of virulence for humans.  相似文献   

19.
The severity of human infection with pathogenic Escherichia coli depends on two major virulence determinants (eae and stx) that, respectively, produce intimin and Shiga toxin. In cattle, both may enhance colonization, but whether this increases fitness by enhancing cattle-to-cattle transmission in the field is unknown. In E. coli O157, the almost uniform presence of the virulence determinants in cattle isolates prevents comparative analysis. The availability to this study of extensive non-O157 E. coli data, with much greater diversity in carriage of virulence determinants, provides the opportunity to gain insight into their potential impact on transmission. Dynamic models were used to simulate expected prevalence distributions for serogroups O26 and O103. Transmission parameters were estimated by fitting model outputs to prevalence data from Scottish cattle using a Bayesian Markov chain Monte Carlo (MCMC) approach. Despite similar prevalence distributions for O26 and O103, their transmission dynamics were distinct. Serogroup O26 strains appear well adapted to the cattle host. The dynamics are characterized by a basic reproduction ratio (R(0)) of >1 (allowing sustained cattle-to-cattle transmission), a relatively low transmission rate from environmental reservoirs, and substantial association with eae on transmission. The presence of stx(2) was associated with reduced transmission. In contrast, serogroup O103 appears better adapted to the noncattle environment, characterized by an R(0) value of <1 for plausible test sensitivities, a significantly higher transmission rate from noncattle sources than serogroup O26, and an absence of fitness benefits associated with the carriage of eae. Thus, the association of eae with enhanced transmission depends on the E. coli serogroup. Our results suggest that the capacity of E. coli strains to derive fitness benefits from virulence determinants influences the prevalence in the cattle population and the ecology and epidemiology of the host organism.  相似文献   

20.
Individual susceptibility to gastrointestinal infection is seen commonly in food poisoning outbreaks, but factors (such as diet) which may modulate this variability are understood poorly. Similarly, factors altering the population dynamics of enteric non-pathogenic Escherichia coli or of pathogenic E. coli containing toxin-signature DNA sequences in the colonic flora of healthy individuals are largely unknown. Feces were collected 4 times over a 12 week period from 41 healthy volunteer adults on a weight control diet (high or low in fiber). E. coli strains were examined by conventional culture followed by PCR for virulence genes stx1, stx2, eae and hlyA, and polymorphic beta-glucuronidase. Total E. coli counts ranged from undetectable to 8.75 log10 CFU/g feces and were unaffected by dietary fiber consumption or gender. Total E. coli counts were correlated positively with age (r = 0.401, P < 0.05). Fifty-eight percent (n = 24) of study individuals harboured more than 1 morph of beta-glucuronidase, indicating the presence of more than 1 strain of E. coli. Virulence genes were detected in 12 of 41 adults, comprising 10 stx1, 3 stx2, 3 eae, and 0 hlyA, but occurrence was not associated with diet, gender, or age. Factors influencing strain mobility over time did not appear to include diet or gender, while the positive relationship between total E. coli numbers and increasing age suggests that some older individuals are "more permissive" to mobile E. coli, including those with toxin genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号